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MIKIHIRO HAYASHI AND MITSURU NAKAI

Results of both positive and negative directions on the point sepa-
ration by bounded analytic functions of two-sheeted covering Riemann
surfaces are given when the points of base Riemann surfaces are sep-
arated by bounded analytic functions.

1. Introduction. Let R be a Riemann surface and H*°(R) the set of
bounded analytic functions on R. In the study of bounded analytic
functions on Riemann surfaces, one of the basic problems is to deter-
mine when the points of R are separated by H*(R). Here we say that
H*>(R) separates the points of R (or H*°(R) is separating) if for any
pair of distinct points @ and b of R there exists an f in H*°(R) with
f(a) # f(b). Although we do not have any satisfactory answer to the
problem, there is a very general result on the point separation by an
algebra of analytic functions by Royden [5]. Applied to the present
case the Royden result amounts to saying that if a Riemann surface
R admits a nonconstant bounded analytic function, then there is a
quotient Riemann sueface R of R with a quotient map y of R onto
R such that H®(R) is isomorphic to H®(R) via the correspondence
f — fow and such that H®(R) is weakly separating, by which we
mean that H*°(R) separates the points of R except for a countable
subset of R. At present, the gap between this general result of Royden
and our knowledge on concrete examples is wide. For this reason it
might be natural to consider the problem in the following special case
as an experimental study.

Suppose there is given a Riemann surface R such that H*°(R) is sep-
arating. For a Riemann surface R with a holomorphic proper mapping
w of R onto R (i.e., R is a ramified finitely sheeted unlimited covering
surface of R), we ask when H*(R) is separating.

The problem has been considered by Selberg [8], and later by Stan-
ton [9] when the base domain R is the open unit disk, and then by
Segawa [7] when R is a Riemann surface of Parreau-Widom type. In
this note, we continue to study the problem in the case when the base
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Riemann surface is rather more general. In this context we also cite
here a related work of Forelli [1]. The contents of our paper are as
follows.

In §2, we consider as R a subdomain of the famous Myrberg surface
(cf. e.g. [6]) which is obtained by deleting a sequence of disjoint disks
around ramification points. We shall prove that H°(R) for this un-
ramified R is not separating if the radii of disks are chosen to decrease
rapidly enough, and also that H°(R) is separating if they are chosen
to decrease slowly enough. In spite of the fact that these results are
likely to happen, our proof of the “not separating” case, in particular,
will need some elaborate arguments.

In §3, we examine the following conjecture.

Conjecture 1.1. Suppose that H*°(R) is separating. Consider two
copies of R\J, where J is the union of a finite number of mutually
disjoint compact slits on R. Let R be the Riemann surface obtained by
joining one copy to the other along the two sides of the corresponding
slits crosswise. Then, H*°(R) is separating.

We shall show that the conjecture is true if, in addition, the slits
are chosen in a certain open subset of R, and that the conjecture fails,
surprisingly, in general. In fact, an example of a Riemann surface R
constructed in [4] will show that the conjecture is true if the slits sit
in a certain place of R, but it fails if the slits sit in some other place
of the same R.

In this note, we only consider the two-sheeted covering case. Thus,
our results are by no means complete, and there are more problems
left than answers given in this paper.

2. We denote by A(x, 7) (A(x,r), resp.) an open (closed, resp.) disk
in the complex plane C with center x and radius 7. Let Ag = A(0, 1)\ {0}
and Ay = A(27%, 1), k = 1,2,3,.... We assume that the closed disks
Ay are mutually disjoint and included in Ay, that is, 27%~1 4+, <
2k re. Put

oo
R = A\ | Ak

k=1
Let Ay be the two-sheeted unlimited covering surface of A, whose
ramification points are those over z = 27% for k = 1,2,3,..., and
let ¥ denote the covering map of Ay onto Ag. Define R = y~!(R).
Then, the Riemann surface R is a two-sheeted smooth covering of the
domain R. Now we show the following.
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THEOREM 2.1. Suppose, with the above notation, that the origin is an
irregular boundary point for the domain A in the sense of the potential
theory, i.e.,

2 k

Then, H*®(R) does not separate the points of any fibre w~(z) for any

z € R. Thus, H®°(R) = H®(R) o y.
We need the following lemma.

