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In this paper we show that if 4, 4,,..., A, are “dense” sets of
integers, then there is a sum q; + a> + --- + a;, with a;, € 4,, a; €
A, ..., a; € Ay that is divisible by a “small” prime.

1. Let P(n) and p(n) denote the greatest and smallest prime factor
of n, respectively. Recently in several papers, Balog, Erdés, Maier,
Sarkozy, and Stewart have studied problems of the following type:

if Ay,..., A, are “dense” sets of positive integers, then what can be
said about the arithmetical properties of the sums a; + - - - + g, with
a; € Ay,...,a, € A;? In particular, Balog and Sarkézy proved that

there is a sum a;+a, (a; € 4;, a; € A;) for which P(a;+a;) is “small”,
i.e., all the prime factors of a; +a, are small. On the other hand, Balog
and Sark6zy and Sarkézy and Stewart studied the existence of a sum
a, + -+ + a; for which P(a; + - -- + a;) is large.

In this paper we study p(a; + --- + a;). Our goal is to show that
if Ay,..., A are sets of positive integers then there exists a sum a; +
-+ a; with a; € 4,,...,a; € A; that is divisible by a “small” prime.
In the most interesting special case, namely 4; = --- = Ay, there are
sums a; + - - - + a;, divisible by k, so that p(a;+---+a;) < k. In order
to exclude such trivial cases, we shall ask that the “small” prime factor
of a; + - - - + a; also exceeds some prescribed bound V.

In §3 we will study the case when the geometric mean of the cardi-
nalities of the sets 4;  {1,..., N} is between v/N and N. The crucial
tool will be the large sieve. In §4 we will extend the range (when k& > 2)
by studying the case min, |4;| > N1/k+¢_ Here Gallagher’s larger sieve
will be used. The results in §§3 and 4 do not give especially good re-
sults when the sets A4;,..., A, are very “dense”. In §5, we will give an
essentially best possible result for the small prime factors of the sums
a; + - -- + a; in the case when

(|41]- - |4k]) /¥ > N exp(—c log k log N/ loglog N)

for a certain positive constant ¢. Finally in §§6 and 7 we will construct
sets so that none of the sums a; + - -- + a; has a small prime factor.
In particular, in §6 we will discuss the conjecture of Ostmann [6] that
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there do not exist infinite sets of positive integers A;, 4, such that
A, + A, differs from the set of primes by at most a finite set.

The constants ¢y, ¢,, ... appearing in different sections are indepen-
dent from each other, so that, for example, ¢; in §3 and ¢; in §4 are
not necessarily the same.

2. In this section, for the convenience of the reader, we collect the
lemmas of [8]. Primary references for the first three lemmas and a
proof of the fourth may be found there. Further lemmas in this paper
will be presented as needed in subsequent sections.

LEMMA 1 (Cauchy-Davenport). Let p be a prime number and let A,
B be subsets of Z/pZ. Then

|4 + B| > min{|4| + |B| - 1, p}.

LEMMA 2 (Large sieve). Let A be a set of integers in the interval
[M + 1,M + N). For each prime p let v(p) denote the number of
residue classes mod p which contain a member of A. Then for any
positive number Q we have

|A[<N+Q2

where L = Z;SQ leq(p —v(p))/v(p), the dash indicating the sum is
over square-free positive integers q.

LEMMA 3 (Gallagher’s larger sieve). With the same notation as in
Lemma 2, if S is a finite set of primes, then

14| < (-1ogN+Zlogp)/(—1ogN+EL°(ip’;),

PES peS

provided the denominator is positive.

