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We consider a symbolic dynamical system (X, g) on a countable
state space. We introduce a kind of topological entropy for such sys-
tems, denoted /2*, which coincides with usual topological entropy when
X is compact. We use a pictorial approach, to classify a graph I" (or
a chain) as transient, null recurrent, or positive recurrent. We show
that given 0 < a < f# < o0, there is a chain whose /#* entropy is £ and
where Gurevic entropy is o. We compute the topological entropies of
some classes of chains, including larger chains built up from smaller
ones by a new operation which we call the Cartesian sum.

Introduction. The importance of subshifts of finite type in ergodic
theory and dynamical systems is well known. One needs also to study
chains on a countably infinite set in order to analyze problems in vari-
ous fields such as differentiable dynamics, coding for magnetic record-
ing, nonuniqueness of equilibrium states in statistical mechanics, for-
mal languages and automata, or even to analyze arbitrary subshifts.
(See [3], [9], [6], [2], [1], [10], respectively.)

Let I" be a strongly connected directed graph on a countable set of
vertices S = {s1,52,...}, and let

X(T) ={x € §%] for all i, there is an edge in I from x; to x;,}.

If S has the discrete topology and .S the product topology, then in the
induced topology X(I') (or simply X), together with the shift trans-
formation ¢ defined by (ox); = x;4; for all i, is a (non-compact)
dynamical system, called the chain determined by the directed graph
I'. The topological entropy of X may be determined using Bowen’s
definition, to obtain Agz(X) (see [8] for a definition). This definition
depends on the metric we put on X. We consider the following two
metric spaces.
1. For x, y € X define
) = 3 Lm0

!

where d(s,t) =1 if s=¢tand 0 if s # 7.
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2. Let S={1,2,...,} and define

dy(x, y) = Zzltl mm(x,,yz)

(we may use S = {1/n, n > 1} and define d,(x, y) = 3_; |x; — yi|/2I").
On the other hand and without reference to any metric, we may use
Gurevic’s definition (Gurevic, [4]), hg(X) = hg(T) = supprh(I7),
where the sup is taken over all (connected) finite subgraphs I" of I
(and A(I") is the usual topological entropy of the subshift of finite
type determined by I", the logarithm of the maximal eigenvalue of
the transition matrix).

Another possible approach, suggested by Gurevic [4], is to let S
be the one-point compactification of .S, and X the closure of X in
S°. Then X is compact, and we may define A.(X) to be the ordinary
topological entropy of (X, o).

Fix a vertex S in I" and define

B{") = number of paths of length » in I from s to s;

f{*) = number of paths of length » in I from s to s with no other

occurrences of s in between;

F(T,5,2) =Y f{"z"

B({I,s,z) =Y B{"z"

F'(T,s,z) =Y nf"zr1,

Let L1 and Rr be the radii of convergence of F(I', s, z) and B(I, s, z),
respectively (they are independent of s). We will abbreviate Ly by L
and Rr by R (generally, L, by L; and Rr, by R;).

Vere-Jones ([11], [12]) studied the classification of the graph I as
transient, null recurrent, or positive recurrent according to the follow-
ing table:

null positive

transient recurrent recurrent
F({T,s R) <1 =1 =1
F'(T',s,R) = 00 =00 < 0o
BT, s R) < oo =00 = 00
lim, .o B R" =0 =0 >0

Gurevic ([4], [S]) showed that if X is a connected chain with the
dy-metric, then hg(X) = h.(X); and if I" is a connected graph with
hg(I') < oo, then hg(I') = —log R.

The paper is organized as follows: In §1 we introduce a new def-
inition for the topological entropy of a symbolic dynamical system
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(X, @), which we call 4*. For a locally finite chain X, we show that
hg(X) = h*(X) when the d\-metric is used; and that Ag(X) = hg(X)
when the d)-metric is used. In §2 we consider a geometric or picto-
rial approach to classify chains as transient, null recurrent, or positive
recurrent. In §3 we show that given 1 < a < f, there exists a re-
current uniformly locally finite graph I" such that hg(I') = loga and
h*(I') = logB. If a« = B, then the I' that we construct is positive
recurrent. In §4 we consider some computation examples.

1. The A* entropy. Let (X, ) be a symbolic dynamical system with
countable state space S = {s1,5y,...}. If S is finite, then X is compact
and the topological entropy of X is given by 4(X) = lim, i log B(",
where B is the number of blocks of length # in X. Taking this
formula and applying it “formally” to symbolic dynamical systems
with infinite state space S, we will end up assigning the same value,
namely oo, to these systems. However, it is reasonable to consider
the rate of growth of the number of blocks in X starting with a fixed
symbol or generally starting with a fixed block. Based on this notion
we introduce a new definition for the topological entropy of (X, o),
which we shall call ~*, formulated as follows.

DEFINITION Let T(") be the number of blocks of length 7 in X
starting with s € S. The entropy of X relative to s is defined by

h*(X|s) = @ Llog T,
and the entropy of X is defined by
h*(X) =suph*(X |s).

seS

We observe that if X is a finite connected chain, then A*(X) =
h(X) = hg(X) = hp(X). Also, it is easy to see that if X is transitive,
then A*(X) = h*(X |s) for all s € S, and if X is a countable connected
chain, then hg(X) < A*(X).

A chain X is locally finite if the corresponding graph I satisfies: If s
is a state of I' then the number of arrows coming in and going out of s
is finite. The chain is uniformly locally finite if the number of arrows
coming in and going out of any state is less than some fixed number,
say m.

THEOREM (1.1). If X is a locally finite connected chain with the met-
ric dy, then h*(X) = hp(X).
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Proof. Let K be a compact subset of X. Then for every i, the
number of different symbols appearing in the ith place in X is finite.
For e = 27/, ry(¢, K) is the number of different blocks in K of the form
S_;--Sp+i- Let N_; be the set of symbols appearing in X in the —ith
place. Then ry(e, K) = 3 sy ra(e K), where r; (¢, K) is the number
of blocks in K of the form ss_(;_yy---s,4; and s € N_;. Since ry(¢, K)
is the sum of #{/N_;} nonnegative sequences, there is 5o € N_; such
that

r(e, K) =lim Llogr,(e, K) =Iim L logr (e, K) < h*(X).

Hence hp(X) < h*(X).

Now, since X is locally finite, for s € S, K; = {x € X |xy = s} is
compact. If ¢ = 27/, then r,(¢, T~'Kj) is the number of blocks in K
of the form ss_(i_1)---Sy+1, and h*(X |s) = lim L logr,(e, T~K;) <
hB(X) Thus, h*(X) < hB(X) a

The notion of the 2*-entropy may be extended to a general topologi-
cal space (not necessarily compact) and a homeomorphism 77: X — X
as follows. For an open cover o of X and a compact K C X let Ng(a)
denote the minimum number of sets in \/”2) T, needed to cover K,
and let HZ (o) = log NZ (). The entropy of T relative to o given com-
pact K C X is defined as h*(T, o; K) = lim, %Hg(a). The entropy of
T relative to « is defined as 4*(T, o) = supgcxy h*(T, o; K), where K is
compact. Finally, the entropy of T is defined as 4*(T) = sup, #*(T; o).
The following fact follows from a straightforward argument.

ProposITION (1.2). If X is compact, then h*(T) = h(T).

PrOPOSITION (1.3). If X is a connected chain with the d,-metric,
then hg(X) = hg(X).

Proof. Let K be a compact subset of X, r,(¢, K) = the smallest
cardinality of an (n, £)-spanning set of K, r(g, K) = lim, % logr, (e, K),
and hp(K) = lim,_or(e, K), so that hg(X) = supgx hp(K).

If X’ is a connected finite subchain of X, then Ag(X’) < hp(X);
hence hg(X) < hg(X). On the other hand, let X be the completion of
X in the dy-metric. Since (X, d) is totally bounded, (X, d,) is compact.
If X" is a compact subset of X, then X” is compact as a subset of X,
and hg(X") < hg(X) = h(X) = hg(X). Hence hg(X) < hg(X). D



TOPOLOGICAL ENTROPY 329

2. Classification of chains. In this section we present a criterion en-
abling us to decide if a connected graph I' is transient, null recurrent,
or positive recurrent. Our approach is geometric or pictorial in na-
ture, avoiding the computational and combinatorial problems usually
encountered. The idea is to relate the value of 45(I") to the values of
hg(I"), where I" is either a subgraph of I' or a graph containing I.
In general terms, our results on this question may be summarized as
follows: T is transient if and only if we can “expand” or “contract” I'
without changing A, T is positive-recurrent if and only if any “expan-
sion” or “contraction” of I" will change A in the right direction; and
I' is null-recurrent if and only if we can “contract” I" without changing
h¢ but any “expansion” of I" will increase 2. We prove the following.

THEOREM (2.1). (i) If Ty < Ty and hg(Ty) = hg(T), then Iy is
transient.

(ii) If I'y is transient, then there exists Iy > I'g such that hg(T'y) =
hg(T'y) and I'y is transient.

THEOREM (2.2). Let I'y be such that Ry = Ly. Then there exists
I' < Ty such that hg(I") = hg(Tp).

THEOREM (2.3). The following conditions for I'y are equivalent:
(i) I'y is positive recurrent.

(ii) Rg < L.

(iii) For allT'| < Ty, hg(T'1) < hg(T).

(IV) F(ro, S, Lo) > 1.

COROLLARY (2.4). If Ty is transient, then there exists I'y < I'y such
that hg(T'y) = hg(Ty) and T'y is transient.

COROLLARY (2.5). Iy is recurrent if and only if for all T, > T,
he(T'2) > hg(To).

COROLLARY (2.6). T’y is null-recurrent if and only if: (i) there exists
I'y < Ty such that hg(T'y) = hg(Ty), and (ii) for all T, > Ty we have
ha(T2) > hg(T).

Proof of Theorem (2.1). (i) Let s be a state in Iy and I';. Then
F(I'3,5,Ry) < 1. Since I'g < I'; and Ry = R;, we have F(I'y, 5, Rp) < 1.
(ii) Since Ty is transient, F(Ig, s, Ro) = ¥, fiWRE < 1. Hence,
for some m we can find a positive integer k such that k > f(™
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and 3, ., ff'RE +kRY' < 1. Let I'; be the graph obtained by adding
a loop of length (k — f{™) based at s to . Thus Iy < I', and
F(rz, S, Ro) < 1. Since R2 < Ro, then F(rz, S, R2) < F(rz, S, Ro) < 1,
and I'; is transient. To show Ry = Rj, note that Ly = L, and
R, < Ry £ Ly. If R, < Ry, then R, < L, and F'(T'y, 5 R;) < o0,
contradicting that I', is transient.

Proof of Theorem (2.2). For a state s in I'y, let Fol(s) = {s'| there
is an arrow from s to s’ in I'y}. Let 5o be a state in I'y such that
#Fol(sg) > 2. Let s* € Fol(sg), let I'; be the subgraph obtained by
removing the edge sos* from I'y, and let I';, be the subgraph obtained
by the removal from I'y the edges sos’, s’ € Fol(sg) — s*. Let i be such
that L; = min(L,, L;). Then Ry < R; < L; = L. Since Ly = Ry, we
have Ry = R; and hg(Iy) = hg(T;). o

Proof of Theorem (2.3). (i) If Ry < Ly, then F'(I'y, s, Ry) < oo and
I'y is positive recurrent. If Ry = Ly, then by Theorem (2.2) there is
I't < Ty such that R; = Ry. Hence by (i) of Theorem (2.1) I'; is
transient. Since F'(I'y, s, Ry) = oo and F'(I'y, s, Ry) < F'(Ty, 5, Ry), I
cannot be positive recurrent.

(i) We show that: T’y is not positive-recurrent if and only if there
is 'y < Ty, hg(I'y) = hg(Ip). So, assume that I'y is not positive-
recurrent, then by (i) above we have Ry = Lg; hence, by Theorem
(2.2) there is I'} < I'y such that 4g(I'y) = Ag(I'p). On the other hand,
if there exists I'} < I'g with hg(I";) = hg(I'p), then I’y is not positive-
recurrent as shown in the proof of (i) above.

(iii) Assume F(I'g, s, L) > 1. Since F(I'y, s, Ry) < 1, we have Ry <
L, and by (1) above I'y is positive-recurrent. If I'y is positive-recurrent,
then Ry < L. Since F(Ty, s, Ry) = 1, we have F (T, s, Ly) > 1. ]

Finally, Corollary (2.4) follows from part (ii) of the proof of Theo-
rem (2.3), Corollary (2.5) follows from Theorem (2.1), and Corollary
(2.6) follows from part (ii) of the proof of Theorem (2.3) and Corol-
lary (2.5).

3. Relation between /; and 4*. In this section we study the relation
between A and h* using the following class of countable graphs:

fa.. SRR
°o_-o., o
0o ™ \
[ ~—p O - 0 QO ——p0---
0 1 2 n n+1

o ry rz M
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Here: r; = the number of paths from state i to state i + 1, and /; =
the number of arcs between state i and state 0 (as shown above). A
graph of this form is indexed by two nonnegative integer sequences
{rn}, {In} and is denoted by I'({r,}, {/»}).

Let I’y be any connected countable graph (not necessarily of the
form above) and let s be a state of I'j. Define C{") = the number
of sequences ss;, ---s;,_, in I'g such that s; # s for j = iy,...,in—1,
and recall that ") = the number of sequences of length n in Iy that
start with s. Let C(Ty,5,z) =Y., C\"z", T(Ty, s 2z) = Y, T{Mz", and
Qo(A4p) be the radius of convergence of C(I'g, s, z)(T (Ty, s, 2)).

Towards proving the main result of this section, we use the following
Lemmas:

LeEMMA (3.1). For a connected graph 'y, we have
h*(T) = max{log @5, hc (o)}

Proof. Let s be a state in Ty. Then 7™ = Y7 B{*~)C{), and
Ao = min(Ro, Qp). Since h*(Ty) = log Ay, hG(I‘O) logRy!, the
result follows. m)

LEMMA (3.2). Let T'y({rn}, {ln}) be a graph with associated sequence
{C{M}. Then
(i) Iflim, L log [T}, r; = log B, then lim, L log C{" = log B.
(ii) A*(T'o) = max{log B, hs(I'o)}-

Proof. Letn; = i+ (i+1),i=0,1,2,..., andW, = [[*_,r;, i =
1,2,... (Wy = 1). To count the number of sequences of length k
in I’y that start with O, let Sk ={i=01,....,k—1|n; > k}, then
C§p = E,es W; and T{" = 0, B"IC). Noting that W, <
C{) < K | W, and lim, Llog [T, r; = lim, 1 log W}, = log B, then
lim, %log C(S = log 8. That shows (i) and (ii) follows by Lemma
(3.1). O

LEMMA (3.3). Let m < x < (m + 1). Then there is a sequence {r,}
such that
(1) m=morm+1,
(ii) for all n:

rn.[risxn < <m+1)ﬁri’
i=1 i=1
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and
(iii) lim, ilog[ir,r; =logx.

For a graph 'y ({r,}, {/n}), let W, = T[], r;, and let ¥} be the radius
of convergence of the series ), W,z". Then by Lemma (3.2) we have

LEMMA (3.4). For To({rn}, {ln}), if Lo = W), then hg(I'y) = h*(Ip).

LEMMA (3.5). ForTo({ra}. {ln}), if lim, L log[I%, r; = log W, ! and
{l,} is bounded (say by k), then Ly = Wy and hg (o) = h*(I'p).

Proof . Note that f{" < 3> (W, hence Wy < Lo. To show that

Ly < W, consider the sequence {n; |/, # 0}. Then for every j we
(n)+1n))

have f, ' " > Wy, hence
hmllogfo ;) > EnjnilOg W, =logW; !,
j "
and Ly < W,. By Lemma (3.4) we have hg(I'g) = h*(T). |

LeEmMMA (3.6). Let I'o({r,},{l,}) be such that {r,} is a special se-
quence satisfying the conditions of Lemma (3.3) and {l,} is bounded
(say by k). Then hg(I'y) = h*(I'y) and I'y is positive recurrent.

Proof . As before consider the sequence {n;|/,, # 0}. Then for
every j we have
(ny+n))
fo
x

(nj+1) W,,j

Ryl —

and

W,,_H < f,

i=1

By (ii) of Lemma (3.3), we have W, /x™ > m/(m+1) > 0. Since {/,}
is bounded, we have

X ny+n,

hence F(Iy, 0, x~!) = co. By the proof of Lemma (3.5) we note that
Lo = x"', hence F(Iy, 0, Ly) = co and by Theorem (2.3) Iy is positive
recurrent. 0

We consider two examples. The first shows that positive recurrence
and equality of 4z and A* can happen without {/,} being bounded.
The second shows we may have positive recurrence with A < h*.
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ExAMPLE (3.7). Let I'o({r»}, {{»}) be given by

- T—
N :
O’/\ N N \
[} > 0 > O > O Q =
° L, L, 2 5, 3, noy

Thatisr, =2foralln>1land/,=n+1,n=0,1,2,.... I may
be “represented” in a locally finite form by I’y as follows:

|
°© 2 1T 2

(These two graphs have the same values of /s and 4*.)

Note that Ly = 1/v/2 and F(T'y, 0, Ly) = co. Thus, by Theorem (2.3)
Iy is positive recurrent. Also F(Tp,0,4) = 1, hence hg(Ip) = log2.
Finally, since W, = 1, then by Lemma (3.2) 4*(Ty) = log 2.

ExAMPLE (3.8). Let I'y ({r,}, {/»}) be the same as the I'; in Example
(3.7), except with the loop based at 0 removed. Again by the same
argument as in Example (3.7), I'; is positive recurrent. Since I'; < T,
then by Theorem (2.3) hg(I'y) < hg(I'y) = log2. By Lemma (3.2),
h*(T'y) =log2.

THEOREM (3.9). Given 1 < a < B, there exists a recurrent uniformly
locally finite graph T'y such that hg(Ty) = loga and h*(I'y) =logB. If
o = f, then the I'y that we construct is positive recurrent.

Proof. Let m < p < m+ 1, and choose a sequence {r,} satisfying
the conditions of Lemma (3.3) with g replacing x. We construct the
kth partial sum, Sj, for the loop series of I'y as follows: Let n; = 1
and set S;(a) = 1/a < 1. Let n, be the smallest integer such that

n
Sh(a) = Si(a) + o < 1.

Note that n, > 2. Assuming that we have ny < ny <--- < ng, let np
be the smallest integer such that

k

<1
Skr1(a) = Si(a) + —E',;‘kifl <1,

and note that n; | > n;.
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We construct Iy as follows: Let [y = 1, and /; = n; — i, i =
1,2,.... Then I'y is the graph indexed by the sequences {r,}, {/,}, and
is denoted by I'g({r,}, {/n}).

Let S(x) = limy_  Sik(x). Note that S(x) is the loop series for
the graph I'g({r»}, {/x}), and S(a) = 1. To show that h;(Ty) = loga,
let Ry be such that hg(Ty) = logR;'. Thus F(I',0,07!) = 1 and
F(y,0,Ry)) < 1. Hence Ry < o~!. If in fact Ry < o~!, then we
must have F(Ip,0,Rg) < 1. In this case I'y is transient, hence by
Theorem (2.3) Ry = Ly < o~!, contradicting that L, is the radius of
convergence of the loop series. Hence Ry = o~ ! and A (Iy) = loga.
By Lemma (3.2) we have #2*(I'y) = log f. Note that if o« < S, then
by Lemma (3.5) {/,} is not bounded, hence I'y may be constructed
to be a locally finite graph as shown in Example (3.7). Also {/,} is
monotone nondecreasing. To show that I'j may be constructed to be
uniformly locally finite, we show that if for some i we have /; = [;, 7,
then (1 + T) < a(m + 1)/m. Equivalently, if for some i we have
niyr=n;+T,then (1+7T)<a(m+1)/m.

Let T be the greatest integer such that n;,7 =n;+7 = 1+7T. Then

! ]'[, LN m 1 m
S‘+T(a)_a+"'+ al+T = (m+ 1) +—(T(m+l))'
Since S,.7(a) < 1, we have (14+T) < a(m +1)/m.
In general, let £ be an integer such that n;,; > n; + 1, and T be
the greatest integer such that n; .7 =ng + 7. