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A Γ2-knot means a 2-torus embedded in a 4-manifold. We define
torus T2-knots in the 4-sphere S4 as a generalization of torus knots
in S3. We classify them up to equivalence and study the manifolds
obtained by Dehn-surgery along them.

1. Introduction. Dehn-surgery, which was introduced by Dehn [1],
plays an important role in knot theory and 3-dimensional manifold
theory. The classical Dehn-surgery is the operation of cutting off the
tubular neighborhood N = Sι x D2 of a knot in S3 and of pasting
it back via an element of TΓQ Diίf dN, which is isomorphic to GL2Z.
Gluck-surgery [2] along a 2-knot in S4 is a 4-dimensional version of
Dehn-surgery. In this version, N = S2xD2 and πQΌiffdN = (Z/2)3.
(Z/2)2 corresponds to the orientation reversing diffeomorphisms of S2

and 3D2. Therefore Gluck-surgery yields at most one new manifold
from one 2-knot and it is a homotopy 4-sphere (see [2]). Another
4-dimensional version is Dehn-surgery along a 2-torus embedded in
S4 [7], which we call a T2-knot in this paper. In this version, N =
T2 x D2 and πoDiffdiV = GL3Z. Countably many manifolds are
obtained from one Γ2-knot. A manifold obtained by Gluck-surgery is
also obtained by Dehn-surgery along a Γ2-knot (see Proposition 3.5).
Dehn-surgery along an unknot is studied in [7], [9]. See also [3].

In this paper, we define a torus T2-knot which is analogous to the
torus knots in the classical knot theory, and classify them up to equiva-
lence. Then we study the manifolds obtained by Dehn-surgeries along
them.

Dehn-surgery along a torus knot is studied by Moser [8].

THEOREM 1.1. (Moser [8], Propositions 3.1, 3.2, 4.) Assume that a
Dehn-surgery of type (α, β) is performed along k(p, q), the torus knot
of type (p, q). Put \σ\ = \pqβ - a\. The manifold obtained is denoted
byM.

(i) If\σ\ Φ 0, then M is a Seifert manifold with fibers of multiplic-
ities p, q, \σ\.

(ii) If\σ\ = 1, then M is a lens space L(\a\, βq2).
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290 ZYUNΊTIIWASE

(iii) If\σ\ = 0, then M is the connected sum of two lens spaces
L(p,q)#L(q,p).

Our results are the following. Theorem 1.3 is a generalization of
Theorem 1.1.

Let k(p, q) be the torus knot of type (p, q) in S 3, and B be a 3-ball
contained in S3 - k(p, q). Define S(k(p, q)) and S(k(p, q)) by

(S\ S{k{p, q))) = ((S3, k(pf q)) -\n\B)xSι Uid S
2 x Z>2,

(S*, S(k(p, q))) = ((S3, k(p, q)) - ln\B) x Sι Uτ S
2 x D2

where id is the natural identification of dB x Sι with S 2 x <9Z>2 and
τ is the map (w, v) »-• (wv, v) where we identify S2 with the Riemann
sphere and D2 with the unit disk in C.

PROPOSITION 1.2. (Lemma 2.6 and Proposition 2.9.) ^«y fora? Γ2-
knot is equivalent to one and only one of the following:

(i) S(k(p,q)), \<p<q, gcd(p,q) = 1;
(ii) 5(Λ(/ι,ήf)), \<p<q, gcd(/?,ί) = 1;

(iii) unknotted T2-knot.

THEOREM 1.3. (See Proposition 3.6, Remark 3.7, Proposition 3.9,
Corollary 3.10, Proposition 3.11.) Asswme /fozί <z Dehn-surgery of type
(α, /?, y) (see Definition 3.2) is performed along S(k(py q)) orS(k(p, q)).
Put σ = |pίj5 - α|. ΓAe manifold obtained is denoted by M.

(i)Ifσφ 0, ί/zen Λf is the total space of a good torus fibration over
S2 with one twin singular fiber of multiplicity p and two multiple tori
of multiplicity q and σ.

