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We consider flows (X, ') with X compact Hausdorff, and suitable
discontinuous functions f : X — W where W is an arbitrary com-
pact Hausdorff space. A ring extension of the ring of all continuous
complex valued functions on X(C(X)) is formed and equipped with
a norm. The Gelfand-Naimark theorem is applied to the comple-
tion of this normed ring to produce an almost one-to-one extension
p(XpT)—(XT).

The question of isomorphism of flows (X, T') and (X, T) corre-
sponding to functions f and g is discussed, as well as the lifting of
dynamical properties from (X, T') to (X, T'). Extension of flows via
classes of discontinuous functions is considered, showing that no new
examples arise in this way. A characterization theorem for extensions
is proved when T is locally compact Hausdorff, showing that every
minimal almost one-to-one extension of (X, 7) can be obtained using
our construction.

Introduction. In this paper we are concerned with creating exten-
sions of flows by means of discontinuous functions. In essence the
device is to add a suitable discontinuous function to a ring of contin-
uous functions, obtaining a new structure space, in such a way that
a new flow is generated which is an extension of the original one.
Markley investigated extensions involving splitting along a single or-
bit by a somewhat different approach in [6].

The motivation for this theory is two fold. One hopes to modify
existing examples to introduce new desired properties. We are able
to introduce any compact metric space as a fibre in the extension in
a similar way to that used by N. G. Markley in his situation. The
classical Sturmian discrete flows involving adding two point fibres to
a minimal circle rotation, thus obtaining highly proximal flows from
equicontinuous ones, are probably the best known examples of this
type of extension.

Another use for this extension process is to build models of the orig-
inal flow. The initial flow is replaced by one of a desired type which
is still close to the original in the sense that appropriate dynamical
properties lift and the lifting map is “almost” an isomorphism i.e. it
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is injective on a dense second category set. This type of modelling
has been discussed by several authors (see for example H. B. Keynes
and J. R. Robertson [3], R. Bowen and P. Walters [1], H. B. Keynes
and M. Sears [4]). Although a common philosophy underlies each of
these situations, each is approached in a different way. We specify
conditions under which a model of this type will arise automatically,
giving machinery for this type of analysis.

Section 1 discusses the construction of the extension in detail. Sec-
tions 2, 3, and 4 are concerned with lifting properties, when two ex-
tensions will be isomorphic, and extensions using more than one dis-
continuous function. In §5 we note that for a locally compact acting
group, our construction is completely general for minimal flows in that
any minimal almost automorphic (almost one to one) extension arises
in this way.

1. The construction. Let (X, T") be a transformation group with com-
pact Hausdorff phase space X, topological group 7 acting freely on X.
Suppose that f : X — W is a function from X into another compact
Hausdorff space W. Denote by ¢ o f the map of X into W defined by
tof(x)= f(xt)forall x € X;t € T, and by f; the maps of T into W
given by £ (t) = f(xt) forallx e X, teT.

1.1. DEFINITION. (i) C(f) = {x € X : f is continuous at x}

() Cf={xeX: xTCcCNH}=N{C(to f):teT}

(iil)) Q(fx) = ({(f(UNCS)) : U € #(x)}, where Z(x) is the
neighbourhood filterbase at x, for all x € X. We call Q(f x) the
variation of f at x.

When there is no danger of ambiguity, Cf is written as C.

Call f acceptable if:

(a) C is dense in X.

(b) {fx : x € C} is an equicontinuous set of maps of 7" into W.

() f(x) € Q(f x) for all x € X.

We will be concerned with the extension of (X, T') by acceptable
functions. We remark that any continuous function is acceptable.

Let % be the smallest ring containing C(X) (the continuous
complex-valued functions on X) and all maps of the form go
so f where g € C(W) and s € T, and identify functions r,7' € #
if r(c) =r'(c) forall c € C. If we define ||-|| : £ — R by |r|| =
sup{|r(x)| : x € C}, then (%, | -||) is a normed ring. Denote its com-
pletion by (Z, || - ||). If ¢ € C and 7 € &, then F(c) means limr,(c)
where r,e # forallnand r, — 7.
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1.2. DEFINITION.
Qrx)=[{(r(UNC)):Ue#(x)} forallreZ xeX

By the Gelfand-Naimark theorem there is a compact Hausdorff
space X and an isometric isomorphism S of % onto C(X). We show
that (X, T') is a transformation group (under a suitably defined action)
which has (X, T') as a factor. First we have

_ 1.3. THEOREM. If X and W are metrizable and T is separable, then
X is metrizable.