LEMMA 4. Let p, k be integers with k > 2 and p > 1 + (k — 1)k,

Then
k k
. 1 k
min] 1 (x? ) ‘) - ('1"+""(k =2/~ 1) |

| k2
mnd =TT k-2
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where D is the set of % € R* with
k-2 1

Xp 44 x <1+

3. In this section we study the situation when the geometric mean
of the sets of integers considered exceeds v/ V.

THEOREM 1. Let N be a positive integer, let A;, A, be non-empty
subsets of {1,...,N} and let T = (|A||4,|)}/?. Let S be a set of prime
numbers, let Q be a positive integer, and let J denote the number of
square-free integers up to Q divisible only by the primes in S. If

(3.1) TJ> N + 02,
then there is some prime p € S such that each residue class mod p

contains a member of the sum set A; + A,.

Proof . For i = 1,2 and for each prime p let v;( p) denote the number
of residue classes mod p that contain an element of 4;. For each
Q > 1, Lemma 2 implies

i < (N + 02/ Y [ 2o
a<Q »plg vi(p)

for i = 1, 2 where the dash indicates the sum is over square-free posi-
tive integers q. Thus

(3.2) T < (N + Q%/H,
where
(Iz.[ Z’ H ( , )) 1/2
H = — -1 .
i=1q<0 plg vi(p)

From the Cauchy-Schwarz inequality we have

/2
o Hzg(n(;%-l)(ﬁ_l))‘.

q€Q \ plg

Assume now that for every prime p € S there is a residue class
mod p that contains no member of 4, + A,. Then from Lemma 1 we
have

vi(p)+va(p) < p
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for every prime p € S. We now apply Lemma 4 with £k = 2 and
x; = vi(p)/p. If q is divisible only by primes in S we thus have

1/2
(H("_ll(%)”) (D{I()?)”)) > 1.

rlq

Using this in (3.3) we get H > J, so that (3.2) contradicts (3.1). Thus
there is some prime p € S such that each residue class mod p contains
a member of A; + 4.

CoROLLARY 1. If V > 5.5 and
S 2NlogV
V

then there is some prime p with V < p < 2V such that every residue
class mod p contains a member of A; + A,.

(3.4) T +8VlogV

Proof. We apply Theorem 1 with S the set of primes in (¥/2V'] and

Q =2V. Then
V

2logV’
by Rosser and Schoenfeld [6]. Thus (3.4) implies (3.1).

J=n2V)-n(V) >

REMARKS. Clearly (3.4) implies T > v/Nlog N, so the corollary
is only applicable in this case. It should be noted that the corollary
generalizes Theorem 2 of Balog and Sarkézy [3].

COROLLARY 2. Let V be a positive integer. There is a positive num-
ber ¢, effectively computable in terms of V, such that if

(3.5) T>c;N/2
then there is a prime p with
V<p<cNT

such that every residue class mod p contains a member of A; + A,.

Proof . There are positive constants ¢,, ¢; effectively computable in
terms of V such that if Q > ¢, and if S is the set of primes between
V and Q, then J > c3Q (where J is as defined in the theorem). Let

¢y =max{cy, 2/c3}, Q=cN/T.
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Then (3.5) implies Q2 < N, so that
TJ > c3TQ = cjc3N > 2N> N + Q2
Thus the theorem implies the corollary.
We now generalize the situation of Theorem 1 to where more than

two sets of integers are involved. Rather than giving a general result,
we content ourselves with a result analogous to Corollary 2.

THEOREM 2. Let 0 < ¢ < 1, let V and N be positive integers, let
Ay, ..., Ay, be non-empty subsets of {1,..., N} where k > 3, and let

T = (|Ay|---|4k])V/*. There exist positive numbers cs, cs, cg effectively
computable in terms of V, k, € such that if N > c4 and
(3.6) T> csN'/2/(log N)k—2-¢

then there is a prime p with

V< p < cs(N/T)/(log(2N/ )~
such that each residue class mod p contains a member of the sum set
Aj 4+ + A4y

Proof. For i = 1,...,k and each prime p, let v;(p) denote the
number of residue classes mod p that contain an element of 4;. Thus,
as in the proof of Theorem 1, we have (3.2) for any positive number