(ii) Ifσ=l, then M is L μ or Ljα|.

(iii) Ifσ = 0, then M is an irrational connected sum along circles
[5] of either Lm or Um and L(n, r) x Sι for some m, n, r.

(iv) Ifγ = 0, then M = (M0-lntB3)xSιUhS
2xD2 whereMo is the

manifold obtained by a Dehn-surgery of type (α, β) along the torus knot
of type (p, q) and h = iά (ifK = S(k(p, q)))9 h = τ (K = S(k(p, q))).
Especially if (a, β, γ) = (pq, 1,0), M = Lp#Lq.

(Lm and L'm are the manifold defined in [9]. See also [3].)

We use standard notations. N(X) means the tubular neighborhood
of X. All the homology groups are with coefficients in Z unless other-
wise indicated.
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2. Torus Γ2-knots.

DEFINITION 2.1. Let Mn (resp. Nn~2) be an n- (resp. (n - 2)-)
dimensional manifold. A submanifold K in Mn is called an Nn~2-
knot in Mn if K is diffeomorphic to Nn~2. Let K, K1 be two Nn~2-
knots in Mn. K and K1 are equivalent if there exists a diffeomorphism
h:

We will be mainly concerned with Γ2-knots in S4.
Recall that a Γ ι-knot (i.e. a classical knot) # in S3 is called un-

knotted if K bounds a disk D2 in S 3 .

DEFINITION 2.2. A Γ2-knot K in S4 is called unknottediϊK bounds
a solid torus S 1 x D2 in S 4 .

Any two unknotted Γ2-knots are equivalent.

REMARK 2.3. There exist three isotopy classes of embeddings T2 ->
S 4 such that their images are unknotted (see Theorem 5.3 in [7]). But
we are considering a Γ2-knot itself, not its embedding map.

Recall that a Γ^knot K in S3 is called a torus knot if AT is essentially
embedded in dN(U)9 where U is an unknotted T^-knot in S3.

DEFINITION 2.4. A Γ2-knot K in S 4 is called a torus knot if K is
incompressibly embedded in dN(U)9 where U is an unknotted Γ2-
knot in S4.

LEMMA 2.5. i>/ AT, Kr be incompressible 2-tori in T3 such that [K] =
[Kf] in HiiT3). Then, there is an ambient isotopy which carries K to
K'.

Proof. We may assume that (Γ 3, K) = {Sι xSιx Sι, Sι x Sι x {*})
without loss of generality.

By Theorem VI.34 and VI. 17 in [4], there exists a diffeomorphism
/ : (T3,Kf) -+ (T3,K). Since f*([K]) = [K], there exists a diίfeomor-
phism g: (T3,K) -> (T3,K) with /* = ft. Since f~ι ^ : (T3,K) ->
(Γ3, A";) satisfies (f~ι - g)* = id, it is isotopic to the identity map. D

Let U be an unknotted Γ2-knot in S4. S4 - N(U) is a twin (see
[7]). We denote the twin by the symbol Tw. A twin consists of two
S2 x Z>2's plumbed at two points with opposite signs. Let R, S be the
cores of two S2 x D 2 's. They generate H2(Tw). Let D(r), D(s) be
2-disks properly embedded in Tw such that R D(r) = S D(s) = 1
and i? Z)(5) =S-D(r) = 0. 52)(r) and dD(s) are circles in d(Tw). We
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call them r and s respectively. Their homology classes in Hχ(d{Tw))
are well-defined. Choose a circle / in d(Tw) such that (/, r,s) is an
oriented basis of H\(d(Tw)). Two /'s are mapped to each other by
some diίFeomorphism between 7w's which fixes r and s (see Remark
2.5 in [3]). Next, we consider the manifold D2 x T2 = D2 x S{ x S{.
Let/, f, s be the circles &D2x{*}x{*}, {*}x51x{*}, {*}x{*}xSίl in
d (D2 x T2) respectively. S4 = Tw Uf T2 x D2 where /*[/ r s] = [/ r s\.
Put Γo = T2 x D 2 n Tw c S 4 . Assume that K is a torus Γ2-knot
contained in Γo. Denote A: by K(p, q, q') if [K] = /?(r x 5) + q{s x /) +
^'(/ x r) in //2(5 (Γw)) where p, q, q1 e Z. Note that by Lemma 2.5, /?,
#, ^r determines the knot type of K.