LEMMA 2.2. Let u(z) be a bounded real-valued harmonic function
defined in an annulus {z: a < |z| < b}. Then,

N ié 24va/b
0‘;;[1&””14(\/&% ) — u(Vabe )15—_——(1_ x/ETb)Z“u”‘”'

Proof . Since the estimate is invariant under z — z/b, we may
assume that b = 1. We may also assume that u is continuous on
a <|z| <b. First, we let —1 < u({) <1 for |{| =1 and u({) = 0 for
|{| = a. We consider the Poisson integral

) 2n 1= r2 )
Py — 0
v(re®) /0 1 —2rcos(6 — ¢) + rzu(e )d0/2m

on the unit disk. Then,

‘ 7 24207 4
9y _ == -
22) () —v(0)| S/o = s

Put w = u —v. Then, w({) = 0 for |{| = 1, and w({) = —v({) for
|{| = a. Hence,

w(¢) +v(0)] < 4a/(1 - a)?
for |{| = a. By the maximum principle, it follows that
log |z|
loga

4alog|z|
~ (1 -a)?loga’

w(z)+ v(0)

From this inequality, we see
w(vae') — w(vae')| < 4a/(1 - a)>.
Also, by (2.2), we have
v(vae') - v(Vae')| < 8va/(1 - Va)*
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The last two inequalities imply
|u(vae'®) - u(v/ae")| < 12va/(1 - Va)*

For a general u, we write ¥ = u; + u;, where u; and u, are harmonic
with boundary values u;(e’?) = u(e’?) and u,(ae’®) = u(ae'®). Appli-
cations of the above argument to u;(z) and u,(a/z) imply the required
estimate.

Proof of Theorem 2.1. Let k be a positive integer. By (2.1),
k/log,(1/r,) = o(1), i.e., if rp = 277k then n(k) — +oo as k — oo.
In this proof, we admit a conventional use of the symbol n(k) to rep-
resent any sequence of real numbers with the property n(k) — +oo as
k — oo, that is, n(k) will not be a fixed sequence. For every positive
integer n, we have

(2.3) iz"kﬁ; <oo0; and
(2.4) i 2"k py < 0.
k=1
Let f € H*(R). By (2.4), we see that
’ 27” O Cn+l

defines a bounded linear functlonal on H*(R). Here, the directions
of integral paths are taken counter-clockwise for d Ay, and clockwise
for 0A, k = 1,2,..., so that this formula is obviously true in the
classical sense if f is analytic in a neighborhood of the origin. Also,
we have

(2.6) sz / = JE) ¢

for z € R.
The theorem follows from the following assertion.

Assertion 2.3. Let f € H®(R).
() If fM(0)=0foralln=0,1,2,..., then f=0.
(ii) If there are a sequence {p;} of points in R and positive con-
stants 4, A, such that p; — 0,

2.7) 1f(pi)l < A27"0* and |pry; — pryjl = An27F
forallkandi#j 0<ij<n,
then f"(0)=0foralln=0,1,2,....
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In fact, let g € H*(R). For each point z in R, we write y~!(z) =
{z4, z-} and define

f(2) = (8(24) - g(2-))

As is well-known, f(z) is a single-valued bounded analytic function on
R. In order to see the conditions in the hypothesis of the assertion (ii),
we consider the annulus A} = {z: ry < |z — 27¥| < 27 /4}. Note that
A; is included in R for every large k and that y~!(A}) is conformally
equivalent to the annulus {w: \/f;y < |w| < 27%/2-1}. The conformal
radius of y~!(A}) is estimated as follows:

VIe/27H27E = (n 2k4)1/2 < g=nlk

when k is large. Now, put p; = 275 + \/F27%/2=1. Then, |ppy; —
Pm+j| =277/2"+! and, by Lemma 2.2,

1f ()l < 27| g2,

Hence, we have f = 0 by the assertion. It remains to prove the asser-
tion.