Q, where now
n- (IS T(A1) "

i=1¢9<Q plg

Using Hélder’s inequality £ — 1 times, we get

(3.7) H> Y (H 11 ( )) "

g<Q \i=1 plg
1/k
= -1

Suppose now that for each prime p with V< p < Q there is some
residue class mod p that contains no member of 4; + --- + A;. Then
by an iteration of Lemma 1, for each prime p with V< p < Q we
have

vilp)+---+wu(p)<p+k-2
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Thus with Lemma 4 applied to x; = v;(p)/p fori = 1,..., k we have

k 1/k
p k
(H(Vi(p)_l)) Zm—l>k—l—8,

i=1

where the last inequality requires p > ¢; = c7(k, €). Thus from (3.7)
and our assumption, we have

(3.8) H2Y "T[tk-1-¢)=3"(k-1-¢)°9,

a<Q plq a<Q

where the star indicates a sum over square-free integers not divisible
by any prime smaller than the maximum of V" and ¢;. Note that w(q)
denotes the number of prime factors of g.

To estimate the last sum in (3.8) we use the following lemma.

LEmMMA 5. Let 2 < y < exp((logx)?/3), let r > 0, and let z be a
complex number with |z| < r. If * denotes a sum over square-free
integers n free of prime factors below y, then

> 2000 = g(, 2)x(log x)*~! + O, (x](log x)*~2(log y)! %))

wher:,’sx
H z I -1
s Z)ZF(Z)_l (p (1+—;—> (1 _%) )p<y (1+_;—> .

Proof . The proof follows from the method of Alladi [1] and Selberg
[10]. In Alladi, the same sum is estimated but without the restric-
tion that n be square-free. In Selberg, the same sum is estimated but
without the restriction that n be free of prime factors below y.

We now apply Lemma 5withr=k—-1,z=k—-1-¢,x=0Q, and
y = max{¥c;}. We thus deduce from (3.8) that there are positive
constants cg = cg(Vk, &) and cg = c9(¥k, &) such that if Q > cg we
have

(3.9) H > cyQ(log Q)* 27,

We now choose cg > 2% /cq so large that if

k-2—¢
(3.10) 0= c6—]y- (log E—JX) ,
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we have

(3.11) Q>cg and logQ>%log2—TA—,.

Thus from (3.9), (3.10), and (3.11) we have
N N 2k=2-¢
< T< =T
H = 50(og Q)2 = cgty 2

Putting this last inequality into (3.2) we get (using (3.9), (3.10), and
(3.11))

202 20 2k-1-ec N
< < - .
T<H < Llog0)F 7 = &T (g 2N/ T))?* 20

Thus since ¢ > 2%/cq,

T < cgN'/2/(log(2N/T))k~2-¢ < N?/3
for N > c4 = c4(Wk, €). Hence 2N/T > N/3, so that
(3.12) T < cg3KN'/2/(log N)k—2-¢,

Thus if we let ¢s = 3%, then (3.12) contradicts (3.6) which proves
the theorem.

4, Theorems 1 and 2 covered the case when the cardinalities of
the given sets are greater than N1/2, In this section we are going to
study the case when all the cardinalities are greater than N1/k+¢ (only
when k£ > 3 will we obtain something new). Perhaps the conclusion
of Theorem 3 holds when we assume only that all the cardinalities
are greater than N¢, but we have not been able to prove this. On the
other hand, as will be shown in §6, it is not enough to assume that
the cardinalities are greater than clog N/loglog N for some positive
constant c.