Let h: To -> Γo be a diffeomorphism with Λ*[/ r s] = [/ r 5]^ Λ ,
where Ah G GL3Z. There is a diffeomorphism Λ: S4 —• 5 4 such that
Λ]Γ0 = Λ if and only if ΛΛ e H, where

r r ± i 0
H=\\ 0 a

II o c

01
b GGL 3 Z a + b + c + d = 0 (mod 2)

(see Theorem 5.3 in [7] and Lemma 2.6 in [3]). If

then

I ad-be 0 0
0 ε6? - e c

0 -εb εa

Therefore if

pΛ Tad-be 0 0
q = 0 εrf
^'J L 0 - ε * εα

, ̂ , ήr') and K(p\, q\, q\) have the same knot type. Since

GL2Z

• { [ i ?]•

= 0 (mod 2)

i ί l l ί ?]}•
every torus knot is equivalent to K(p, q, 0) or K(p, q, q) for some non-
negative^ integers p, q with gcd(p, q) = l.
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It is easy to check the following:

LEMMA 2.6. K{p, q, 0) = S{k(p, q)) and K(p, q, q) = S(k{p, q)).

Therefore, every torus Γ2-knot is equivalent to S(k(p, q)) or
S(k{p, q)) for some p, q. Since k(p, q) = k(q, p), we have K(p, q, 0) =
K(q, p, 0) and K(p, q, q) = K(q, p, p). It is clear that πx (S3 -k(p, q)) =
π{(S4 - K(p, q, 0)) = n{(S4 - K(p, q, q)). The following theorem is
known. For example, see [10], p. 54.

THEOREM 2.7. (O. Schreier.) If I < p < q and 1 < p' < q\ then

πι (S3 - k(p, q)) = πx (S3 - k{p\ q')) if and only ifp = p',q = q\ D

The exteriors of K(p, q, 0) and K(p, q, q) have the same homotopy
type. But,

LEMMA 2.8. If p > 1 and q > 1, then the exteriors ofK{p, q, 0) and
K(p> q> q) have different diffeomorphism types.

Proof. Put K = K(p,q,0) or K(p,q,q), k = k(p9q). Recall that
S4-IntN(K) = (B3-IntN(k)) xSι uS2xD2. Let i be the inclusion
map dN{K) ^S4- Int N(K) and * be a point in dN(k). Then, [{*} x
Sι] e πx(dN(K)) generates Ker(ι*: πx(dN{K)) -+ πλ{S4-lntN(K))).

Fact. Let X be a spin 4-manifold with dX = Γ 3 . Let Q , C2 be two
loops in dX with a diίfeomorphism dX —• 5 1 x 5 1 x *Sι which maps
Ci, C2 to {*} x {*} x Sι and {*'} x {*} x Sι (* Φ *'). Assume that
[C\] = [C2] = 0 in Hχ(X;Z/2). Let A be a 2-chain in X such that (a)
dDt (mod 2) = C/ (i = 1,2), (b) [D{] = [Z)2] in H2(X,dX;Z/2), (c)
£>! and Z>2 meet transversely. Then, D\ D 2 (mod 2) is determined
by [Q] in Hx{dX;Z/2) (see the proof of Lemma 2.10 in [3]).