Proof of Assertion 2.3. (i) Set Al = A(27k, /Fy). By (2.3), disks A}
are mutually disjoint for large k. For the simplicity of the argument,
we may assume that all A} are mutually disjoint, and we define

o0
Y = Ao\ | A
k=1
Suppose f(")(0) = 0 for all » = 0,1,2,.... Assume on the contrary
that f # 0. Multiplying a nonzero constant to f, if necessary, we may
assume that | f(z)| < 1. From (2.5) and (2.6), an induction on # yields
the identity

(2.8) f(z) = ZZL N C"fc ©) 5%

It follows from (2.3) that

o0

1 1
Cn = i‘;e,;ﬁfm Trg =y el < e

By (2.8), |f(z)| £ Culz|® (n =10,1,2,...) for z € Y, or equivalently,
log|1/f(z)| > nlog|l/z| —logC, (n=0,1,2,...). Let u be the lower
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envelope of the family {s} of nonnegative superharmonic functions s
on Y such that the inferior limit of s(z) as z € Y approaches to { is not
less than log|1/{| for every { € dY\{0}. Then, u(z) is harmonic on
Y with boundary values log|1/{| on 0Y\{0}. By the condition (2.1),
z = 0 is the irregular boundary point of Y in the sense of potential
theory. Hence, v(z) = log|1/z| — u(z) > 0 on Y, which can be seen,
for instance, by an application of Fatou’s lemma to the formula [10;
Theorem I11.41]. Since u(z) > 0, log|1/z| > v(z) and we have

(2.9) log| (1 2] > nv(z) —logC, (n=0,12,...)
on Y\{0}. Fix an arbitrary positive number ¢ and consider the super-
harmonic function

Sne(z) = log —— |f( Bl +slog'—;1zT—nv(z)

on Y\{0}. By (2.9) and the effect of the term £log|1/z|, we see that
lim,cy,0Sne(2z) = +oo. Since |f(z)] < 1 and v(z) = 0 on 9Y\{0},
we conclude that

1 f >
pinfne(2) 2 0

for every { € Y. The maximum principle for superharmonic func-
tions assures that s, 8(2) >0on Y. Letting ¢ | 0, we have

log ———— > nv(z) (n=012...)

/() ( )|
on Y, a contradiction.
(i1) Define
(Ruf)(2) = 1(2) - Zf ©
Then,

Ru ) Pmsns - Pml = flPmsns - Pm] — f(n) (0)/n!,

where

Flxp, ..., x1,Xx0]

-3 F(xk)
=5 (X = Xn) -+ (X = X)) (X = Xie—1) -+ (Ko = Xo)

It follows from (2.7) that f[pm+n,..., Pm] tends to zero as m — oo.
On the other hand, we estimate (R, f)[Pm+n.---, Pm] as follows. By
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(2.8),
_ n+l nf )( )
(Ruf)(2) = 2 Z 27 /aA (g - 2)
Now, if { € 0A;, then

(Ruf)(0) P
i 5| < WReflloe (27 =)™ (/7272 = )
and if { € 9A,, [ # k, then

(Rx.f)({)
¢ - py)

Hence, by Lebesgue’s dominated covergence theorem, we conclude

(2.10) ’%i_lgo(Rnf)[pm+n,---»pm] =0

< IR oo/ (27" = r)m 12704,

This shows that ") (0) = 0 for all n, as was to be proved.
One can also prove (2.10) using an estimate in terms of analytic
capacity [3: Estimate 2.7 (E-3)].

THEOREM 2.4. Suppose that, with the same notation as above, we
have inf), r;,2% > 0. Then, H*(R) separates the points of R.