THEOREM 3. Let ¢ be a positive real number, let V and N be positive
integers and let A,, ..., A; be non-empty subsets of {1,...,N}. There
exists a positive number ¢, effectively computable in terms of V, k, and
€ such that if N > ¢, and

(4.1) min |4;| > N/k+2,
then there is a prime p with
(4.2). V< p< Nk+e

such that every residue class mod p contains a member of Ay +- - -+ Ay.
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Proof. From Lemma 3, for any Q > 1

—~log N + 3y peplog p
~log N +X_p peg log p/vi(p)

provided the denominator is positive and where v;(p) has the same
meaning as in the previous section. Assume that for each prime p in
the range (4.2), there is some residue class mod p that is not repre-
sented in the sum set A; + --- + A;. Thus from Lemma 1,

vi(p)+--+uvP)<p+k-2

for every prime p in the range (4.2). Thus from Lemma 4 we have

log p log D > logp k
kzu,(p) ;u,p)/p p 1+(k-2)/p

For p > ¢y = ¢3(Vk, &) we have p > V and
k

(4.3) 4] <

—_— > k—-g/2
k=275 > ¢
Thus
k
1 logp
(4.4) > | -logN+ >
ki vapeg VilP)
=—logN + Z lilogp
V<p<Q k= vip)
1
>—logN+ Y. (k-e/2=F °gp
< p<@

> —logN + (k —&/2)(log Q - C3)

where ¢3 = c3(Vk, ¢) and we use Theorem 425 in [5].

Choose Q = N!/k+¢ and note that we may assume that 0 < ¢ < 1.
Then for N > ¢4 = c4(Vk, €), (4.4) implies that the average of the
denominators in (4.3) is at least (¢k/2)log N. Thus there exists some
i such that the denominator in (4.3) is at least (¢k/2)log N and for
this i we have

2 4N1/k+e
4l < eklog N ( log ¥ + Z logp) eklog N
V<p<Q

for N > c¢5(¥k, €), using the prime number theorem. This estimate
contradicts (4.1) for N> ¢((¥k, €) and thus proves the theorem.
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5. If the sets Ay,..., A, are “dense”, the previous results are not
very sharp as the following result shows. Later in this section we shall
show that Theorem 4 is essentially the best possible result for “dense”
sets.

THEOREM 4. Let ¢ be a positive real number, let V and N be positive
integers and let A,, ..., A, be non-empty subsets of {1,..., N}. There
exist positive numbers ¢, and c, which are effectively computable in
terms of V, k, and € such that if N> ¢; and

(5.1) T =(|4y|...|4)* > Nexp{—(1 —¢)logklog N/ loglog N},

then there is some prime p with

V<p<c+ L+ log(ZN/ T)loglog(2N/T)

log
such that each residue class mod p has a member in Ay + - - - + Ay,.

Proof . Let Q be a positive number. With v;(p) as before, the Chi-
nese Remainder Theorem gives that

(5.2) |4;| < N H p vilp) | IT v

V<p<Q V<p<Q
fori=1,..., k. Put

(5.3) 0 =it &

logk

where A is a positive constant which shall be chosen later. In the
following, all numbered constants c3, c4,... depend effectively on V',
k, and &, only. Plainly we may assume 0 < ¢ < 1.

From (5.1),

log(2N/T)loglog(2N/T)

% < exp{(l —¢&)logklog N/loglog N}
and so for N > c; we have
Q< Ai+(1-¢€2/2)logN.

Therefore by the prime number theorem, for N > ¢4 - exp(34/&?),

and so by (5.2)
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fori=1,..., k. Thus

k
(5.4) T<2N [] (Hﬁl()i))
i=1

V<p<Q

1/k

Suppose now that for each prime p with V< p < Q, there is a
residue class mod p that contains no member of A+ - -+ A4;. We shall
show that this assumption leads to a contradiction for A sufficiently
large. From Lemma 1, for each prime p with V< p < Q we have

)+t <p+k-2

Thus (5.4) leads, via the arithmetic mean-geometric mean inequality
and Mertens’ theorem to

(5.5) T<2N [] ;(1+1‘——g>

V<p<Q P

ne-s)

p<Q
< s Nk~ ™(@+7(V) (10g Q)2
Solving (5.5) for n(Q) we get

n(Q) < —5;—? log(2N/T) + c¢ + k loglog Q.