Proof. Since C(X) and C(W) are separable, we need only find a
countable dense subset of {s o f : s € T} with topology given by the
metric d(s o fto f) = sup{dw(f(xs), f(xt)) : x € C}. An obvious
candidate is {s, o f : n € N} where {s, : n € N} is dense in T, and
this is dense by the equicontinuity of {f; : x € X}. |

The Action of T on X. Let p: C(X) — C(X) be given by p=Sol
where 1 is the inclusion map of C(X) into Z#. Then p is an isometry
of C(X) into C(X ¥). Accordingly there is a continuous map p : X — X
with p(X) dense in X (so p is onto X), and such that p(h) = ho p for
all h € C(X).

Next, choose s € T. Then s determines an isometry § of C(X) onto
C(X) given by §(g) = sog forall g € C(X), where sog(x) = g(xs) for
all x € X. Similarly, s determines an isometry of %# onto %, which
can easily be seen to extend to all of %, giving an isometry 5 of .Z
onto .%. We use the notation 5(r) = s o r (with the usual meaning on
C) for all r € Z. Denote by § the corresponding isometry S5S~! of
C(X) onto itself, and by s, again, the induced self-homeomorphism
on X. Writing xs for s(x), we have §(h)(x) = h(s(x)) = s o h(x) for
all h € C(X), x€ X and s € T, and p(xs) = p(x)s for all x € X and
seT.

If s,t € T, clearly x(st) = (xs)¢ for all x € X, so we can consider
T to be a group acting freely on X, and p: X — X is equivariant.
It remains to show that the map X x T — X given by (x,¢) — xt is
continuous.

First note that since {f; : x € C} is an equicontinuous family
of maps, it follows that {r, : x € C} is equicontinuous for all r €
Z, where ry(t) = r(xt). Alsoif x € C, s,t € T and r € % then
[sor —tor| =sup{|rx(s) —rx(t)]:x € C}. Henceif e>0andte€ T
there is an open neighbourhood U(¢) of ¢ such that ||sor —tor|| <e
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whenever s € U(¢). Thus if {s,} is a net in 7 converging to ¢, then
sqor — tor in # for all r € Z. Now choose g € C(X). Then
g = Sr for some r € Z, and s,0 g = §,(g) = S5.,571(g) = S(sq0r) —
S(tor)=StS"(g)=tog.

We have shown that if {s,} isanetin 7 and s, — ¢, then s,08 — tog
for all g € C(X). We can now prove the continuity of the action
(x,1) — xt of T on X.

Suppose that {(x,,5,)} is a net in X x T converging to (x,?), and
suppose wlog that x,s, — z. We show that z = xt. Choose any
geC(X). Thens,og —togie. ||s,og—tog|—0ie.

sup{|g(ysa) — g(¥t)|: y € X} — 0.

Then |g(XaSe) — g(Xat)| — 0 so g(z) = g(xt). Since g € C(X) is
arbitrary, z = xt. Hence (X, T) is a transformation group and p :
(X, T) — (X, T) is a homomorphism.

Each r € # defines a map r : C — C which is bounded and con-
tinuous. Hence we can define the map y : #Z — C(BC) to be the map
which takes r € # to its unique continuous extension yr : BC — C,
where BC is the Stone-Cech compactification of C (and we regard C
as a subset of BC). y is clearly an isomorphism, so # = pS~! is an
isomorphism of C(X) into C(BC). As usual there is an induced con-
tinuous onto map 4 : BC — X, say, such that fz(g) = g o h for all
g € C(X). Finally, let 7 : BC — X be the extension to SC of the
identity 1: C — C.

1.4. THEOREM. (i) T = ph
(ii) (X, h|C) is a compactification of C
(iii) p : h(C) — C is a homeomorphism of h(C) onto C.

Proof. (i) If we let #(g) = g ot for all g € C(X), we obtain % = hj.

(ii) Since C is dense in BC and % is onto, 4#(C) is dense in X. If
c1,¢3 € C and h(cy) = h(cy), then ¢; = ¢; by (i). Clearly & : C — h(C)
is continuous, so we need only show that 4 : C — h(C) is closed, say.

First note that if B C X, then BNC c C ¢ BC and h(BNC) =
p~'BNA(C) from (i). Now, 7 : C — C is the identity homeomorphism
of C ¢ BC onto C C X, so any closed subset of C C BC has the form
BN C for some closed subset B of X. But A(BNC) = p~'BNh(C) is
closed in £(C), so h : C — h(C) is a closed map.

(iii) This follows since every closed subset of #(C) has the form
h(BNC) = p~!B N C where B ranges over the closed sets of X. 0
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Thus p~!C = h(C) is densely embedded as a copy of C in X, so
we do not distinguish between C ¢ X and C ¢ X; we will usually
write p~lc = ¢ forc € C. p: (X,T) — (X,T) is thus an almost
automorphic extension (i.e. there are fibres of p which are points).

