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Bounded cohomology Hζ can be defined for groups and for topo-
logical spaces. Recent work has shown that Hζ (M) of a topolog-
ical space M depends only on Π\(M). In this paper we consider
a new concept—a bounded group—and thereby expand the defini-
tion of bounded cohomology. We prove that bounded cohomology
groups are themselves bounded groups and develop their properties in
lower dimensions. In particular, elements of ff£(G, A) classify bound-
ed group extensions of G by A. As an application of the theory of
bounded groups we construct the Lyndon spectral sequence. The re-
sult obtained is Theorem 3, which states that Hζ(H A)G =b Hg(G, A),
when G/H is finite.

1. Definitions and observations. We introduce the ideas of a bound-
ed group and a bounded group homomorphism. We want to ensure
that the mappings (x, y) -* xy and x -» x~ι are themselves bounded
homomorphisms. Thus, we define a norm (actually a pseudo-norm)
on a group G to be a function || | |: G -+ R satisfying, for non-negative
constants M, c, Mf, c',

(i) ||JC|| > 0, for all x in G,

(n)\\xy\\<M(\\x\\ + \\y\\) + c,
(nϊ)\\χ-i\\<M'\\x\\ + c>.

G together with its norm is a bounded group. A homomorphism /
between two bounded groups G and H is bounded if and only if there
exist non-negative constants Mf and Cf such that

\\f(g)\\<Mf\\g\\ + cf, for all* in G.

Two norms on G are equivalent if there exists a bounded isomorphism
/ between the two bounded groups; i.e., both / and f~ι must be
bounded. The symbol for a bounded isomorphism will be =$. It is
worth noting that the composition of two bounded homomorphisms
is bounded.

The cross-product of two bounded groups, G x H, is a bounded
group under the natural norm defined as follows:

IK* Λ)ll = 11*11 + 11*11.
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314 D. W. PAUL

Here, || || is the symbol for the norm in the appropriate group. Notice
that the choices of definitions for bounded group, bounded homo-
morphism, and cross-product norm achieve the stated goal of making
(gι> Si) -> g\gi a n d g -+ g~ι bounded homomorphisms.

The need for a pseudo-norm rather than a norm arises as we attempt
to define a quotient norm for G/H, when H is normal in G. Given ~g
in G/H, define

heH

This norm satisfies properties (i)-(iii); however, the condition \[g\\ = 0
does not imply that g is in H. Notice that the projection map π: G -»
G/H is a bounded homomorphism.

The quotient norm will appear repeatedly in this work, so we prove
now a simple and crucial lemma.

LEMMA 1. Let H be a normal subgroup of bounded group G, and let
Π: G —• G/H be the projection map. Endow G/H with the quotient
norm. Then there exists a bounded section s: G/H —> G, so that Πos =
1.

Proof.

Given ε > 0, for each g there exists an hε in H such that

Pick such an hε, and define

s(U(g)) = ghε.

Then p(Π(£)) | | = ||^Aβ|| < L + ε = \\Ώ(g)\\ + e. π

The bounded cohomology groups of a bounded group G are defined
directly in terms of the bar resolution [2]. Let A and G be bounded
groups, and let A be a left (7-module. The (j-module action must be
bounded; i.e.,

The chain complex consists of free (7-modules Bn (G). In non-homoge-
neous coordinates, Bn{G) has generators [x\/ /xn]> ^-tuples of ele-
ments of G, with the normalization condition that

[x\/'"/xn] = 0 if any x, = 1.
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The group Bn(G) is bounded with the following norm inherited from

G:

For a and b in Bn{G), \\a+b\\ = ||α||+||6||. Anrc-cochain/: Bn(G) -+A
is a (/-module homomorphism, bounded as a group homomorphism,
uniquely determined by its values on the generators. These n-cochains
form a group and are denoted Yίomb

G(Bn(G), A), or Bn. Because A has
bounded G-module action, δf is also a bounded cochain, and thus it
is in Bn+X. The cohomology groups H£{G, A) are those of the cochain

complex Homb

G{Bn{G),A).
The bar resolution is also defined in homogeneous coordinates. In

this case, Bf

n(G) consists of all elements (XQ, . . . , xn), where (XQ, ...,xn)
= 0 when xι = Λ:, + I . We define the norm of elements of Br

n (G) by the
formula

LEMMA 2. Bn(G) =b B'n{G).

