Pacific Journal of

Mathematics

ROTATION SETS OF MAPS OF THE ANNULUS




PACIFIC JOURNAL OF MATHEMATICS
Vol. 133, No. 2, 1988

ROTATION SETS OF MAPS OF THE ANNULUS

F. BoTELHO

We study how the rotation interval of a point affects the rotation
set of its w-limit set. Similarities between rotation set and topological
entropy were found, suggesting a deeper relation between these two
concepts.

Introduction. In 1913 Birkhoff proved the first important theorem
about twist maps of the annulus, initially conjectured by Poincaré and
known as “Poincaré’s last geometric theorem”. It roughly says that
any area preserving homeomorphism of the annulus which rotates the
boundary components in opposite directions has at least two fixed
points.

In [6] John Franks, using an extension of Poincaré’s definition of
rotation number, proved that any chain transitive homeomorphism of
the annulus that twists the boundaries in opposite directions has at
least one fixed point; it follows from his work that if a homeomor-
phism of the annulus preserves area then either it has infinitely many
periods or every point has the same rotation number.

In this paper we introduce the rotation set for an endomorphism of
the annulus. Associated to each orbit we define a real sequence that
measures the “wrapping” of the orbit around the inner boundary of the
annulus. The limit of this sequence, if it exists, is called the rotation
number of the orbit. If the limit does not exist, the set of all limit
points of the referred sequence is a closed interval and designated
rotation interval (see pg. 253). The rotation set is the union of all
rotation intervals. It is a topologically invariant set that contains its
supremum and infimum; however we don’t know if it is always closed.

There are interesting similarities between properties of the rotation
set and topological entropy. Katok in [11] proved that any C!*¢ diffeo-
morphism, f, with positive entropy has an invariant hyperbolic set A
where f is topologically conjugate to a shift. This implies that either
every point in A has the same rotation number or there is some point
without rotation number. Nevertheless the relation between positive
entropy and existence of points without rotation number is not com-
pletely understood.
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252 F. BOTELHO

1. Definitions and notations. We review the definition of rotation
number of a point in the annulus under an endomorphism of degree
1.

Notation is fixed as follows:

(a) A= (Rx1I)/ ~, where I = [0, 1]. For (s,¢) and (s',¢) e Rx I we
have (s,t) ~ (s',t) iff s — s’ € Z.

(b) f is an endomorphism of degree | and F a lift to R x /.

(¢) p:Rx I — Ais a covering map and x € 4,X € R x I with
p(X)=x.

(d) X1, X, are the projections of X onto the first and second factors,
respectively. F'(X) = (F*(X));, i =1,2.

DEeFINITION. If the limit of ((F}*(X) —X1)/n),>1 exists, it is denoted
pr(x) (or p(x)) and said the rotation number of x under f, (rotation
number is well defined up to an integer).

LEMMA 1.1. ((FI'(X) — x1)/n)n>1 is uniformly bounded.

Proof . We note that ®@,(y) = Fi(y) — y; is translation invariant i.e.,
for any y € R x I we have ®,(y + (1,0)) = ®;(y).
Continuity of f assures the existence of

L = max{|®; ()|, y € R x I} = max{|®(y)], y € I*}.
Consequently we have:
Er) -3l 200 [REI®) - F )|
n - n

ZRAEE) -H®
< - <

REMARK 1.2. Denoting

IRxI—-RxI
then F =1+ @,
(x,y) = (x,0)

where ® is translation invariant. This leads to the Birkhoff sum
FrE) -% _ Lo ®iu(FI(X))
n - n ‘
It follows from Birkhoff’s ergodic theorem that the subset of 4 con-
sisting of points without rotation number has measure zero.
Let I'; be the set of all limit points of ((F/'(@) —a;)/n)n>1, where
ac€A. ThenforallneZ, I'y = I“f,.(a).
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LEMMA 1.3. T, is a closed interval.