The lift of f to X. Let t € T and consider the map (to f)~: C(W) —
Z given by (tof)(g) = gotof. Then S(¢o f)" is a homomorphism of
C(W) into C(X), so there is a corresponding continuous map (tof)’ :
X — W such that S(to f)~(g) = go(to f) for g € C(W). Let
S = (eo f) where e is the identity of T'. It follows that (to f)' = to f'
forallt € T,so S(tof)g) = gotof forall g € C(W). The usefulness
of these functions ¢ o ' will be apparent after a short digression.

Suppose v : Z — C is a homomorphism of % onto C. Then wS~!
is a homomorphism of C(X) onto C and so there is a point y € X
such that yS~! = 6, where 8, : C(X) — C is defined by 6,(g) = g(»)
for all g € C(X). In particular if x € C and y = yy, the evaluation
homomorphism at x, then it can be shown that py = x.

1.5. LEMMA. Ifr € #Z and c € C, then (Sr)(c) = r(c).

Proof. By the above there is y € p~!c such that y,.S~! = 6,. But
plc =c, 50 y. = 6.S. Now if r € Z,r(c) = w.(r) = 6.(Sr) =
(Sr)(c).

Denote the fibre p~!x over x € X by X,.

1.6. LeMMA. Forr € Z : (i) if y € X then (Sr)(y) € Q(r, py) i.e.
Sr: Xy — Q(r,x) forall x € X.
(ii) Sr : X, — Q(r, x) is onto for all x € X.

Proof. (i) Suppose that y € X,. Choose a net {c,} € C ¢ X such
that ¢, — y. Then Sr(c,) = r(c,) for all o, and Sr(c,) — Sr(y). Thus
r(cq) — Sr(y). Finally, c, = pc, — py = X, s0 Sr(y) € Q(r, x).

(ii) Let a € Q(r, x). Then there is a net {c,} C C C X such that
¢ — x and r(c,) — a. In X we may assume wlog that ¢, — y, say.
Clearly Sr(y) = a and py = x. o

We now return to the main development.

1.7. THEOREM. If x € X, t€ T and g C(W): (i) S(goto f) =
gotof.

(i1) f'(c) = f(c) for all c € C. Moreover, to f'(c) =to f(c) for all
ceC.
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(iii) t o f' : Xx — Q(t o £ x) and is onto.
(iv) if x € C(to f), then f'(yt) = f(xt) for all y € X,
(v) Qfx) ={f(x)} i x € C(f).

Proof. (i) S(goto f)=(S(tof))(g)=(tof)(g)=gotof.

(ii) For any g € C(W), g(f'(c)) = S(goeo f)(c) =goeo f(c) =
g(f(c)) by Lemma 1.5 and by (i) above. So f"(c) = f(c) forallc € C.
(iii) This follows by (ii) and the fact that C is dense in X and X.

(iv) follows from (iii).

(v) Suppose x ¢ C(f). Then there is an open neighbourhood V" of
f(x) in W such that f(U) N (W\V) # & for each U € #(x), so for
each U € #(x) there is a point xy € U with f(xy) € W\V. Since
by hypothesis f(y) € Q(f y) for each y € X, it follows that for each
U € #(x) there is cy € C such that ¢y € U and f(cy) € W\V.
Suppose wlog that f(cy) — a. Then a € Q(f x) and a # f(x), so
Q(fx) 2 {f(x)}. The converse is trivial. ]

1.8. CorROLLARY. The following are equivalent:
(1) Qfxt)={f(xt)} forallteT.
(i) x € C.
(iii) Xy is a singleton.
So p~'x is a point if and only if x € C.

An embedding of X. For each t € T, let W, = W, and define
v =Il{W,:teTand F: X - % xXbyF=Il{tof :teT} xp.

1.9. THEOREM. F is an embedding.

Proof. F is clearly continuous and closed, so we need only show
that F is injective. Suppose that F(x;) = F(x;). Then px; = px; = x
say. We show that (Sr)(x;) = (Sr)(x,) forall r € Z i.e. g(x1) = g(x3)
for all g € C(X), whence x; = x».

Clearly (Sr)(x;) = (Sr)(x;) for all r € #, by (i) of Theorem 1.7,
since f'(x;t) = f'(x,t) for all ¢ € T by hypothesis. Now let r € #.
Then there is a sequence (r,) C &% such that ||r, — r|| — 0, so that
||Srn — Sr|| — 0. But

ISr(x1) = Sr(x2)| < Sr(x1) = Sra(x1)] + 1Sra(X1) — Sra(x2)]
+ |Srn(x2) — Sr(x2)|
= |Sr(xy) — Srp(x1)| + |Sru(x2) — Sr(xy)| for any n.

For ¢ > 0 choose n such that ||Sr,—Sr|| < &/2. Then |Sr(x;)—Sr(x;)| <
. As ¢ > 0 is arbitrary, Sr(x;) = Sr(x;). m]
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1.10. COROLLARY. IfY is a space and G : Y — X is a map, then G
is continuous if and only if pG is continuous and to f'o G is continuous
forallteT.

