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PSEUDOCONVEX DOMAINS WITH PEAK FUNCTIONS
AT EACH POINT OF THE BOUNDARY

ANDREI IORDAN

Under certain conditions, each point of the boundary of a smoothly
bounded weakly pseudoconvex domain D in C” is a peak point of
A*(D).

1. Introduction. Let D be a bounded pseudoconvex domain with
C® boundary. We denote by A>°(D) the set of holomorphic functions
in D which have a C® extension to D. A compact subset E of dD is
a peak set for A°(D) if there exists f € A*°(D) such that f =0 on E
and Re /> 0 on D\E. Such a function will be called a strong support
function for E. If E = {p}, p is a peak point for A°(D).

In [6], [18] it is proved that each point of a strictly pseudoconvex
domain is a peak point for 4°(D) with a strong support function
holomorphic in the neighborhood of D and in [7], [17] it is proved that
each strongly pseudoconvex point of a weakly pseudoconvex domain
with C* boundary is a peak point for 4°°(D). These results fail in the
case of weakly pseudoconvex domains [4], [13]. Other results about
smoothly varying peaking functions in pseudoconvex domains may be
found in [1], [5], [14].

If D is strictly pseudoconvex, Chaumat and Chollet proved in [3]
that each closed subset of a peak set for 4A°(D) is a peak set for
A%(D). The assertion is also true for bounded pseudoconvex domains
in C? of finite type [15] and for bounded pseudoconvex domains in
C? with isolated degeneracies [11] or with (NP) property [12].

In [16] is given an example of convex domain in C? not of finite
type whose weakly pseudoconvex boundary points form a line segment
which is a peak set for 4%°(D), but there is a point which is not a peak
point for A®(D).

Here we prove that, under certain assumptions, each point of the
boundary of a weakly pseudoconvex domain is a peak point for A% (D).

Some results of this paper were announced at the International
Workshop Geometric and Quantitative Complex Analysis, Wupper-
tal 1986.
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This paper was started while the author held a position of research
mathematician at Tel-Aviv University. The author wishes to thank
the Mathematics Department for the conditions of work created.

2. A Morse lemma for non-negative strictly g-pseudoconvex func-
tions.

LEMMA 1. Let ¢ be a real-valued non-negative function defined in
a neighborhood of 0 € C" such that ¢(0) = 0. We suppose that the
complex Hessian of ¢ at 0 has q zero eigenvalues at the origin. Then
there exists a complex-linear change of coordinates in C" such that

,
=Y (1+4))x +Z (1 =2,y +0(z)
j=1
wherelz,lij,z=x+zy,r=n—q.

REMARK 1. Lemma 1 is a more complete form of Lemma 4 of [10].
For strictly plurisubharmonic functions the result was obtained in [9].

Proof of Lemma 1. The proof is similar to the proof of Lemma
4 of [10] and most of it is presented there. The point O is a local
minimum for ¢ so grad ¢(0) = 0 and the real Hessian of ¢ at O is
semi-positive definite. By [18] it follows that the complex Hessian of
¢ is semi-positive definite at 0. We denote

X' =(xn....x), xX"=(xr11,-..,Xn)
=Vrstr--¥n), Z=x"+10y, 2
We have

Vi=0n...,y)
=x"+iy".

2
p(z) = Reza 57 -(0)z;z,

i,j=1
00 (0)2,2, 3
+ ; 527,072+ 0(2P).

By making a complex-linear change of coordinates in C* we may sup-
pose that
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and ¢(z) = |2'|? + Re(*zSz) + O(|z|?) where

2
S=[ %9 (0)] .
6ziazj 1<i,j<n

Let s = [(})] be a real 2n-vector in R*", where x, y € R”,
E = {S € R2n|xu =0, le - 0}, E" = {S c R2n|xl =0, y/ — 0}.