Proof. Assume that I', is not an interval, and its complement con-
tains Iy = (ay, @), where oy, ay € I';. Set 6 = oy — a3 > 0. Let d be
the usual metric in R and

L = max{|®;(y),y e Rx T}

There exists iy such that for i > i

F{(E) —-a 0 2L o
d (———l—.——,I“a) < 3 and —i? < 3

We choose n > ij so that:

Fra) - a, ) Fr+li(a) -a, ]
—<C¥1+‘8— and ——n—_*:—I—>a2—§.
Hence the distance between these terms is bigger than 34/4.

On the other hand:
d (F(’(E) -7, Fr*'@ - al)

n ’ n+1
_nEr(@) — g - (n+ DFF@) + (n + 1)@
- n(n+1)
\F*!(a@) — F(a)| | |F}'(a) - ai L L J
< < —-.
= | n+Dn “neitnyi<g ©

DEFINITION. I', is the rotation interval associated with a.

If A is an f-invariant subset of A, the rotation set of f restricted
to A, R(f|a), is the union J,cpI'a. If A = A4, R(f]p) is called the
rotation set of f and denoted by R(f).

Problem. Is R(f) closed? (see Proposition 2.1, cf. [10]). (If R(f) is
finite then every point has rotation number.)

DEFINITION. The rotation function p: A — R is defined by:
. F'(x)-X
Vx €A p(x)=Ilimsup %—{l—
It is easy to see that: (cf. [14])
(i) p is measurable.
(ii) p is continuous in a dense subset of A.

(iii) p is Lebesgue measurable and [, p = lim, [(F{'(X) - X;)/ndx.

(iv) For n > 0, there exists a closed set F such that m(F) > m(A4)—n
and p is continuous in F (m is the Lebesgue measure).
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2. Homeomorphisms of the annulus. The rotation number of a point
is defined using the asymptotic average of the angular component of
the forward orbit of a point. The w-limit set is defined using the
forward asymptotic behavior of a point. One would expect that if a
point x has rotation number o then the rotation set of w(x) is reduced
to a. However this is not the case. There are examples (cf. pg. 262-
263) of points with rotation number whose rotation set of the w-limit
set is nontrivial.

In this section we study the relationship between the rotation inter-
val of a point and the rotation of its w-limit set.

Let B(x, &) be the ball of center x and radius J.

PROPOSITION 2.1. Let A be a compact f-invariant subset of A. R(f],)
contains its supremum and infimum.

Proof. We start by noticing that Lemma 1.1 assures the existence
of the infimum and supremum of R(f|,). Let o = inf R(f]). We
assume that o ¢ R(f]5). Then the following holds:

(1) d{(o,Tx) = &5 >0, for all x € A.

(2) Vx € A 3n, € Z* and J, > 0 such that

ne(=\ _ = ne(=5\ _ =5
&nl"_‘—a > fzi and ﬂ%ﬁ—a > %" Vy € B(x, ).

By compactness of A 3xy,...,x; € A such that A C U’]‘.=l B(x;,0))
where d; = dx;.

Setting ¢p = min{ey,..., &} and n* = max{n,,..., n;} (for simpler
notation we denote &; for &, and n; for ny;), we choose ny > n* such
that n*L/ngy < €9/8, where L = max{|Fi(y) — 1|,y € Rx I}.

Claim.¥n > nyand x € A

F'x)-Xx
FX-xi_ a>2
n 4
(This contradicts the infimum assumption for ¢.)