Proof . Set 6 = inf, rk2k~, which is seen to be less than 1/3. If we
replace r, by 027K, then R is replaced by a larger subdomain of A.
Hence, we may assume that r, = §27K. Set g,(z) = z/(z — 27") for

n=123.... The following inequalities are immediate:
(2.11) 11— gu(2)] < 27"z, |zl 227,
(2.12) lgn(2)| 27" Iy =2/8,  |z-27"| 21,
(2.13) lgn(z)| <1, Rez<27"7}

(2.14) lgn(z)| < 14+4-25"  |z—-27%|=r, k<n-2.
Here, (2.14) follows from (2.11). By estimate (2.11), the function
g=1]] &
n=1

converges almost uniformly on C\{0}. Regarding the function g as
a product of functions g,,_&,, we see that the square root f = /g
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defines a single-valued meromorphic function on the covering surface
Ay of Ag. By (2.12), (2.13) and (2.14), we have

m
H &n| <
n=1

(1+4/2"K)
2

SO
f

n

on |z — 27| = r, for any integer m > k + 2. Hence,

o0

<5 [Ia+472
n

=1

I (NS

on R for any positive integer m. This implies that the function g ~is
bounded on R, and hence, f is a bounded analytic function on R.
Clearly, the function f separates the fibre w~!(z) for every z € R.

In the above notations, it is an interesting unsettled question to find
a necessary and sufficient condition on radii r; in order that H*(R)
is separating.

3. In this section an arbitrary open Riemann surface R will be con-
sidered. We note by M *°(R) the set of meromorphic functions on
R bounded off compact subsets of R and by #(R) the set of points
p of R such that there exists an f in M*°(R) for which p is a pole.
The set #(R), referred to as the pole set of R, is seen to be open by
considering 1/(f — a) for f in M*®(R) and o complex numbers with
large absolute values. In the proof of the following theorem, a Cauchy
differential A({,z)d{ (({, z) € #(R) x R) constructed in [2] under the
assumption that H*°(R) is weakly separating will be used essentially.
Let V' be an arbitrary parametric disk in #(R). The coefficients A({, z)
(({, z) € ¥V x R) of the above differential enjoy the following proper-
ties: (a) A({, z) is holomorphic on V' x R except for the set { = z, (f)
A(L, z) = 1/( - z) + (holomorphic function) on V x V, (y) A({ )
is bounded analytic on R\V for any fixed { in V, and (6) A({n, <) —
A(¢, -) uniformly on R\V as {, — { in V.

We have the following.

THEOREM 3.1. Let y be a two-sheeted unlimited covering map of a
Riemann surface R onto a Riemann surface R. Suppose that H®(R)
is (weakly) separating and that there exists an open subset W of R with
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the following properties:

(3.1)  H>®(W) is (weakly) separating, where W = y~ (W),
(3.2) the boundary OW of W is a compact subset

of the pole set #(R); and
(3.3)  wY(R\W) splits into two disjoint copies of R\W

Then, H®(R) is (weakly) separating on R.

Before proceeding to the proof of the above, we consider some ex-
amples. Let J1,J5, ..., J, be a finite number of mutually disjoint com-
pact analytic Jordan arcs contained in the set (R). Let R} and R_ be
two copies of R\(U, Ji), and let R be the Riemann surface obtained
by joining R, with R_ along two sides of each J; crosswise. Choosing
a disjoint union of disks containing J; as the open subset W, we see
that conditions (3.1), (3.2) and (3.3) are satisfied. Therefore Conjec-
ture 1.1 is true in this case. Furthermore, we can apply the theorem
to the case when {J;} is an infinite sequence if J; are suitably chosen
(see remarks after the following example).

ExAMPLE 3.2. Conjecture 1.1 fails in general. More precisely, let J
be a compact slit in R and R the two-sheeted covering Riemann sur-
face obtained by joining two copies of R\J along J crosswise. Then,
there exists a Riemann surface R such that H*®(R) is separating, but
H*(R) may or may not be separating, depending upon the choice of
the slit J in R.