< 2Nk-T@+a(V) (

Recall from (5.3) that if A is large, then so is Q. Thus if 4 > ¢;7, we

have ) + /2
€
n(Q) < log(2N/T)
and so the prime number theorem gives
1+e

o< < log(2N/ T)loglog(2N/T)

for A > ¢cg > . Smce th1s inequality is incompatible with (5.3),
our assumption that each prime p with V< p < Q has a residue
class containing no member of 4; + - - - + 4, must be false. Thus the
theorem is proved with ¢; = cg.

THEOREM 5. Let ¢ be a positive real number and let k > 2 be an
integer. There exist positive numbers cq, 19, which are effectively com-
putable in terms of k and €, such that if N is a positive integer with
N> cg and t is a real number with

(5.6) Nexp(—(1 —¢)logklog N/loglog N) < t < N,
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then there exists a set A C {1,..., N} such that
(5.7) t/2 < |A| < 3tk
and none of the sums ay + --- + a; (Where ay, ..., a; € A) has a prime

Jactor p with

1 - 2N

2N
Tog log |A| loglog —+

(58) k<p<—- !A' - C10-

Proof. Let r(n, g) denote the least non-negative residue of » mod g.
Define the positive integer Q by

(5.9) N ) LA NP I g L2
k<p<Q k<p<Q+1 P
and let
A={a<N:0<r(ap) <%forallpwithk<p<Q}.

Thus for each prime p with k < p < Q, A has members in at most
[p/k] residue classes mod p. By the Chinese Remainder Theorem, we
have

(5.10) -~ ] 24 <

k<p<Q p
From (5.6) and (5.9) we have

N (1 —¢)logklogN
n(Q)-n(k) I l —
k < [p / ]< <ep{ loglog N ’

I 1p/k)

k<p<Q

k<p<Q
so that
n(Q) — n(k) < (1 — &) log N/ loglog N.
Thus if N > ¢1; = ¢y1(k, €), the prime number theorem gives

[I p<N'-2< %N.
k<p<Q

Thus from (5.10),

k k
..NkH [-I-)-I/)—-1<|A|< N ] [pl/J]
<p<Q@ k<p<Q

so that (5.7) follows from (5.9).
Clearly, by the definition of 4, no member of k4 is divisible by any
prime p with kK < p < @. Thus it suffices to show that Q is greater
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than the right side of (5.8) for an appropriate choice of ¢;g. By (5.7)
it suffices to show that

1-¢/2 2N
(5.11) Q> Togk log—loglog———clz

But by (5.9) we have

2N p
(5.12) log =~ < log (2 II [7#7])

k<p<Q+1

< log (2 11 (1 - 5)_1)

k<p<Q+1
< log(cy3k™ @~k Jogk Q)
< 7w(Q)logk + kloglog Q + ;4.

Using the prime number theorem, (5.11) can be easily derived from
(5.12) by separately treating the cases 2N/t < ¢;5, 2N/t > ¢;5.

6. Note that Corollary 2 of Theorem 1 implies that if 4, B are
subsets of {1,..., N} and every member of 4 + B is prime, then
|[A[|B] = O(N). If we take A = {1}, B = {p — 1: p < N prime},
then |A4||B| ~ N/logN, so that this result is close to best possible.
There is a related conjecture due to Ostmann [6]. He conjectured that
there do not exist infinite sets 4, B of positive integers such that A+ B
differs from the set of primes by only a finite set. Of course if such
sets exist then for all large &V,

(6.1) |[4(N)||B(N)| > N/ log N

where A(N) =AN[1,N], B(N)=Bn[l, N].
In this connection we are able to prove the following result.

THEOREM 6. Let N and | be positive integers with | < log N. There
is an effectively computable constant ¢, such that if N > c,, then there
exist ABcC{l,...,N} with |B| =1,
> ___]V__

[(log N)!
and every member of A+ B is prime.