We shall identify E' with R¥ and E” with R¥"=7), E’ and E" are
complex subspaces of C” = E'®E" and for s € C" we obtain s = s'+s”
with s’ € E’, s” € E". With these notations we obtain that

o(s) = ') + sTs + O(|s|?) = |s')? + (T, s) + O(Js]?)

where (, ) is the inner product in R?” and T = [ 4, ~5] with § =
A+ iB, A and B real symmetric matrices. In [10] we prove that

(Ts,s) = (T}s",s') + (T,5', s") + (T{'s",s') + (T})'s", s")

where
4 0 -B, 0 0 0 0 O
r—| 0 0 0 0 uw_|0 A4 0 -Bj
'Y |-B, 0 -4, 0 0 0 0 0
0 0 0 0 0 -B) 0 —AY

and 47, B are the r x r (n — r x n — r) matrices obtained by taking
the first r (the last n — r) rows and columns of 4 and B respectively.

Let J be the real orthogonal matrix representing the multiplication
by i=+v-1,1ie, J[(;)] =[(})] If v € E (v € E") is an eigenvector
for T| (T}) with eigenvalue A, then Jv' (Jv") is an eigenvector for T]
(T3') with eigenvalue —A. Because 4 and B are symmetric matrices, it
follows that 7|, T, are symmetric matrices. We may therefore con-

sider an orthonormal basis of R?" by the form v},..., v}, v/, |,..., v},
I vy, v, Iy, where v;., Jv;., v;.’, Jv}’, are eigenvectors for

T}, respectively T,'. If A; is the eigenvalue of v} (v;.’ ), by interchanging
v; and Jv; if necessary we may assume each 4; > 0.
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We have in fact a complex-linear change of coordinates in C” and
if the new coordinates are denoted also by (zy,..., z,), we have

r r
= (1+4)x}+) (1 -4;)y3
j=1 j=1

r n
+ 3 (@ixixj+ bijxiy; + cijx;yi+ dijyiv))

i= lj r+1
n
+ }: Aixt= 3" 4y +0(zP).
Jj=r+1 j=r+1

Because the real Hessian of ¢ at 0 is semi-positive definite, it follows
that ;; < 1for j=1,...,rand A; =0for j =r+1,...,n If for
some | <i<rwehaved;=1,thenc;;=d;;=0for j=r+1,...,n,
because c;;x;y; and d;;y;y; change sign at the origin if ¢;; # 0, d;; # 0.
Thus

~

2
n bi'
[V(IH)J‘:+ 2. 3 \/—7 + 2 N_ﬁ%}

i=1 j=r+1 Jj=r+l
’ 2
'
+ V( DYi+ X+ y
I=ZI [ l j;l-lz\'l— " 12}-12\' J:|

1S
Z T+4 [ > (@x} +b%y))
z=1

Jj=r+l

n
+ ) (@ijapx;xi +bijbiy;vi + 2apbyx j)/k)}
Jk=r+1

1 1
“ZZ yy [Z (cZx} +diy))
i=1 Jj=

j=r+1

n
+ Y (cijenxixe + dijdpyivie + zcijdikxjyk)}
Jk=r+1

+0(|z]P),
where Y’ means that we take the sum over the indices i for which

A; < 1. Because ¢ > 0 in the neighborhood of the origin, we obtain
thata,-j=b,-j=c,-,-=d,~j=0foreachi= L...,r,j=r+1,...,n
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3. Local properties of strong support functions.

LEMMA 2. Let D c C" be a pseudoconvex domain with smooth
boundary, E C 0D a peak set for A (D), f a strong support func-
tion for E and p € E. Let p be a local defining function for 8D in the
neighborhood of p. We denote Cp(p, f) = —(0 Re f/on)(p)p + Re f,
where 0/0n is the derivative with respect to the normal direction at p.
Then:

(@) H'C,(p, f)(p) is semi-positive definite, where H" represents the
real Hessian restricted to the complex-tangent space TCp(0D);

(b) HCy(p, f)(p) = —(0 Re f/on)(p) L, where H is the complex
Hessian restricted to TC,(0D) and L, is the Levi form at p;

(c) Suppose that L, has q zero-eigenvalues and r = n — q — 1 strictly
positive eigenvalues at p. Let ey, ..., e, be the eigenvectors correspond-
ing to the strictly positive eigenvalues and V, the real subspace gen-
erated by e,,...,e,. If V5 is the subspace of TCy(0D) generated by
the eigenvectors corresponding to the strictly positive eigenvalues of
H'Cy(p, f)(P), then V, C V,}.