Proof of the claim. Let n > ny and x € A. Then x € B(x;,,d;,) for
some i; < k. Condition (2) above can be written as follows

Flni’ (f) - Xi — hja > n,-,%q.
Since f™i(x) € A one has

i iy N (= €
F" (%) — F{" () = niyo > ni,=
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for some i, < k. Adding both inequalities, one gets

F () = %y = (g + np)a> (4 1) - 5.
This procedure is repeated until

S=n e, KBS+t ny,
The following calculations are rather straightforward

- = €
F{(X)-%; —sa> 52,

2
Setting n’ = n — s it follows that n’ < n*. Hence
FE-% _FE®-FK®, BEH-% s
n n s n
_ F}(X) - F{(X) + F}(X) - X, _ F{(x)-x f:
n s s n’
Since i . , .
Fl'(x) - F{(x) <_n_£<nL<Eg
n -~ n — n — 8
and o = , ,
FE®)-x n| rL &
s n{~ n 8
one has
Fln(f) - X FIS(Y)-:?I & & & & _ &
T e T R R R T

REMARK. If A is some w-limit set this proposition basically implies
that R(f]a) C [inf R(f]4), sup R(f]a)]. In the known examples where
the inclusion is strict, there exists some point without rotation number.
Does equality hold if we assume that every point has rotation number?

COROLLARY 2.2. If R(f|w(a)) = {a} then a has rotation number
and it equals «.

Proof. Applying the proof of 2.1 to A = w(a) we have that I', C
[inf R(f]w(a)), sup R(f|w(a))]. o

The corollary below is an easy consequence of a theorem by J.
Franks which says that every point of an orientation preserving home-
omorphism of the annulus with finitely many periods has rotation
number. Furthermore if A is a compact, invariant and chain transi-
tive subset of the annulus then R(f],) is constant.
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COROLLARY 2.3. If f is a homeomorphism of A with finitely many
periods then R(f|w(a)) = p(a), for every o. € A.

Proof . If f is orientation preserving, the result follows from Franks’
theorem. Otherwise f? is orientation preserving. The proof follows
from the next two lemmas since R(f%|wp:(a)) = pp(a).

LEMMA. The point a € A has rotation number under f iff it has
rotation number under f2. If p r(a) exists then pr(a) = pp(a)/2.

Proof .
Fil(@) ~a, F}"(a)-a
2n+1 2n
< | @ - Fir@)|  |Fir@-a | 1
- 2n+1 2n 2n+1
< L+L where L = max{|Fi(y) — »1|.y e Rx I}.

~2n+1
It follows that if p:(a) exists, so does ps(a) and ps(a) = ppr(a)/2. O

LEMMA. R(f?|wp(a)) =2 R(flwy(a)).

Proof. Let a € R(f?*|wp:(a)). Choose (n;); and x € wp(a) such
that
FPM(X)

n;

FIM (%)
2n i '

a=lim = 2lim
l i

Since lim; Flz"" (X)/2n; € R(flwy(a)) we have proved that

R(f*lwp(a)) € 2- R(flw(a)).

Now we show the other inclusion. Fix o € R(f|ws(a)) and choose
(n;); and x € wy(a) such that a = lim; F"(X)/n;. Assume (n;); has
some subsequence constituted by even integers. Then x € wp(a).
Therefore 20 € R(f?|w r2(a)). If such sequence does not exist then

. F'*™™(x)
f(X)ea)fz(a) and a—llfnT:n—l—

Therefore 2a € R(f?|wp(a)). O
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3. Properties of entropy and the rotation set. Both topological en-
tropy and the rotation set measure the dynamics of an endomorphism.
In this section we point out some similarities between these two con-
cepts. We shall use the definition of entropy as presented by Bowen
in [4].

Notation. h(f) denotes the topological entropy of f.

We state below, without proof, some well known results concerning
topological entropy [1]. We then state and prove the corresponding
properties of the rotation set.

P1. Topological entropy and the rotation set are both topological
invariants.

Proof. We show that R(yfy~!) = R(f), where y is some homeo-
morphism of A.

Set ¥ =1 + n, where ¥ is a lift of ¥ and i(x, y) = (x,0) for any
(x,¥) € R x I, (note that # is translation invariant in the following
sense: 7(x + 1,y) =n(x, y),V(x, y) e Rx I).