Proof. The two resolutions are algebraically isomorphic [2]; an ele-
ment x[x\/ - - /xn] in Bn(G) determines one in B'n{G) by

X[Xχ / /Xn] ->{x9XXU...,XXι - Xn).

Conversely,

(yo,..., yn) -* yolyόιy\/' - lyΰ-xynl

For the proof of boundedness, note that in each direction elements
of G are multiplied a finite number of times before the cross-product
norm is applied. For a fixed n, these actions are bounded, and thus
Bn(G) and B'n(G) are bounded isomorphic. D

We would like to know if the quotient Hg(G,A) itself can be con-
sidered bounded. First, a natural norm to assign an n-cocycle / in
HomQ(Bn(G)fA) is the sup norm.

11/11 = sup
IMI

Verifying the conditions for Z£(G, A) (the «-cocycles) to be a bounded
group depends on knowing that / is bounded and that A is a bounded
group. Now we define the norm for the cohomology class of / by the
quotient norm:

7 = inf ||/
δgeB"
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Now the cohomology groups Hζ(G, A) = Zξ(G, A)/Bξ(G, A) are them-
selves bounded groups.

2. Low dimensional cohomology groups. We first note two stan-
dard results about the zero- and one-dimensional bounded cohomol-
ogy groups. Given a bounded G-module action on any bounded group
A, it is clear that H^{G, A) is AG. H£ (G, A) is easily seen to be isomor-
phic to the group of all bounded crossed homomorphisms modulo the
principal ones. Our concern is with the relationship between H£(G, A)
and extensions. We develop the theory for the case of central exten-
sions and trivial G-module action. The results easily extend to the
case of bounded module action.

Let G and K be bounded groups, and let K be abelian. A bounded
central extension E of K by G is defined as a central extension with
bounded homomorphisms / and π.

E:0 —^K -Ux -^G—+1

Let E and E1 be two bounded central extensions of K by G; then E
and Ef are congruent if there exists a bounded homomorphism β, with
bounded inverse β~ι, such that the following diagram commutes:

E: 0 > K —l—^ X —£-> G > 1

Ef: 0 > K —1—+ X* -!—> G > 1

The collection of such congruence classes is denoted Cent^G, K).
Assuming non-homogeneous coordinates and trivial G-module ac-

tion on K, we construct the groups H£(G, K). An tf-cocycle / has the
property that

Our goal is to associate a congruence class in Centb(G,K) to each
cohomology class in H%(G, K).

Given / in H£(G,K) as just defined, form the group X consisting
of all pairs (k, g), k in K and g in G. The group operation is defined

{k\, g\){k2, g2) = (fci + k2 + f(g\, g2), g\g2).

A bounded group was defined in order to make this extension group
X bounded.
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LEMMA 3. X is a bounded group under the following norm:

Proof. Clearly || (fcg) || > 0 .

\\{kh gι)(k2, g2)\\ = IKfei + k2 + f(gh

The bounds from the group operations in K and G combine with the
bound on / to make the operation in X bounded. Similarly, we see
that \\{k, g)\\ -> \\{k, g)~ι|| = |K—/c - f(g g->), g~ι)\\ is bounded. D

The homomorphisms are defined to be:

π:X-+G, π{k,g) = g.

LEMMA 4. The homomorphisms i and π are bounded.

Proof.

= IK*, 1)11 = | | * | | + c.
= \\g\\<\\k\\ + \\g\\. Π

LEMMA 5. X/K =b G.