REMARK 2. By the Hopf lemma we have (9 Re f/on)(p) > 0.

Proof . The proof of Lemma 2 is similar to the proof of Proposition
9 of [3] and we shall repeat the arguments from the beginning of it.

By making a complex-linear change of coordinates in C" we may
suppose that p is the origin and in the neighborhood U; of the ori-
gin D is given by DN U; = {(z',w) € Uy|p(z',w) < 0} where z' =
(z1,....2p1), zj = Xj+iyj, w=u+ivand p(z’,w) =u+ Ri(z) +
Ry(Z',w), where R (Z’) is a second order homogeneous polynomial in
z', 2/, and Ry(2', w) = O(|Z'||w| + [w]* +|2']}).

Because (0, 0) is a local minimum for Re f, by the Hopf lemma we
obtain that

dRef
T(O, 0) <0,
Ref(O,O): dRef
ox j 0 j
It follows that in a neighborhood U, of the origin, U, C U;, we have

dRef
ou

ORef
av

(0,0) =0, 1<j<n-1.

(0,0)=0,
0

Re f(Zz',w) = (0,0)u+ K (z',w) + Kr(z', w)
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where K, (z’, w) is a second order pluriharmonic polynomial in z/, z,
w, w and K,(z', w) = O((|Z'| + |w|)3).
From the Cauchy-Riemann equations at the origin we obtain that

olmf OIm f _

5 ——(0,0) <0, e (0,0)=0,
dlImf dImf . B
7%, (0,0) = 8yj ——(0,0)=0 j=1...,n-1

Because
(p,Imf)(0 0) = id Ref

o(w,w) 2 (0.0)#0
'1t follows that the set £ = {(Z/, w)lp(z w) =0, Imf(z',w) = 0} is
in a neighborhood Uj of the origin, U; C U,, a 2n — 2-dimensional
C*°-submanifold of the boundary which contains £ N Us.

So, there exists a C*®°-function 4 = h(z') defined in a neighborhood
Vi of 0 € C* 1 such that £ = {(Z/, w)|w = h(zZ')}.

We have p(z',h(z')) = 0 = Reh(z') + Ri(2') + Ry(Z', h(Z')) and
because the first order derivatives of 4 vanish at the origin we obtain
that Re h(z') = —R(2') + O(|Z']3).

We define

O(z') = Re f(Z, h(Z"))

= 2R¢J (0,0)Reh(z) + K (2! A() + Ka(2, h(2)

_ aRef(o 0)R,(2) + K\ (2,0) + O(|Z'),

and we obtain (b).

The complex tangent space of D at (0,0) is {(z’, w)|w = 0}, hence
the complex Hessian of © has n — g — 1 strictly positive eigenvalues
and g zero-eigenvalues at 0.

Because f is a strong support function for £ we have O(z') > 0
and ©(z') = 0 if and only if (z/,~(z’')) € E. Because the origin is a
minimum for ©, we obtain (a).

We denote by Z = {z € 11|0(z’) = 0}.

From Lemma 1 it follows that there exists a complex-linear change
of coordinates in C*~! such that in the new coordinates (which we
shall denote also z' = (zy,... zn_l)) we have:

n—q—1

(1) 8(z)= Y (1-2;)xi+ Z(l— )yi+0(zP), ;20
j=1

and we obtain (c).
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ProOPOSITION 1. Let D C C” be a pseudoconvex domain with smooth
boundary, E C dD a peak set for A®(D), f a strong support function
for E and p € E such that the Levi form has q zero-eigenvalues at
p. We denote by Z,, the complex q-dimensional subspace of TC,(dD)
generated by the eigenvectors corresponding to the zero-eigenvalues.