For K(p,q,0) (resp. K(p,q,q)), 7([{*} x 51]) = 0 (resp. 1). This
completes the proof. D

We have proved:

PROPOSITION 2.9. Any torus T2-knot is equivalent to one and only
one of the following:

(i) K{p,q,0),l<p< q,gcd(/?,q) = 1;
(ii) K(p,q,q), \<p< q,gcd(/?,q) = 1;

(iii) unknotted T2-knot. n

For the definition of good torus fibrations (GTF), see [6] or [3], §3.
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LEMMA 2.10. The exteriors ofK(p, q, 0) and K(p, q, q) have struc-
tures of good torus fibrations with one twin singular fiber of multiplicity
p and one multiple torus of multiplicity q.

Proof. Recall that S4 = Tw Uf T2 x D2 where /*[/ r s] = [I r s]
and that T0 = TwnT2xD2 c S4. Let pr: Γ 3 = Γ 1 x T2 -> Γ 1 be
the projection map to the first coordinate and let h: Γo —• Γ 3 be a
diffeomorphism such that (pr Λ)* maps /, r, s to qγ, pγ, 0 (resp. qγ,
pγ9 pγ) where γ is a generator of H\(Tι). Since -pi + qr \-+ 0 and
s t-+0 (resp. -pl+qr »-• 0 a n d s - r H-> 0), pr A has fiber (-pl+qr)xs =
q(rxs)+p(sxl) (resp. (-pl+qr)x(s-r) = q(rxs)+p(sxl)+p{lxr)).
By Proposition 3.12 and Definition 3.16 in [3], pr/z extends to a GTF
/ : £ 4 -* £ 2 with one twin singular fiber of multiplicity p and one
multiple torus of multiplicity q. Since a general fiber in 7Q is J£(/J, 9,0)
(resp. K(p, q,q)), the lemma is proved. D

3. Dehn-surgery along a torus Γ2-knot. In this section, K denotes
K{p, q, 0) or K(p, q, q) and k denotes k{p, q) (the classical torus knot
of type (p, q) in S3). We assume that K is embedded in S4 as is in
the proof of Lemma 2.10.

We choose a basis (m, l\9 fa) of H\(dN(K)) as follows. Let m denote
the meridian curve of k, which can be regarded as the meridian curve
of K. Let IQ be the preferred longitude of k. Put l\ = /0 x {*} c
(B3 - Int N(k)) xSιuS2xD2 = S4- Int N(K). We orient m and l{

so that pqm +1\ = -/?/ + qr in Γo. Put /2 = s for AΓ(/7, ̂ , 0) and I2 =
s - r for #(/?, ήf, q). Note that /2 generates the kernel of π\ (dN(K)) -+

REMARK 3.1. Note that for K = ΛΓ(A #0) or K(p,q,q) a general
fiber contained in dN(K) represents (pqm +1\) x l2 in

DEFINITION 3.2. Let K be a torus Γ2-knot in S4. N(K) is diffeo-
morphic to T2xD2. Let i: dN(K) ->d(S4- Int iV(i^)) be the natural
identification and h: dN(K) —• dN(K) be a diffeomorphism such that
1 Λ(m) = am + βlx + γl2. M = S4 - N{K) u, .A ΛΓ(A') is called the
manifold obtained by Dehn-surgery of type (a, β, γ) along K.

Montesinos showed that any homotopy 4-sphere obtained by Dehn-
surgery along an unknotted Γ2-knot in S4 is diffeomorphic to S4 (see
[7], p. 187). Pao studied the 4-manifolds with effective Γ2-action in
[9]. All the 4-manifolds obtained by Dehn-surgeries along an unknot-
ted Γ2-knot are contained in his list. See also [3].
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Note that the diffeomorphism type of M is determined by K and
i - h{m) (see Remark 2.7. in [3]).

Dehn-surgery along any Γ2-knot can be defined in the same way, but
the description of the type of the surgery might be a little complicated.

PROPOSITION 3.3. Assume that a Dehn-surgery of type (a, β, y) is
performed along K(p, q, 0) (resp. K(p, q, q)). Denote the manifold by
M.