Forall x e X let D(x) = {t € T : xt ¢ C(f)}, and let Z(x) =
II{Q(f xs) : s € D(x)}. Define Fy : Xy » Z(x) by Fy=II{so f':s¢€
D(x)}.

1.11. THEOREM. (i) If D(x) # @, then Fy : Xy — 2(x) is an
embedding.
(ii) D(x) = @ iff x € C iff Xy is a singleton.

Proof. (i) Fx is continuous and closed. Suppose Fx(x;) = Fx(x3)
for some x;,x, € Xx. Then to f'(x;) = to f'(x,) for all ¢t € D(x),
and the same is true of all # ¢ D(x) by Theorem 1.7 (iv), so that
F(x;) = F(x;). Now by 1.9, x; = x;.

(11) is clear by 1.8. o

An interesting special case of this theorem is

1.12. COROLLARY. Suppose thag D(x) is at most one point for all
x € X. If xt ¢ C(f), then to f': Xx — Q(f xt) is a homeomorphism
of Xx onto Q(f xt).

Proof. By 1.11 and 1.7(iii). O

REMARKS. (i) It is not true in general that Fy of 1.11 is onto Z(x),
as the examples below demonstrate.

(ii) Corollary 1.12 provides a way of “building in” precisely the
fibres that we want. It is just necessary to define appropriate functions
f with a single discontinuity along any particular orbit.

1.13. CoroOLLARY. If D(x) is at most one point for each x € X, if
each Q(f. x) is connected, then for an open or closed A C X, p~'A4 is
connected if and only if A is connected. In particular, X is connected
if X is connected.

1.14. ExamPLEs. Let X = [0, 1) where addition in X is modulo 1
i.e. X is the circle group, and let ¢ : X — X be a nontrivial group
rotation. Then X and ¢ determine a discrete transformation group
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(X,Z). Let I =[—1,1] and choose any a,b € I. Choose x € X such
that 0 < x < ¢(x) < 1, and define f: X — I by

at/x, 0<t<x

sin(1/(t — x)), x<t<E(x+¢(x)),
sin(1/(¢(x) = 1)), 3(x +(x)) <t < $(x),
(1-0b/(1-6(x)), o(x)<t<1

f) =

Then f is acceptable with

Ci=X\{xo(x)}, Cf=X\{¢"x:neZ}
D(x)={0,1} and Q(fx)=1=Q(fox).

The extension (X, Z) of (X, Z) by f is determined by the space X and
a suxjectlve homeomorphism ¢ : X — X with p¢ op.

If F : X, — Q(fx) x Q(f ¢(x)) is the embedding of Theorem
1.11, then Fx = fix 1o f' = f' x f'¢, and it is easy to see that
Fo(Xx) = {a} x [-1,11U[~1, 1] x {b}, so that the fibre X, over x is
isomorphic to this space. Clearly Fx is not onto 2(x). o

DEeFINITION. The extension (X, T) of (X, T) via an acceptable func-
tion f is denoted by (X, T') and is called the f-extension of (X, T).

A metric for X;. We know that when X and W are metrizable and
T is separable, then X, is metrizable. The following corollary of 1.9
allows us to write down a convenient metric for X;.

1.15. THEOREM. Suppose {t, : n € N} is a dense subset of T, and
let F' =Il{thof' :ne N}yxp. IfW, =W forall n € N, then
F': Xy —II{W,:n €N} x X is an embedding.

Now suppose X and W are metrizable with metrics dy and dy
respectively. In view of 1.15 it is clear that the map ds: Xy x Xy —
[0, 00) given by

dy(x, y) = max :lelg{min(dw(f' (xtn), f'(y1n)) /2", 1)}, dx (px, py)}

is a metric for X 1

Another embedding of X,. To end this section we state yet another
corollary of 1.9. Let W7 be the space of all continuous maps from T
into W with compact-open topology.
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1.16. THEOREM. If T is a locally compact Hausdorff group, then the
map x — (f, px) is an embedding of X in W7 x X.

Proof. Letm : Xy x T — X be given by z(x,7) = xt, and let
G:XyxT — W be given by G = f'on. Then G is continuous, so the
map G': Xy — WT defined by G'(x) = f. is also continuous. Finally,
G'xp:Xp— WT x X is continuous, closed and, by 1.9, injective. O

2. Lifting some dynamical properties.

2.1. LeMMA. (i) If x is a transitive point of (X, T'), then every point
of p~'x is transitive in (X, T).

(ii) If (x, x") is a transitive point of (X x X, T), then every point of
p~1x x p~1x' is transitive in (X; x X, T).