For a € R(f) we choose x € 4 and (n;); such that

n; (=
a =lim F—-—l—-g—)-
i n;

Denoting ¥ = ¥(X) one has:

ni (\g-1(35 n\p—1(35 nny—1/1=
a = lim HM®0) _ lim FIMY () +mFT (Y (7))
! nl i nl
n; —1(5
= 1im D) ¢ rey i),
! ni
Since ¥ is a homeomorphism the proof is completed. O

In fact the rotation set is invariant under semi-conjugacy i.e. given
f and g, homeomorphisms of 4 we say that f is semi-conjugate to g
if there exists i, continuous and onto so that the following diagram
commutes:

A -
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Under this assumption R(f) = R(g). The proof is similar to the

previous one. However M. Rees in [13] gave an example where topo-
logical entropy is not invariant under semi-conjugacy.

P2. If { "}, is an equicontinuous family then h(f) = 0 and R(f) is
constant.

Proof . Since {f"}, is equicontinuous 36 > 0 such that Vn € N
|F'(X) - F{()I <1 if [x-Y|<d.
This implies that I'y = I', when |x — y| < J. Since A4 is compact
it can be covered by finitely many open balls (f;);~; ., with radius

0/2. The set of points without rotation number has zero measure and
therefore the result follows. ]

P3. h(f*) = |k|h(f).k€Z R(f*)=kR(f).keZ.

(The proof follows directly from the definition, see Lemma 2.4.)
REMARK 3.1. (a) There exists a homeomorphism of A4 with infinite

entropy. Set A = {(,0): 1 <r <2and 0 < 6 < 2n}, Q, a small
square with edge < 1/4n(n +1). Let

1 1
= : —_<r< -
Ay {(r,e).1+n+l_r_1+n}ch

and f a horseshoe map as seen below.

f is extended to a homeomorphism
of A, agreeing with the identity on
the boundary, also denoted by f.
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Defining g : A — A by g|4, = f", it follows that A(g) > h(f") =
n log 2 hence 4(g) = co. Consequently for any p-manifold M, there
exists a homeomorphism of M ? with infinite entropy that can be con-
structed by considering generalized horseshoe maps defined as above
in p-cylinders conveniently embedded in M7,

P4. If the nonwandering set of f is finite then h(f) = 0 and R(f) is
finite.

Proof . If f has finitely many periodic points then the result follows
from Corollary 2.3. m}

P5. If {f"}, is an equicontinuous family and g a homeomorphism
of A that commutes with f then h(fog) =h(f)+h(g) and R(fog) =

R(f)+R(g).
Proof. For a € R(f o g), 3x € A and (n;); such that
n, (< n, ni(v
i FRONE _ L FMG()
i n; i n;
and as setting several times before, F =1 + ®, one gets
n, ni(v ni (¥ n; ni(¥)) — n (¥
o tim TG E) _ (Gl (®) , FMG"(®) -G )
i n; i n; n;

o i—1 i (=
= lim ———G?' ) + lim jo P10 F70 G (x).
i i '

.
Let x( be a limit point of {g"(x)} l(assume g"(x) — xp) and
L = max{|®P;(y)|,y e R x I}.
The equicontinuity of {F"}, and continuity of ® assures the exis-
tence, for ¢ > 0, of ng such that
|®, FIG™(X) — @ F/(Xp)| < &, Vn; > ng.

Therefore
IE (DloFJoG"'(x) (DIOFJ(XO)]I
n;
. |z;°;0' [®) 0 FJ o G"i(%) — By o FJ (Yo)]|
< 7
n, i (¥
|2 [@10 FJ 0 G(%) — @y 0 Fi (%))
+ "
< 2Lng y i, < 2¢ if n; is suitably large.

n; n;
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li

This leads to the equality
n—1 j = n,—1 i (~ o
Do Flo G (X P o F/(X Fni

i n; I n; i n;
Plugging this back into the expression for a, one gets
Ri (< Fn, vy
] i 1

n;

€ R(g) + R(f).

i

This shows that R(f o g) C R(f) + R(g).