Proof. Let (k, go) represent a class in X/K.

The groups are known to be isomorphic; the boundedness of each
direction of the isomorphism is demonstrated here.

IK*, s o ) | | = inf IK*, go)\\ = inf ||*|| + Ikoll = II All + c
k k

gQ) D

The proofs of the exactness of the sequence

E:0—>K^X ^^G —^1

and of i(K) lying in the center of X are standard [2].
Thus we have easily found a bounded central extension for the two-

cocycle / .
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LEMMA 6. Iff and g are cohomologous, then their associated ex-
tensions X and X' are congruent

Proof. Let g = f + δd, and note that d must be bounded. Define
β{k, g) = (k- d(g), g); d is bounded and thus β is a bounded homo-
morphism. The inverse β~\ defined β~ι{k, g) = (k + d(g), g), is also
bounded. The map β makes the diagram commute. D

Given a bounded central extension E, we now wish to find an asso-
ciated two-cocycle in Z$(G,K).

Since G has a norm equivalent to the quotient norm, there exists
a bounded section s: G -» X by Lemma 1. We require further that
s{\) = 1, which may only affect the bounded condition of s by a
constant. Define Δ in Zj(G, K) by

A(a,b)=s(a)s(b)s(ab)-K

The class of Δ is easily seen to be an element of Z2(G, K); as a com-
position of a finite number of group operations it is bounded.

LEMMA 7. IfE and Ef are congruent bounded central extensions
s

E: 0 > K —ΐ—> X —ϊ- f G • 1# — —

•1

v π

* X' -£-

* G

I
• GE':0 —

>^ ^
with bounded sections s and t, then their associated cocycles As and At

are cohomologous as bounded cocycles.

Proof. Define d: BX{G) -+K by

d{g) = t(g)β{s(g))-1.

Standard arguments show that At = Δ5 + δd. Since d is bounded as
a composition of β, t, and s9 At and As are in the same bounded
cohomology class. D
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Lemma 7 is the last step in the proof of the following:

THEOREM 1. Assume that G has trivial module action on abelian
group K. There is a one-to-one correspondence between Centre?, K)
andHl{GtK). u

3. Bounded cohomology spectral sequence. The construction of a
spectral sequence demonstrates the usefulness of having a bounded
condition on the cohomology groups. We follow the treatment in
Mac Lane [2], and simply replace groups and homomorphisms with
bounded groups and homomorphisms. Thus, a bounded cohomology
spectral sequence E = {Er, dr} is a sequence E2, E3>... of Z-bigraded

modules, each bounded as a group, and each with a bounded differ-
ential dr of bidegree (r, 1 - r) so that

H(Er, dγ) has the quotient norm.
To demonstrate the potential usefulness of redefining the spectral

sequence in this way, we construct the Lyndon spectral sequence. We
can then relate the bounded cohomology of a group and its subgroup.
Where inserting the word "bounded" in the standard arguments causes
no problem we simply state the result. Complications arise later, how-
ever, and we deal with those in detail.

For H a normal subgroup of bounded group (?, and A & bounded
(/-module, form the bicomplex

K™ = Homb

G/H(Bp(G/H), Homb

H(Bq(G), A)).

The two differentials are defined, for / in KM

9

δ'f{b')φ") = (-l)p+«+ιf(db')(b»)> V € Bp+l9b" C Bq,

δ"fψ'){b") = {-l)g+ιf{b')(db"), V e Bp, b" e Bq+X.

There are two filtrations of this bicomplex—by the indices p and q.
That each induces a bounded cohomology spectral sequence on Tot K
is laborious but straightforward. First we identify the Eι terms.

Reverse the indices for the second filtration, and recall that E1^ =
H"PHI(!{K). For fixed p, H'«(K) is the bounded cohomology of G/H
with coefficients in Y{omb

H(Bp(G),A). This group Hlq(K) is zero for
q > 0. H'°{K) is

HJj{G/HHomb

H(Bp{G),A)) =t [Homb

H(Bp(G),A)]G/H

=bHomb

G(Bp(G),A)
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Now calculating H"*>H'«(K) yields

E\p>q = 0 when q > 0.

The nitrations of K determine the total space Ύo\K, a single com-
plex, as

Ίo\K= Σ KPtQ> δ = δ' + δ".
p+q=n

THEOREM 2. H»(G,A) =b H£(Ίo\K).

Proof. Consider the following chain transformations:

ζ: Homb

G(B(G),A) -> TotK,

η: TotK ->Homb

G(B(G),A).

For / : Bn{G) -• A, ζf is an element in K°'n defined by

(ζf)(u)(b) = f(b),

for u in G/H, b in Bn(G). The homomorphism ζf has the same norm
as /, and therefore ζ itself is a bounded chain transformation. For h
of degree n in Tot K, h = (/zp,..., hn) is an (n + l)-tuple of bounded
homomorphisms, hi in Kι>n~ι. Define ηh, for (x0,..., xn) in B0(G),

{ηh){x0, . . . , x n ) =
/=o

The maps ηh and ?/ are easily seen to be bounded, and they satisfy the
identity ηζ = 1. The following is a bounded chain homotopy between
ζ and η.

Define *„: Xn -+ X ^ 1 , for / in X", u in BP(G/H), and α in ^ ( ( J ) ,

p + q = n, by

snf(u)(a) = (- l)q Σ f(uo> ---'Up' πa0,..., πai)(aif..., α )̂.
i=0

Thus ζ and A/ differ by the coboundary of a bounded (n - l)-cochain,
(ζη)* = 1, and the cohomologies of the complexes are bounded iso-
morphic. D

From the first spectral sequence, E'£q = H'?H"q(K). For fixed /?,

Kπδ'':
{ }

In the next result, restriction to the case when G/H is finite allows
us to obtain both the isomorphism and a bounded map.
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LEMMA 8. For G/H finite,

H"«{K) =b Homb

G/H(Bp(G/H),H«(Homb

H(B(G),A))).

Proof. Given a class JC in G"q{K), lift the class to fp in Kp * so that
fp = JC. Then send JC to / : BP{G/H) -+ Hq(Homb

H(B(G),A)), where
f[a) = fp{a). We will first show that this map is an isomorphism.

Suppose / = 0. Then fp(a) is actually δ"ha, for ha in

Yίomb

H{Bq_x{G),A)

and for all a. Now define G in Kpq~{ by

G{a) = ha.

We know G is bounded only because G/H is finite, and thus

Homb

G/H(Bp(G/H), V) = HomG/H(Bp(G/H), V),

δ"G(a) = δ"ha = fp(a).

So fp is in the Im<5": K**-1 -> K™, andfp=x = 0 in H"«(K). The
map is injective.

To show the map is onto, consider

/ : BP(G/H) - H§{Homb

H(B(G),A).

Now define fp in K™ by

fp(α) = s(f(α)),

where 5 is the bounded lifting for Hj](Homb

H(B(G),A). The class Jp

is sent to /, so the map is surjective.
The bounded nature of the isomorphism also depends on the finite-

ness of G/H. Let L = \\fp\\ in H"i(K), and let R = \\f\\ on the
right.

L = H/,11 = inf , sup \\fp(α) - δ"(g(α))\\,
qeKP"~> αeBp(GIH)

R= sup inf ||/(α)-<5"Λ||.
αeBp{G/H) heHomb

H(Bq,A)

First we will demonstrate that L < R. For all a in BP(G/H),
'vnϊδ,,h \\f{a) - δ"h\\ < R. So it is possible, given ε > 0, for each
a, to pick ha such that

Define G in K™~1 by
G(a) = ha.
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Here we use the fact that G/H is finite. Now look at the norm on the
left.