Proof. (i) Choose y € p~'x, and let B = yT. Then pB is closed
in X and pB D xT, so pB = X. Thus B meets every fibre of p, so
B > C. Therefore B = X;.

(i) Similar.

2.2. THEOREM. (i) (X;, T) is topologically transitive iff (X,T) is
topologically transitive.
(ii) (Xy, T') is minimal iff (X, T') is minimal.
(iii) (Xp, T) is weak mixing iff (X, T) is weak mixing.

2.3. THEOREM. If (X,T) is minimal, then (X;, T) is a minimal
proximal extension.

Proof. Suppose y,y' € X are distinct and py = py' =x. If ce C
we can choose a net (¢,) C T such that xt, — c. Hence p(yt,) — ¢
and p(y'ty) — ¢, so yt, — c and y't, — c. O

This result is clearly true for any almost automorphic extension of
a minimal flow (Brénstein 3.12.7).

2.4. DEFINITION. (i) In the group T, write ¢, — oo if the net (¢,) C
T has no convergent subnets. (If T is locally compact Hausdorff, this
means that 7, — oo in the one-point compactification 7* = T U {c0}.)
(i1) If (X, T') is a transformation group and 4 C X, then A4 is called
asymptotic if whenever (¢,) C T is a net with ¢, — oo and there is
Xx € A such that xt, — y say, then z¢, — y for all z € A.
(iii) An extension 7 : (¥ T) — (X, T) is called an asymptotic exten-
sion if 7~ !x is asymptotic for all x € X.
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2.5. THEOREM. (i) If x € X and D(x) is compact in T, then p~'x
Is asymptotic.

(ii) If D(x) is compact for all x € X, then p : (X, T)—= (X T)isan
asymptotic extension.

Proof. (i) Suppose x € X with D(x) compact. Let y € p~—!x and
let (¢,) be a net in T such that ¢, — oo and yt, — z say. Choose
y' € p~lx and suppose wlog that y't, — z'. If t € T then t,¢ — oo,
so there is # such that t,¢ ¢ D(x) for all @ > f, and since py’' =
py =X, f1(y'tat) = f(xtat) = f/(ytat) for all « > B, by 1.7. Therefore
f1(Z't) = f'(zt). Since ¢t was arbitrary in 7', 1.9 implies z’' = z.

(i1) is immediate, by (i). O

2.6. COROLLARY. IfD(x) is finiteforall x € X, p: (X7, T) = (X, T)
is an asymptotic extension.

As an application of the metric derived from 1.15 when 7" = Z and
(X, dx) and (W dy ) are metric space, we examine expansiveness. An
acceptable function f : X — W is said to satisfy property (x) if there
exists ¢ > 0 such that whenever w;, w, € Q(f x) for some x € X and
w; # w,, then dw(wl, 602) > é&.

2.7. THEOREM. If f satisfies property (x) on an expansive transfor-
mation group (X, Z) with metric phase space, then (X, Z) is expansive.

Proof. Suppose x1, x; € X are distinct. If px; = px; = x say, then
by Theorems 1.9 and 1.7(iii) there is an n € Z such that no f'(x;) # no
f'(x2) and both belong to Q( £ xn). By hypothesis dy (f'(x,n), f'(x2h))
> ¢. Now for any m € Z we have

dy(xim, xym) = sup{min(dw (f (x13), £ (x20))/28~", 1) i € Z}

since px; = px;. Hence ds(x,n, x;n) > min(e, 1).

If on the other hand px; # px,, there is n € Z such that
dx(pxn, px;n) > J, where J is an expansive constant for (X, Z).
Hence min(g, 6, 1) is an expansive constant for (X, Z). m]

REMARK. In the case where D(x) is a singleton or empty for each
x € X, the expansiveness of (Xy, Z) implies that f satisfies property

(+).
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2.8. PrROPOSITION. Let f : X — W be acceptable on (X, T), and
suppose that T is separable with {t, : n € N} dense in T. Then

(i) C=N{C(tho f): neN}.

(ii) If C(tno f) is a Gy set for eachn € N, then C C X and p~'C C X/
are Gg sets, so C and p~'C are dense second category sets in their
respective spaces.

Proof. (i) By definition C Cc {C(tn o f) : n € N}. Now suppose
x€{C(tho f):n €N}, and let y,y' € p~lx. If t € T is arbitrary,
there is a sequence (#;) from {¢, : n € N} such that ¢z — ¢t. Now
f(yte) = f'(y't) forall k by 1.7(iv), so f'(yt) = f'(y't) by continuity.
1.9 now implies that y = y’, so p~lx is a singleton. Now by 1.11(ii),
xeC.

(i) follows from (i). O

The results of this section enable us to construct models of flows in
the sense described in the introduction. All that is required (provided
T is separable) is that C(z,0 f) is a dense Gy set for each ¢, (usually we
can arrange that these sets are actually open). Dynamical properties
lift as in the above theorems.