Now we prove the other inclusion. Fix o € R(g) + R(f). Then
a= B +4J with B € R(g) and d € R(f). Since f € R(g) there exists
x € 4 and (n;); so that

. GY(x)
ﬂ = lim TI—
Let y be a limit point {g”(X)} (we assume that g"(x) — y). The
1
equicontinuity of {F”} and P2 assures that R(f) is constant. Then
— _ n,-—l Vorvs
Flnl(J’)._Jﬁ  lim 2= <I>1-oFJ(J’)‘

n; i n;

l
Using, once more, the equicontinuity of {F"}, we have that

T @10 FI(P) - " @y 0 Flo G™(X)

lim

i n; i n;
Plugging this back into the expression for o we get:

mx) Yty @ioFioGh(X
o =lim (Gl ) == ( ))
i n; .”i

ER(fog).

Notice that PS5 requires equicontinuity; just consider any homeo-
morphism f with non-trivial rotation set and g = /1.

F'(G™(%))

= lim
! i

Consider C%(4, A) the set of all continuous functions of 4 with the
metric dy defined by do(f g) = sup{|F (%) — G(X)|, X € I*} and P(R)
the set of all compact subsets of R with the Hausdorff metric D:

D(X,Y) = max{max{(mind(e, B),B€Y),a € X},
max{(mind(e, ), € X),B€Y}}, XY ePR).

(d denotes the euclidean metric in R).
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Let C*(A, A) be the set of all continuous functions on A4 with the
d. metric. Vfg € C*(4,A4) d.(fg) = sup{|e(F/(X)) — y(G/(X))| :
X € I%, j € N}, where F and G denote lifts of f and g, respectively,
such that F =1+ ¢ and G =1+ y (cf. pg. 252).

Now let & : C%(4, A) — R be the entropy function and R : C*(4, 4)
— PB(R) be so that Vf € C*(4, A) R(f) = closure of R(f).

P6. The function h is discontinuous at f if f has finite entropy and
some periodic point; the function R is uniformly continuous.

Proof. We first prove that 4 is discontinuous at f if A(f) is finite
and f has some periodic point p. Without loss of generality assume
p a fixed point, for ¢ small enough choose d > 0 with f(f(p,d)) C
B(p, &) C A and select ¢; < min{¢, d}. We now define a homeomor-
phism g on A, which is an extension of a horseshoe map in B(p, &)
that agrees with the identity elsewhere—see Remark 3.1 and the pic-
ture below.

Let a: A — [0, 1] be a bump function with value 1 in B(p, ¢;) and
0 outside B(p,d). We define f, = ag" + (1 — a)f. It follows that
do(f f,) < 2¢, and h(f,) > n log 2 since h(g") > n log 2.

We now prove that R is uniformly continuous. Fix ¢ > 0 and
a € R(f), and choose (n;); and x € 4 so that:

F'(X)

n;

—B’+8.

min d(a, f) < min
BeR(g) (o f) BeR(g)
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We have that {G['(X)/n;} has some subsequence that converges to
some number u. Therefore we choose 7 s.t.

: F (X) I
d(o, B) < |—1——=—u|+
b A T A
Ry (<= No(~
< F°(x) Gy (x)‘+28
Ro 7y
|25 (@10 FI(%) = ¥ 0 G (%o)]|
= + 2¢
Ro
Consequently we have D(R(f),R(g)) < d.(f g). O

P7. Set S = {f € Diff(4): f has some point without rotation
number} and T = {f € Diff(4): h(f) > 0}. Both sets have nonempty
interior in the C! topology.