(i) If gcd(a, β) = 1, then n\(M) is isomorphic to the fundamental
group of the manifold obtained by a Dehn-surgery of type (α, β) along
a torus Tι-knot of type (p, q).

(ii) Hι{M)¥Z/a.
(iii) M is spin if and only if βγ = 0 {resp. (1 - β)γ = 0) (mod 2)

or a = 1 (mod 2).

Proof. The proofs of (i) and (ii) are almost clear. For (iii), we need
a lemma.

LEMMA 3.4. Put X = S4 - Int N where N is a tubular neighborhood
of a T2-knot (not necessarily a torus T2-knot) K. Let Y be the function
defined in the proofofLemma 2.8. Assume that Ker(/*: H\(dX\Z/2) —>
H\(X;Z/2)) = {0,^1,^2,^3} where i: dX —> X is the inclusion map.
Then, one ofY(et)>s is 1, the others are 0.

Proof. Note that if {/, j9 k} = {1,2, 3}, then ek = e{ + e} holds.
Let V be a 2-sided 3-dimensional submanifold of S4 such that

dV = K and that (N, Nn V) is diffeomorphic to (D2 x Γ2, r x Γ 2) where
r is a radius of D2. Put PQ = dN n K. Note that ^1, ̂ 2? ̂ 3 are repre-
sented by curves in Vo. Assume that /*: H\(VQ;Z/2) -> Hχ(V\Z/2) is
injective (/ is the inclusion map). Then, the Mayer-Vietoris exact se-
quence shows that H2(V;Z/2) -» H2(W0;Z/2) is surjective. Since
H3(KV0',Z/2) -+ H2(V0;Z/2) is bijective, therefore H2(V;Z/2) -+
H2(KV0;Z/2) is injective. By Poincare duality, H2(KV0;Z/2) is iso-
morphic to Hι (V\ Z/2), which is isomorphic to H\(V\ Z/2). Therefore
χ{V) = 1. Put F = F Ua 5

1 x Z)2. Then,

Since V is a closed 3-manifold, this is a contradiction. Therefore
Ker(/*." H\(VQ 9Z/2) -+ H\(V\Z/2)) contains ^ , one element of {̂ 1,̂ 2>
^3}. Since F has trivial normal bundle, we can move V slightly into
V so that V n V = 0 . Therefore r(e, ) = 0.



296 ZYUNΊTIIWASE

Let m be the meridian curve of K and we consider the manifold
Q = X Ua Tw with the attaching map a: d(Tw) -+ dX satisfying
α*[/ r s] = [m έj e^] where (m,e^e^ is a basis of Hχ(dX;Z) whose
mod 2 reduction is (m, βj, e^}. The Mayer-Vietoris sequence with co-
efficients in Z/2

H2(X)®H2(Tw) Λ 7/2(Q) -> Hx(dX) ±> Hχ(X)®Hχ(Tw)

shows that

H2(Q;Z/2) = Im(Λ) Θ <[/)(*,•) + D(r)], [D(^) + D{s)]),

where Z>(c) is a mod 2 2-chain satisfying dD(c) = c and D(ej), D(ejc)
C X5 D(r),D(s) c Γw. The self-intersection number on Im(y*) is
zero since X and Γw are subsets of S4. Since [£)(^7) + D(r)]2 =
y ( ^ ) + Y(r) = y ( ^ ) and [D(^) + £ ( s ) ] 2 = Γ ( ^ ) + 7(5) = Y{ek), we
have

+ D{r + s)]2 = [D(ej) + D(ek) + D(r) +D(s)]2

= y(ey) + Y{ek).