Proof . We recall an example of a Riemann surface R constructed in
[4]. Namely, let I}, I, ... be disjoint closed intervals on the interval
[0, 1) such that I} converges to z = 1. We consider a union [; of
a finite number of disjoint subintervals of I; for each k = 1,2,....
Let Ry = A\(UZ, I;) and R, = A\{I} U (U%Z] 1))}, where A is the
open unit disk. The Riemann surface R is now obtained by joining
every R, with R, along every subinterval contained in I} crosswise.
If one chooses I} in such a fashion that it includes sufficiently many
subintervals, then f|R; converges to f|R, almost uniformly for every
bounded analytic function f on R. Also, we know that H*°(R) is
separating and that (R) = U2 ; Ry (cf. [4] for details). If we choose
the slit J in 2 (R), then H°(R) is separating by the theorem. Next, we
choose the slit J in the bottom sheet Ry. Let y be the covering map
of R onto R. Consider a closed Jordan curve C on R, enclosing J.
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Choosing the union I} of subintervals more carefully, if necessary, we
can assume that g|R; converges uniformly to g|(Ro\J) on C for every
bounded analytic function g on R\J, so that g extends analytically
to R. Now, let f be a bounded analytic function on R and let R, be
one of two connected components of y~1(R\J). Since y is one-to-
one on the domain R, f o w~! defines a function g on R\J. Hence,
g extends analytically to R. Since the analytic function g o ¥ on R
agrees with f on R, we have go y = f on R throughout. This shows
that H °°(R) does not separate any fibre ¥ ~!(p) for any p € R.

Here are two remarks on the above example. First, suppose we con-
struct a Riemann surface S by joining R\J with A\J along J cross-
wise. Namely, we attach an open disk to the bottom sheet of R. In
this case, applying a similar argument, we easily see not only the fact
that H°°(S) is not separating but also the fact that H*°(S) turns back
to the algebra H*(A) on the unit disk A. That is, H*(S) does not
separate any pair of distinct points in the fibre ¢~!(z) for every z € A,
where ¢ is a covering map of .S onto the open unit disk A.

Second, suppose we choose an infinite number of mutually disjoint
slits J; in a fixed sheet (or finite number of sheets) R, (n > 1) of R
such that > (1 —|a;|) < oo, where ay;_; and a,; are the end points of
the slit J,. If we construct a two-sheeted covering R of R as before,
then Theorem 3.1 shows that H*°(R) is separating.

The following lemma will be needed in the proof of Theorem 3.1.

LEMMA 3.3. Let T be a union of a finite number of disjoint closed
Jordan curves contained in #(R), and let g be an analytic function
defined on a neighborhood of T'. If g has no zeros on T, then there
exists a function h in M*(R) such that log(hg) has a single-valued
analytic branch on a neighborhood of T.

Proof . LetI' =T, U---UT,, where I'; are disjoint closed Jordan
curves. For each I';, we can choose an annular neighborhood ¥ of it
and a conformal analtyic map 4; of V; onto an annulus {w: J < |w| <
1/6} (0 < 6 < 1). We may further assume that V;’s are mutually
disjoint. Note that the period of log g along the curve I'; is an integer
multiple of 2ni, say 2nim;. Shrinking V;, if necessary, we see that
log g/h;"" has a single-valued analytic branch on V;. Since V;’s are
mutually disjoint, by using the Cauchy differential 4({, z) introduced
in the beginning of this section, a Runge type approximation gives us a
meromorphic function 4 in M *°(R) such that |1 /h;."f —h|<dé™ onT;.
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Then, [1 - A7k < 1 on T}, and hence, log(h]" /) has a single-valued
analytic branch on a neighborhood of I';. Consequently,

log(hg) = log(h}"h) +log(g/h}")

has a single-valued analytic branch on a neighborhood of I';. This
proves the lemma.