In the case of discrete flows, the process is immediate by choos-
ing a suitable function (e.g. a characteristic function defined on the
circle with minimal rotation immediately produces a minimal exten-
sion and the lift is injective except on a set of 1° Category). When
handling continuous flows we need to construct our functions more
carefully using sections. As an example we outline the construction of
a suspension model for real flows using our approach (see [4]).

DEeFINITION. Let (X, R) be a real flow. A section of a point x € X is
a closed set S C X with x € § and such that for some > 0 (a section
time), SNS(0,6]=SNS[-4,0)=2.

We define S* as the relative interior of S i.e. $* = Int(S(-4,0)) N
S. Then S* is open in S, S*(—4,0) is open in X, and we can choose

sections in such a way that S* is dense in S. Furthermore we have the
following result (Lemma 7 of [1]):

2.9. THEOREM. There is a { > 0 so that the following holds: For
each a > 0 there is a finite family % of pairwise disjoint sections of
time { and diameter at most a such that X = Y[—a, 0] = Y[0, a] where

Y=US€._7S*'

2.10. THEOREM. Every real flow is modelled by a real suspension.
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Proof. We will construct an extension which has a global section
i.e. a section I" with the property that every orbit intersects I" and that
I'(—0, J) is open for J sufficiently small. It is well known that such a
flow can be realised as a suspension over I'.

Let . = {851, S,,...,S8,} be chosen as above with { small enough so
that S;[-(, (1N S;[-{ {] =@ for i # j. Define f on X by f(x-1) =
1—|t]/¢ if x € S; (for some i) and |¢| < {, and f(x) = O otherwise. It
is clear that f is an acceptable function which satisfies the conditions
of Proposition 2.8. Form the extension (X, R). We will show that
I = f'~1(1) is a global section for this flow. First note that I' will be
a section with time (.

Now if x € X/, then for some 7 € R and S, p(xt) € S}. Since S} C
C(f), f'(xt) = f(p(x)t) = 1. Thus every orbit intersects I'. Suppose
that I'(—{, {) is not open. Then we can find a point x € I'(-{, {) and
a sequence ¢, € p~!(C) with ¢, ¢ I'(—¢, {) and ¢, — x. Equivalently,
we can find x € I and a sequence ¢, ¢ I'(-9,6) and ¢, — x for
some 0 > 0. Now f(c,) = f'(cn) — 1. We deduce ¢, = s,t, where
cn € S; for some i and ¢, € R with ¢, — 0. Thus c,(—t,) € S;, so
f'(cn(—ty)) = 1 and for n sufficiently large ¢, € I'(—d, ) which is a
contradiction.

REMARK. Since R” parallels can be obtained for Theorem 2.9, the
same process can be used to obtain models for R" flows which have
global sections. A difficult open question is which of those flows are
R” suspensions (see [5]).

3. An isomorphism theorem. Let f/ and g be acceptable functions
on a flow (X, T) producing extensions p; : (X5, T) — (X, T) and
Pg . (Xg. T) — (X, T) respectively. For each x € X let ws(x) =
I{Q(f xt) : t € T} x {x}, and let Q(f) = U{ws(x) : x € X}. Refer-
ring to Theorem 1.9 and its notation, regard Q(f) as a subspace of
Z;x X;then F : Xy — Q(f) is an embedding. Let G : X, — Q(g) be
the corresponding embedding for X,.

One might imagine that if f and g have homeomorphic variations
at each point, the resulting extensions (X, T') and (X, T') would be
isomorphic. In fact, one needs some sort of uniformity across the vari-
ations in the sense that not only can we map w s(x) homeomorphically
onto wg(x), but that the resulting collection of homeomorphisms acts
in a continuous way from Q(f) to Q(g). In this case the resulting
isomorphism maps fibres to fibres. This is made concrete in the next
theorem.
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3.1. THEOREM. Suppose that f and g are acceptable on (X, T) and
let m: (X, T) — (X, T) be a homomorphism. If there is a continuous
surjection m' : Q(f) — Q(g) such that m' : wy(x) — wg(mx) and is
onto for all x € X, then there is a homomorphismn : (X7, T) — (X,, T)
such that pgn = mpy. Moreover, i is an isomorphism if m' is injective.

Proof. If ¢ € Cf then wy(c) is a point. Therefore wg(mc) is a
point, so mc € Cg. Thus m(Cf) c Cg. Also, m'({f'(ct)}: x {c}) =
({g'(mct)}; x {mc}) so m'F = Gm on CY.