4] =

Proof.. Let c¢; be so large that if N > ¢; then

N
n(N)—logN> g N’
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Note then that

(n(N))/(N— 1) _a()(r(N) = 1) (m(N) = [ +1)

[ [-1 IN-1)(N=-2)---(N=I1+1)
(N/logN)) N
= INI-U 7 J(log N)!
Thus the theorem will follow from the following lemma. Indeed we
take P the set of primes in [1, N], 4 the set in the lemma shifted down
by 1 and B the set in the lemma shifted up by 1. (Before the shifts we
only know 4 C [2, N], B C [0, N — 2], so the shifts put 4, B in [1, N].)

LEMMA 6. Let N be a positive integer and let P be a non-empty
subset of {1,...,N}. Let | be an integer with 1 <[ < |P|. Then there
is a set A C P and a set of non-negative integers B such that

A+BCcEB |42 ('f')/(];’:ll), |B| =1

This lemma can be found in [4]. For the convenience of the reader,
we repeat the proof here.

Proof of the lemma. There are (') I-element subsets of P. To each
such subset {p;,..., p;} with p; < --- < p,, associate the / — 1-element
subset {p,—py,..., p;—p1} of {1,..., N—1}. Thus there is some /- 1-
element subset {h,...,h_;} associated to at least k > ("; ') /(T
[-element subsets of P. Let ay,...,a; denote the least elements of
these k different /-element subsets associated to {4;,...,#;_;}. Thus
a,...,a; are distinct members of P. The lemma follows with 4 =
{al, coes ak}, B = {0, hy,..., hl—l}-

REMARKS. We expect that Theorem 6 cannot be substantially im-
proved. In particular if min{k,/} > 2, then we conjecture that for
every € > 0, kI < N/(log N)?~¢ for N large in terms of &. Perhaps even
kil = O(N/(log N)?). Such results, as a comparison with (6.1) reveals,
would imply the truth of the Ostmann conjecture. Further, we expect
that if min{k, /} > log N (or indeed even 2log N/ loglog N) then there
are members of 4 + B with arbitrarily many distinct prime factors as
N — oo.

On the other hand, if 0 < ¢ < 1 and we choose

[ =[(1 - ¢)log N/loglog N1],
then Theorem 6 implies there are sets 4, B C {1,..., N} with |4| >

|B| > I and such that every member of 4 + B is prime, provided that
N is sufficiently large in terms of e.
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Finally note that in the theorem it is possible to also require A+B C
[N/2, N], but then we must replace the lower bound for |4| with, say,
|4] = k > N/I(2log N)!. To see this, choose P in Lemma 6 as the set
of primes in [N/2, N].

7. In the last section we showed there exist sets 4, B,C {1,..., N}
such that |4| > |B| > log N/loglog N and all members of 4 + B are
prime. In this section we consider the case 4 = B. Now, of course,
we cannot prohibit even members of the sum set 24, so instead we
look for an example where the members of 24 are twice a prime. The
following result almost achieves this goal. The proof uses very little
about the primes—only that they are fairly numerous.

THEOREM 7. For all large N there is a set A C {[N/4],..., N} with
(7.1) |A4| > loglog N

and each sum a+ a' with a,a’ € A and a # @' is of the form 2p where
p is prime.

This theorem follows easily from the following lemma, which is
a slight sharpening of a lemma in Szemerédi [11]. This lemma of
Szemerédi has become known as the “Cube Lemma”, see page 44 of
the Graham, Rothschild, Spencer book “Ramsey Theory”. Thanks are
due to Paul Erdos and Joel Spencer for the latter reference.

LEMMA 7. If N is large, B C {1,..., N} with

(7.2) |B| > N*/3,
and we put
_ |1 log3IN
then there exist positive integers y, Xy, ..., X; With x; # x; for i # j and
(7.4) {y}+{0,x;}+---+{0,x;} CB.

To derive Theorem 7 from Lemma 7, we choose B to be the set of
integers of the form 2p where p is prime and N/2 < 2p < N. From
(7.4), y € B so y is even. Put

A= {%-f-xl,...,%—%x,}.
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Then (7.1) follows easily from (7.3) and a crude estimate for the num-
ber of primes between N/4 and N/2, while a +a’' = 2p for a,a’ € A,
a # a' holds by (7.4).

Proof of Lemma 7. It suffices to show the existence of sets By, ..., B;

and distinct positive integers xy,..., X; such that

(7.5) By = B,

(76) Bk+{0,xk}CBk_1 for k = 1,...,1,
(1.7) |Br| > |B|*/(3N)¥~! fork=1,...,1

In fact, if By,..., B}, xi, ..., x; satisfy these conditions, then by (7.5)
and (7.6), (7.4) holds for any y € B;, while (7.3) and (7.7) imply B,
is not empty. This then will complete the proof of Lemma 7.

We are going to construct By, ..., By, xi, ..., x; recursively. Let By =
B. Assume now that 0 < k </ -1 and that B,..., B; and, in the
case kK > 0, xy,...,x; have already been defined. For 1 <d < N -1
let f(By,d) denote the number of solutions of

b-b'=d, whereb, b € B.
Then in order to define By, and x;,;, we need an estimate for
(7.8) M = max f(By,d)

where the maximum isoveralld with 1 <d < N-1,d ¢ {xy,..., X }.
Clearly, for all d we have f(By,d) < |By|. Also

(7.9) Z 1Bed) = ()

sinceb-b'e€{l,...,N- 1} for any pair b, b’ € B, with b > b'. If we
majorize f(By,d) by |By| for d € {xy,...,x;} and by M otherwise,
(7.9) implies

('g“) < k|Bel + (N =1 — k)M < k|B| + NM,

so that

(1.10) M > 3 (Bl? - 1Bil) - 2K1B) = [P (1Bl - 5 - 3k).

From (7.3), (7.7), and a simple calculation, we have (for N larger than
some absolute and computable constant)

|Bi| > 3+ 61> 3+ 6k,
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so that (7.10) and (7.7) imply

2 k+1
lBkl2 1 lBlzk |B|2
]‘4 L > — s
(7.11) Z 3N 3N\ BN (3N)2-1

Let x; ., €{1,..., N=1}—{xy,..., x;} denote an integer for which
the maximum in (7.8) is attained and let

Bk+l = {b S BkZ b + Xpa1 EBk}.

Thus (7.6) holds for k + 1 and since |B, (| = M, (7.11) implies (7.7)
holds for k+1. This completes the proof of the existence of B, ..., B,
X1, ..., x; with the desired properties, so that Lemma 7 is proved.

REMARK. It is possible to show there is a set of primes P* with no
three in arithmetic progression and such that the number of members
of P* up to x is greater than x/e¢ Viogx for a certain positive constant
¢. The proof of Theorem 7 shows that for every large N there is a set
of integers 4 C [N/4, N] with |A| > loglog N and such thatif a,a’ € 4
with a # 4/, then a + a’ = 2p for some prime p € P*. However, since
no three members of P* are in arithmetic progression, it follows that
either 2a or 24’ is not of the form 2g for ¢ € P*. Thus there is at
most one a € A that is also in P*. We conclude that the seemingly
mild restriction in Theorem 7 that a # a’ will probably be difficult to
remove. At least, an attempt to remove it must use more properties
of the set of all primes than we have used.

It is probable that the circle method can be used to prove that
for every fixed k there are distinct primes py,..., p; such that each
p; + p; is twice a prime. We expect that the largest set of primes in
[N/4, N] with each double sum twice a prime is of order of magni-
tude log N/ loglog NV, but we do not expect this will be proved anytime
soon.
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