Using the notations of Lemma 2, suppose that:

(i) H"Cp(p, f)(p) has at least n — 1 strictly positive eigenvalues;

(ii) There exists a neighborhood V of p and a q + 1 codimensional
generic submanifold S of D such that ENV C S and TCp(S)® Z, =
TC,(3D);

(iii) The tangent space T,(S) has a q dimensional complement V,
in Ty(0D) which is contained in Wy, where V, & W, = V.

Then there exists a neighborhood w of p, an n-dimensional totally
real submanifold of 0D N w and ¢ > 0 such that ENw C M and
Re f(z) > cd(z, M)? for each z € D N w.

REMARK 3. The conditions (ii) and (iii) mean that there exist py, ...,
pq defined in the neighborhood of p such that

O(py--p0)

0(p1---r Pq)
6(21,...,24) l 7 (p)

and
oY, ... v}

have maximal rank, where z,..., z,, respectively y|,..., y, are the
variables corresponding to Z,, respectively to V).

Proof. We shall use the notations from the proof of Lemma 2 and
continue the proof with the methods used in the proof of Proposition
9 of [3] and Proposition 3 of [11].

The set

00

— o9
N—{z eV;laxj

(z)=01 Sjsn—q—l}
is in a neighborhood ¥, C ¥; of 0 € C"~! an n 4+ q — 1-dimensional
generic submanifold of C"~! which contains Z N V5.

We denote by 7(z) = J(grad p(z)) where J represents the complex
structure on C" = R?", Because Ty(X) = {(z,w) | w = 0}, it follows
that 7 is transversal to X at (0, 0), hence there exists a neighborhood
U, C U; such that 7 is transversal to £ on Uj.

Therefore there exists a C*°-diffeomorphism ¢ defined on

0. ={(2,0) | 2 € Vo, t € (—¢,€)}
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with values in 0D such that

(2) ¢(z',0) = (z,h(Z')) and %—?(z’, 0) = (', h(2")).

Because ZNV, C N we have

(3) ENUs;Cp(Z x{0}) C o(N x{0}).

We denote by ®(z',t) = Re f(¢(2’, 1)) and by

N={(z\1)€0lrj(z.) =0, 1< j<n—q~1,p,(p(z,1)) =0,

j=1...,q9}

where r;(z',t) = (0®/0x;)(2’,¢) and p; are obtained by Remark 3.

Let us suppose that 0 < A; < 1 for1 < j < g and denote h; = pjop,
j=1,...,q9. Let {ey,..., ey} be the standard basis in C" and let Sy be

the real space generated by ey, ...,e,_4_1, Jey, ..., Je;. Because
od 00
(! — ' = /
(4) ri(z',0) ox, (', 0) 7%, (")

from (1) we conclude that
(gradr;)(0,0) = 2(1 4+ 4;)e;.
By Remark 3 we obtain that
8(r1, . .,r,,_q_l, hl, ,hq)(o)
O (X1, V1o s Yn-1,1)
has maximal rank # — 1 and N is in the neighborhood of the origin
an n-dimensional submanifold of 0.

From (1) and (4) we obtain that the restriction to .S, of the Hessian
of @ at the origin is strictly positive definite. From (iii) we obtain that
So® Tip,0)(N) = R27~1 x R and the proof continues as in the proof of
Proposition 3 of [11], the genericity being obtained by (ii).

LeMMA 3. Let D be a bounded pseudoconvex domain in C", { Ep}nem
a family of peak sets for A (D) with strong support functions f, which
satisfy (i) of Proposition 1. Then E = (), E, is a peak set for A*(D)
with a strong support function which satisfies (i).