If x € Xy, choose a net (c,) C Cf C Xy converging to x. We
may assume that mc, — y say, in Xg. But m'F(c,) — m'F(x) and
Gm(c,) — G(y), so m'F(x) = G(y). This shows that m'F(X;) C
G(Xg), so m : Xy — X, given by 7 = G~!'m'F is well-defined and
continuous.

m is equivariant. For if c € Cf and ¢t € T, then n(ct) = m(ct) =
m(c)t = m(c)t and continuity does the rest. Similarly, if ¢ € Cf
then pgzn(c) = pgm(c) = m(c) = mpys(c), so again by continuity,
pglt=mpy.

n is also surjective: pgn(Xs) = mps(Xs) = mX = X as m is
surjective, so n(X) meets every fibre of Xg. Thus n(X;) D Cg, and,
being closed, n(Xs) = X,. Clearly 7 is injective if m' is injective. O

3.2. CoROLLARY. Let f : X — W be acceptable on (X, T) and let
W' be a compact Hausdorff space and H : W — W' continuous. Then
Hf : X — W' is acceptable and there is a homomorphismn : (X7, T) —
(Xuys, T) such that pysm = pyr. m is injective if H is injective.

3.3. CorOLLARY. If f: X — W is acceptable on (X, T), then there
is an acceptable map g : X — W x X such that Q(g, x)NQ(g y) =9
JSor all distinct x,y € X, and an isomorphism n : (Xg, T) — (X5, T)
such that psm = p,.

Proof. Let g : X — W x X be defined by g(x) = (f(x), x) and apply
3.1. ]

In view of 3.3, we remark that any acceptable map f on a transfor-
mation group (X, 7') can be replaced by an injective acceptable map
producing the same extension of (X, T).

4. Class extensions. So far we have considered the extension of
flows by means of a single function. A natural question is whether we
could obtain different examples by using classes of functions. We will
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show below that this is not the case. We just sketch the development
which parallels §1.

Let ¥ = {f; : i € A} be a set of functions on the phase space
X of a transformation group (X, T'), the range space W; of f; being
compact Hausdorff for each i € A. For each i let C; = Cf;, and let f,
(x € X),to f; (t € T) and Q(f;, x) (wrt C;) have their usual meanings.

4.1. DEFINITION. ¥ is called acceptable on (X, T') if:
(i) C=N{C;i:i€ A} isdense in X.
(i1) {fix : x € C;} is equicontinuous on T for each i € A.

(iii) fi(x) € Q(f;, x) for each x € X,i € A.

(iv) {fix : i € A, x € C} is equicontinuous.

Define Z# to be the smallest ring containing C(X) and all compo-
sitions goto f; where t € T,i € A and g € C(W;). Proceeding in a
way similar to that of §1, one obtains a transformation group (X%, T)
with associated homomorphism p : (X¥,7T) — (X, T), and the set C
is densely embedded in X.% with p~!(x) a singleton iff x € C.

If welet f: X — II{W; : i € A} be defined by f = IIf;, then f is
acceptable on (X, T') and

4.2. THEOREM. There is an isomorphism & : (X7, T) — (XZ,T)
such that prt = py.

On the other hand, construct the extension p; : (X;,T) — (X, T) of
(X, T) via f; for each i € A. Let C' Cc II{X; : i € A} be defined by
C'={{c;}:ci=cViforsomec e C}. LetY =cl(C) inII{X; : i € A}.
Then (Y T) is a transformation group and if {y;} € Y, p;y; = p;y,
foreach i,je A. Let p: (Y, T) — (X, T) be any of the maps p;.

4.3. THEOREM. There is an isomorphismn : (X% ,T) — (Y, T) such
that pm = p.

4.4. THEOREM. Let (Z,T) be a transformation group and & an
acceptable set of functions on (X, T), and suppose that for each i €
A there is a homomorphism =; : (Z,T) — (X;, T) such that p;n; =
pjn; for each i, j € A. Then there is a homomorphism n : (Z,T) —
(XF,T). If {n; : i € A} separates points of Z, n is an isomorphism.

4.4. DErFINITION. The fibered product #{(X;, T') : i € A} of a set of
extensions p; : (X;, T) — (X, T) is the transformation group (#X;, T)
where

#X; = {{x,'} ellX;: pix; = DjXj Vi, je A}
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It is clear that with notation as above, (Y, T) is a sub-transformation
group of #(X;, T). In the case where C; U C; = X whenever i, j € A
are distinct, it is easy to show that Y = #X,.

4.5. COROLLARY (0f4.3). If C;UC; = X for all distinct i, j € A, then
there is an isomorphism ©t : (X%, T) — #(X;, T) such that pr = p.

4.6. THEOREM. Let (X, T) be minimal and let f g be acceptable
Sfunctions on (X, T') such that CfNCg is non-empty and CfUCg = X.
Then the extensions ps and pg are disjoint.