S a

The infinum over all g is less than or equal to values obtained plugging
in specific g in Kp>q~ι:

L<sup\\f(a)-δ"(G(a))\\
a

= sup\\f(a)-δ"ha\\<R + ε.
a

This is true for all ε, so L < R.
To show R < L, we again start by considering the norm R. For

each ε > 0, pick aε such that

mΐ\\f(aε)-δ"h\\>R-ε.

L = Msup\\f(a)-δ"g(a)\\.
8 a

Fix g and consider the supβ | |/(α) - δ"g(a)\\. Each g(a) is in

Homb

H{Bq-\(G), A), and the supα includes ae. Therefore,

sup \\f{a) - δ"g{a)\\ > \\f{aε) - δ"g{aε)\\
a

> inΐ\\ f{aε)-δ"h\\>R-ε.
δ"h

Since, for every g, supα \\f(a) - δ"g(a)\\ >R + ε,

L = infsup\\f(a) -δ"g(a)\\ >R-ε.
8 a

As a result, L > R; in fact we now know that L — i?, so the isomor-
phism is bounded. D

We state the following lemma without proof, for the isomorphism
is generated by a standard chain transformation easily seen to be
bounded.

LEMMA 9. Hg(Homb

H(B(G),A)) =b Hg(Homb

n(B(H),A))

For G/H finite, the previous lemmas allow us to assert the following:

H"*{K) =b HomG/H(Bp(G/H),H«(Homb

H(B(G),A)))

=b HomG/H(Bp(G/H),H«(H,A)).

Taking the cohomology of H"q p with respect to δ' yields the cohomol-
ogy of G/H:

=b HlpH'l(i =b
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Assume A has characteristic zero. Because G/H is finite, most of
the terms of the spectral sequence vanish and a useful isomorphism
emerges. The E'£*q term, for p > 0 and q > 0 is the cohomology of a
finite group with coefficients in a module of characteristic zero; thus
the term is zero. The only non-trivial E2 terms are on the fiber, and
all differentials are zero. Therefore,

τ?tθ,n _ τrfθ,n

LEMMA 10. E%n ^b H^{ΎotK).

Proof. By definition,

Cnl)FιXn

where Cn and Bn are the cocycles and coboundaries of degree n. The
isomorphism takes a class in E^n to a representative / + s, f in Cn

and s in FιXn, then to / in Cn/Bn. It remains to be shown that this
isomorphism is bounded.

In E'£n, the norm is calculated, for / = f0 Θ f\ Θ Θ fn,

I.= ||/ + ί|| = 11/11= jinf, \\f-δg-h\\
h€F'X"

= inf ( | | /o - δ"go\\ + H/, - δ'g0 - δ"gx - hx\\
δg,h

+ + \\fn-δ'gn-χ-hn\\).

For any δg we can choose h so that hi = -δ'gi^i - δ"gi. Then,

lnH"(ΊoiK),

R = 11/11 = inf \\f-δg\\.
δgeBn

Now recall that HP{G/H, Homb

H{Bq(H), A)) is zero when p > 0. The
homomorphism f = fo@--®fn is a cocycle, and thus δ'fn = 0. This
implies that /„ = δ'Gn-ι; since / = f - δGn-\ we can replace / by
Fι=h® ®(fn-\-δ"Gn-ύ.

Now F\ is a cocycle as well, so /Λ_i - δ"Gn-\ = δ'Gn-2 Replace
F\ by F2 = fo Θ Θ (Λ-2 ~ δ"Gn-2)- Repeat this procedure until left
with _ _

F = f0- δ"G0, where F = f.

R = 11/11 = I|F|| = inf H/o - δ»G0 - δ"g\\ = L.
S"g
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The isomorphism is bounded. D

Combining this result with Theorem 2 yields

Hξ{HΛ)G =b E%n =b H»(ΊotK) 9ίb H»(G,A).

We have proved the following:

THEOREM 3. For G/H finite, H^{HfA)G =b Hg{G,A).
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