On the other hand, [D(ei) + D{r + s)]2 = y(^/) + y(r + j) = 0 + 1 = 1.
Therefore Y{ej) = 0, y ( ^ ) = 1 or Y{ej) = 1, Γfo) = 0. D

We now continue with the proof of Proposition 3.3.
If a is odd, H2(M;Z/2) is zero. Therefore M is spin. Assume that

a is even. The Mayer-Vietoris sequence with coefficients in Z/2

H2(D2 x T2)®H2(X) Λ # 2 ( M ) -> 7/i(d(i)2 x Γ2))

±> Hι(D2 x T2) ® HX(X)

shows that /^(Af Z/2) = Im(j*) Θ ([DM + D(am + βl\ + γl2)]) where
X is the knot exterior and DM is the meridian disk of D2 x T2 and
D(am + βlx + γl2) is a mod 2 2-chain in X with dD{μm + β/i + y/2) =
am + # ! + y/2. For K = ^(/?, ̂  0) (resp. K{p, q, q))9 Y(l2) = 0 (resp.
1) and Y{lχ) = 0. By Lemma 3.4, Y{lχ + /2) = 1 (resp. 0). Therefore
[Z>Λ/ + ΰ ( α w + βlχ + y/2)]2 = βγ mod 2 (resp. (1 - β)γ mod 2).
Since the self-intersection number on Im(y*) is zero, this completes
the proof. D

PROPOSITION 3.5. If a closed 4-manifold M is obtained by Gluck-
surgery along an S2-knot in S4, then M is also obtained by Dehn-
surgery along a T2-knot in SA.
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Proof. Here K denotes the S2-knot. Identify N(K) = S2 x D 2

with C x D where C is the Riemann sphere and D is the unit disk
in C. Recall that M = (S4 - Int JV(#)) Uτ JV(£) is the manifold
obtained by Gluck-surgery along K where τ(u,v) = (MV, v). Observe
that τ({|w| = c} x <9D) = {|w| = c}x32) for any c e RU {oo}. Embed
(D 3 x Z) 1,/) 3 x dD1) in (S 4 - Int N{K),ΘN{K)) with D 3 x {-1} c
DQ x <9D2 and Z)3 x {1} c Z>oo x dD2 where D o = {|z| < 1/9} c C and
Z)^ = {|z| > 9} c C. Let i/ denote its image. One can consider H as
a 1-handle attached to N(K). Verify that there exists an annulus Ao

(resp. Λtoo) properly embedded in Do x D2 (resp. Doo x D 2 ) such that
K' = (£- IntZ>o - IntAχ>) x {0} U ^ 0 U C/ x D 1 U ^oo is an embedded
torus where U is an unknot in Z>3. Especially, if K is unknotted, then
so is K'.

K1 has a tubular neighborhood N(Kf) such that

N(K')\(C - Int(A) U Doo)) = Λ W | ( C - Int(Z)0 U Doo))

and i V ^ ) c N(K) u /ί and JVOTKC/ x {*}) = ΛΓ0(C7) x {*} where
NQ(U) is a tubular neighborhood of £/ in Z>3.

Let / : aiV(A:0 -> dN(K') be a diίfeomorphism such that

/ | (C - Int(Z)0 U Doo)) x 0 0 = τ|(C - Int(D0 U Doo)) x dD

and
f(dN{Kf)nD3 x {*}) = dN{K')nD3 x {*}.

Put Λf' = ( 5 4 - Int N(K')) Uf N(Kf).
Construct a diίfeomorphism F: Λ/' —̂  M as follows. Put

F | ( S 4 - (Do U Doo) x D - //) = id.

j|/J = (D 3 - Int N0(U)) x {*} U/ Λb(t/) x {*} is the manifold obtained
by Dehn-surgery of type (1,1) or (1,-1) along U in D 3 . Therefore
there exists a diίfeomorphism i7*: Λ/*' —̂  D 3 x {*} with F+\d = id. Put
F|M,ί = F*. Finally, extend F |a (Do x D) and F|d (Doo x D) to D o x D
and Doo x D.

This completes the proof. D

PROPOSITION 3.6. If a Dehn-surgery of type (α, β, γ) is performed
along K(p, q, 0) or K{p, q, q) and σ = \pqβ - a\ Φ 0, then the manifold
obtained is the total space of a good torus fibration over S2 with one
twin singular fiber of multiplicity p and two multiple tori of multiplicity
q and σ.

Proof. Put K = K(p,q,0) or K{p,q,q). By Lemma 2.10, the
exterior of K has the structure of GTF. The intersection number of
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/. h{m) = am + βl\ + γl2 and the fiber (pqm + lχ) x l2 in dN(K) is
±(a - pqβ). Therefore, after surgery, a fiber is homologous to
±(a - pqβ)C in N(K)9 where C is the core of N(K). Now the propo-
sition is proved. (See Definition 3.16 in [3].) D

REMARK 3.7. If σ = 1, then the manifold has only one twin singular
fiber and one multiple torus. Therefore it is diffeomorphic to L\a\ or
1/ I by the Main Theorem of [3] and Proposition 3.3.(ii). If a = 0
(mod 2), then it is L\a\ if and only if either K = K(p, q, 0) and γ = 0
(mod 2) or K = AΓ(/7, #, #). See Proposition 3.3.(iii).

COROLLARY 3.8. The manifold obtained by the Gluck-surgery along
an untwisted spun (S2-) knot of any torus (S1-) knot is the 4-sphere.

Proof. By the proof of Proposition 3.5, the manifold is diffeomor-
phic to the one obtained by a Dehn-surgery of type (1,0, ±1) along a
torus Γ2-knot. Since L\ = S 4, Corollary is proved. D

The following Proposition is almost clear.

PROPOSITION 3.9. If a Dehn-surgery of type (a, β, 0) is performed
along K(p,q,0) (resp. K(p,q,q)), then the manifold obtained is
(Mo - lntB3) x Sι U/j S2 x D2 where MQ is the manifold obtained by a
Dehn-surgery of type (a, β) along k(p, q) and h = id (resp. τ).

COROLLARY 3.10. If a Dehn-surgery of type (pq, 1,0) is performed
along K(p, q, 0) or K(p, q, q), then the manifold obtained is Lp#Lq.

Proof. The manifold obtained is (L - lntB3) x Sι U S2 x D2 where
L = L(p, q)#L(q, p). Corollary 4.10 in [3] completes the proof. D

PROPOSITION 3.11. If a Dehn-surgery of type (a,β,γ) is performed
along K(p, q, 0) or K(p, q, q) and σ = \pqβ - a\ = 0, then the manifold
obtained is an irrational connected sum along circles of either Lm or
L'm and L(n, r) x Sι for some m, n, r.

Proof. In this case, the meridian of 4-dimensional solid torus sT4

is attached in a fiber of a GTF of the knot exterior. Recall that the
knot exterior X is made of Tw and D2 x T2 pasted together along A,
where A is diffeomorphic to Dι x T2.

Put d (D2 x T2) -ln\A = B and d (Tw) - lntA = C. B and C are
diffeomorphic to T2 x Dι. Let h: d(sT4) -+ B U C be the attaching
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map. Since B n C is a disjoint union of two fibers, we may assume
that h~γ{B) = dD2 x Sι x [*,**] c dD2 xSι xSι = d{D2 x Γ2),
h~ι{C) = dD2 x Sι x [**,*] C dD2 xSι x Sι = d{D2 x T2). Put
V = D2 x Sι x [*, **] and V = D2 x Sι x [**, * ] . VuV' = sT4. The
manifold obtained by the Dehn-surgery is

M = D2xT2uTwU sT4

= D2xT2UTwU(VU V1) = {D2 x T2 U V) U [Tw U V).

Note that d(Z>2xΓ2uF) = d{TwuV) = S2xSι. If we attach D3xSι

toD2xT2uV (resp. Tw u K;) in the natural way, K UD3 x Sι (resp.
V'uD3 xSι) is diffeomorphic to D2 x T2.

It is easy to show that D2 xT2l)D2 x T2 is L{n, r) x Sι for some
n, r. The proof of Theorem 4.1 in [3] says that TwuD2 x T2 is Lm

or L!m. This completes the proof. D
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