Proof . A strong support function for Eis f =1~ y(1/2")e /.
1
HiRef)=)_ 57 Hj(Re o)

neN
and
ORef Z 1 9Refy
on 2" 9n
neN

and by Lemma 2(a) the lemma follows.
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PROPOSITION 2. Let D C C" be a bounded pseudoconvex domain
with smooth boundary, E a compact subset of dD, w a neighborhood
of E in C" and p a continuous function on & which vanishes on E. We
suppose that there exists G € C*®°(w N D) such that:

(a) {ze DNnw|G(z) =0} =E,

(b) for each o € N", k € N, there exists Cy > 0 such that

|D*8(G(2))| < Caxp(2)*

for each z € DN w, _
(c) there exists ¢ > 0 such that Re G(z) > cp(z) for each z € D N w.

Suppose that Re G verifies (i) of Proposition 1. Then E is a peak
set for A%°(D) with a strong support function which verifies (i).

Proof . We know from [3] that E is a peak set for 4°°(D) with strong
support function f = G/(t — uG) where ¢t = 1 in the neighborhood of
E and u is a solution of a  problem. It is easy to see that f verifies
condition (i).

4. Peak points in weakly pseudoconvex domains. For simplicity, we
shall say that a peak set E for 4°(D) which verifies (i), (ii), and (iii)
of Proposition 1, verifies the (GC) condition (GC=good convexity).

REMARK 4. The (GC) condition is obviously verified at the points
of strong pseudoconvexity.

THEOREM 1. Let D be a bounded pseudoconvex domain in C* with
smooth boundary, E a peak set for A*(D) which verifies the (GC)
condition, and K a compact subset of E. Then K is a peak set for
A®(D).

Proof . The proof is identical with the proof of Theorem 11 of [3],
which uses only the conclusions of Proposition 1.

THEOREM 2. Let D be a bounded pseudoconvex domain with smooth
boundary such that the set of weakly pseudoconvex boundary points
w(AD) is contained in a peak set E which verifies the (GC) condition.
Then each subset of w(0D) is a peak set for A°(D).

Proof . By Corollary 1 of [11], w(dD) is a peak set for A*(D). By
the proof of Lemma 1, Lemma 2, Corollary 1 of [11] and by Lemma
3 and Proposition 2 above, w(dD) verifies the (GC) condition and we
obtain the result from Theorem 1.
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From Theorem 2 we obtain the following:

THEOREM 3. Let D be a bounded pseudoconvex domain with smooth
boundary in C" such that w(dD) is contained in a peak set E which
verifies the (GC) condition. Then each point of OD is a peak point for
A=(D).

REMARK 5. Using the same proof as in Lemma 2 of [11] we may
suppose in Theorem 3 that the (GC) condition is verified except at a
finite number of points.

EXAMPLE. Let p(z) = |z [*+|z5)*+| z3)*+] z3)? (Im 21 )%+ (Im z5)% -
Rez2) and D = {z € C3|p(z) < 1}. D is a bounded pseudoconvex do-
main in C? with real analytic boundary which does not have the (NP)
property (it is a slightly modified version of the domain considered in
Example 3 of {12]). We have w(dD) = C; U C, U C3, where

Ci={zllz1l=1z2=23=0}, Cy={zl|za| =1,z =23=0},
Cy={z|]y)=y2=23=0,x{ + x5 = 1}.

The points of C; are not of strict type in the sense of [2] or [8].
Let E = {z € 8D | z} + z§ = 1}, which is a peak set for 4°(D) and
C; C E. At each point of C; with x; # 0, x, # 0 we obtain that

H'Cy(p, /) =12 <4\/x16 +x§ — 1) (x}t} + x382)
+4 (,/xf X6+ 3) (X283 + x282)

has 4 strictly positive eigenvalues and in the neighborhood of p, C; is
contained in M = {z|p(z) = 1, x{ + y1 + x5 + x3 = 1}. Because each
point of C; and C, is obviously a peak point for 4%°(D), it follows
that each point of dD is a peak point for 4°(D).
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