Proof of Theorem 3.1. Set I’ = W and consider a neighborhood V'
of T such that ¥V ¢ #(R) and such that the boundary 8V of V con-
sists of a finite number of disjoint closed Jordan curves. By condition
(3.3), there are no ramification points over I. Hence, we may fur-
ther assume that ¥ = y~!(V) consists of two disjoint homeomorphic
copies V+ and V'~ of V. Now we see that all the hypotheses remain
valid even when one replaces the open set W by a slightly smaller
one. Therefore, we may assume, from the beginning, that I" consists
of a finite number of disjoint closed Jordan curves, and also, that the
neighborhood V is chosen as a disjoint union of annular neighbor-
hoods which include each one of the components of I. Let {R;}/_,
be the connected components of R\ and set I'; = dR;, where each
I'j may consist of a finite number of disjoint closed Jordan curves.
Denote by V; the union of the annular components of V' containing a
component of I';. Set

Wo=WUV and W;=R;uV; forj=1,...,p

Shrinking W and V, if necessary, we may assume by condition (3.1)
that H>®(W,) is (weakly) separating, where W, = w~! ().

Now, if z € R is not a ramification point, then the point z has two
pre-images, i.e., w~!(z) = {z*,z"}. Define 1(z*t) =z~ and 1(z7) =
z*+ for every such z. As is well-known, 7 extends to a conformal
mapping of R onto itself and 707 = identity. Note that foy € H*®(R)
for every f € H®(R). Hence, in order to see that H®(R) is weakly
separating, it suffices to find a function F in H*®(R) with Fot # F.
Since H>(W}) is (weakly) separating, there is a function G in H> (W)
such that G o 7 # G. Replacing G by G — G o 7, we assume that

(3.4) Got=—-G

and G is not identically zero. Also, we may assume that G(Z) has no
zeros on V = y~1(V), for one may modify, if necessary, the boundary
I" of W slightly, and replace the neighborhood V" of I" by a smaller one.
Let us regard the restriction of G to V'* as a function on V, which
we denote by g. By Lemma 3.3, there is a function 4 in M*(R) such
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that log(gh) is single-valued and analytic in V', where we replace V' by
a smaller one if necessary, again. Set u = log(gh). Let A({, z)d{ be
the Cauchy differential on #(R) x R introduced in the beginning of
this section. For z € V, it follows that

1 |
(2) = g7 [, MOAC e = 5 [ wOAG
where I, = WN oV; and I'} = R; N 9V;. Define

w(@) =35 2 [ wOAC DA ze W
j j

wj(2) = 5 > fuoacza

+ ilnE/r WAL 2)d,,  zeW,

for j=1,..., p. Note that

(3.5) ug is a bounded analytic function on Wp\V and u; is a
bounded analytic function on W;\V.

Furthermore, we have
(3.6) uj=ug—u, zeV,

By condition (3.3), y~!(W;) consists of two homeomorphic copies
Wj+ and W~ of W;, where Wj+ and Wj‘ intersect with ¥+t and V',
respectively. We now define a meromorphic function F on R by
exp(—ujo y(2)), zewt,
F(2) =4 —exp(-ujowy(2)), tew,
G(2)(how)(2)exp(-ugo w(2)), Z€ Wy

By (3.4) and (3.6), F(2) is well-defined. It follows that F € M*°(R)
and that F ot = —F. By [2], we can find a nonzero bounded analytic
function f on R such that fh € H*(R). Hence, (f o w)F € H®(R).
Therefore, H*(R) is weakly separating. If H°(W) is separating, we
can choose in the foregoing discussion a function G and a function
f for each z € W such that G(z*) = —G(z™) # 0 and (fh)(z) # 0.
Hence, the function of the form (f o y)F separates the points z* and
z~ for each z € W. The same is true for z € R\W, because F does

not vanish on R\W. This proves that H*®(R) is separating.
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