Proof. Denote 4 = {(r,0) : 1 <r <2} and Q C 4 a small square
with edge = 1/4, consider a horseshoe map that contracts linearly in
the vertical direction by a factor d < 1/2 and expands in the horizontal
direction by a factor 1/ (see picture below). We can extend it to a
diffeomorphism, f, of A (for details see [5]).

There exists an invariant hyperbolic set A € Q where f is topolog-
ically conjugate to a shift ¢ in two symbols.
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Vo A

[ |
H ///7//{/////%'/

[ [
* 77770077
I

To each x € A we associate an infinite sequence (...,a_q,agp, ay,...)
—the itinerary of x—so that:

aj=s iff f/(x) € H;

a_j=s fff/(x)el (see [5] for details).

Now a(...,a_j,ap,ay,...) = (..., b_1, b9, by,...) where b; = a;,;.
We choose x € A.

Ifa; =0 then |F(X)-X;|<1/4

Ifay=1 then |Fi(X)-X;-1|<1/4 (see picture below).

Therefore, in general we obtain |F}'(X) — X — k| < 1/4, where kj,

is the number of 1’s that appear in {a;, ..., a,}.
It follows that

ni=\ _ =
n n n
Q Q
0 1 2

In order to find a point without rotation number simply choose a
sequence (...,a_j, agp, ay,...) such that k,/n does not converge.

More precisely we define a sequence of 0’s and 1’s with longer and
longer blocks of only 0’s or only 1’s so that the sequence (k,/n),
oscillates between getting very close to 0 and very close to 1. The
point x associated with this itinerary does not have rotation number
and the result follows from the stability of a hyperbolic set. The above
proof also shows that 7 has nonempty interior. O
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4. Some connections between entropy and rotation set. If f is a
C!+¢ diffeomorphism of A with positive entropy, Katok’s theorem
[11] implies that there exists a hyperbolic invariant Cantor set A such
that f]|, is topologically conjugate to a shift of n symbols. We note
that either the rotation set of A reduces to one number or there exists
some point without rotation number.

If R(f],) is not one number then we can choose x, y in A with
different rotation numbers o, f.

To each point we associate a sequence of 0’s and 1’s

x—(...,ap...) and y—(...,bgy...).

We now construct a new sequence by taking longer and longer blocks
from the sequences associated to x and y in such a way that (k,/n),
(see pg. 263 for the definition of k,) gets progressively and alternately
closer to o and B. The point corresponding to this sequence of 0’s
and 1’s does not have rotation number.

DEFINITION. A diffeomorphism of A4 satisfies the Axiom A (see [4])
if it admits an Axiom A extension to S2.

ExXAMPLE. In picture 1 below we give an example of a flow whose
time one mapping defines an Axiom A diffecomorphism of the annulus.

source

Each component of the boundary of 4 contains a source and a sink,
and bounds a disk in S2.
Picture 2 shows how the flow can be extended to S2.
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sink

source

THEOREM 4.1 (Bowen [3]). If f satisfies Axiom A and h(f) = O then
the nonwandering set Q(f) is finite.

It follows easily that

COROLLARY 4.2. If f is Axiom A and h(f) = O then every point has
rotation number and R(f) is constant.

Proof. By 4.1 Q(f) is finite. Corollary 2.3 implies that every point
has rotation number and R(f) is constant. O

This leads to the following question: Does zero entropy imply that
every point has rotation number?

Acknowledgments. I am grateful to J. Harrison for introducing me
to this subject and for many useful and stimulating conversations; I
also thank the referee specially for calling my attention to the work by
Arason, Chorin, Hall and McGehee [2] and by Hockett and Holmes
[9]. There it is shown how invariant Cantor sets embedded in the
annulus contain uncountable many invariant sets, as well as periodic
orbits and orbits without rotation number (see pg. 262-263); for this
they use symbol sequences corresponding to certain orbits and after
they translate results back into the corresponding ones in the annu-
lus. Also LeCalvez in “Existence d’orbites quasi-périodiques dans les
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