Proof. By the preceding results, (Xy, T)#(X,, T) is the {f g} exten-
sion of (X, T'), so is minimal. The result follows as in [2]. a

5.  Characterization of f-extensions. The characterization of
f-extensions presented here shows that every minimal almost auto-
morphic extension of a transformation group (X, T'), with compact
Hausdorff phase space and locally compact Hausdorff group 7, is an
f-extension of (X, T'). This gives an alternative proof of Theorem 4.2
in this situation.

5.1. LEMMA. Let (X, T) be a transformation group with T locally
compact Hausdorff. Consider X as a set of maps of T into X. Then X
is equicontinuous on T.

Proof. m : X x T — X given by n(x,t) = xt is continuous, so
#: X — XT is continuous and injective, where #(x)(¢) = n(x, ¢), and
where X7 is the set of continuous maps from T into X with compact-
open topology. As XT is Hausdorff and X is compact, 7 is a closed
map, so #.X is homeomorphic to X. But #X < X7 is closed and
compact, so is equicontinuous. O

5.2. THEOREM. Let n: (Y, T) — (X, T) be a homomorphism, where
T is locally compact and Hausdorff. Suppose that the set of all singleton
fibres of m is dense in Y. Then there is an acceptable f : X — Y such
that ' : (Xs, T) — (Y T) is an isomorphism and nf’ = py.

This immediately shows that every minimal almost automorphic
extension is an f-extension:

5.3. CorOLLARY. If n: (¥ T) — (X, T) is a minimal almost auto-
morphic extension and T is locally compact Hausdorff, then there is an
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acceptable f : X — Y such that f' : (X;, T) — (Y T) is an isomorphism
and nf' = py.

Proof of 5.2. Define C' = {y : n~'n(y) = {y}, ¥y € Y}. Then C' is
dense in Y and C = n(’ is dense in X. Next we define f: X — Y as
follows. If c € C, let f(c) = n~lc. On the other hand, let O be any
orbit in X with O N C = &. Choose xp € O and f(xp) € n~ ! xp, and
define f(xgt) = f(xp)t forallt € T. So f: X — Y is defined (using
the axiom of choice).

(i) C(f) c C. Let x € C(f) and suppose y,y' € t~'x. As C’ is
dense in Y, suppose ¢, — y,c., — y' where (c,) and (c/) are nets in
C'. Then nc, — x and nc, — x. Now as x € C(f), f(nca) — f(x)
and f(ncl) — f(x). But f(nc) =c forall c € C, so co, — f(x) and
¢! — f(x)ie. y =y'. Thus n~'x is a singleton, so x € C.

(i) C ¢ C(f). Suppose ¢ € C. Choose a net x, — ¢ in X such that
f(xa) = 1. As nf(xs) =Xo n(l) =c. Hence Il = f(c)asl e C'.

Hence C(f)=C,s0o Cf =C.

(iii) Q(fx) = n~lx forall x € X. If y € Q(fx), there is a net
¢, — X from C such that f(c,) — y. Thus f(ca) — 7y, i.e.,co — Y.
Thus ny = x, i.e., y € n~!x. On the other hand, let y € 7~ 1x. Then
there is a net (c,) C C’ such that ¢, — y, ie., f(nc)) — y. But
ncl — ny = x, 50 y € Q(f x).

Hence f(x) € Q(f x) for all x € X.

(iv) {fx : x € C} is equicontinuous on T. This follows by Lemma
5.1 applied to (Y, 7).

Hence f : X — Y is acceptable on (X, T'), so we can construct the
f-extension p : (X7, T) — (X, T). If f' is the usual lift of f to X/, then
fl: Xy — Y isonto as f/(Xy) D f/(C) = f(C) = C' and f" is closed.
f" is also clearly equivariant, and since nf'(c) = nf(c) = ¢ = pc
Vc € C nf' = p. Lastly, we show that f’ is injective.

Suppose x,x' € Xy and f'(x) = f'(x'). Then px = nf'(x) =
nf'(x') = px'. Now the map F of Theorem 1.9 is an embedding. But
foreach t € T, f'(xt) = fi(x)t = f'(x")t = f'(xt), so F(x) = F(x').
Hence x = x'.

Thus f': (X;T) — (¥ T) is an isomorphism and 7/’ = p. o

5.4. CoROLLARY. Suppose (X, T) and (Y, T) are transformation
groups with T locally compact Hausdorff, and let (X;,T) be an f-
extension of (X, T). If there are homomorphisms p : (X;T) — (Y T)
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and n : (YT) — (X, T) such that tp = py, then there is an accept-
able g : X — Y and an isomorphism G : (Y, T) — (Xg, T) such that
peG =m.

Proof. We need only show that 4 = {y : y € Y and n~'ny = {y}}
is dense in Y. But 4 D pCf (where Cf C Xj). ]
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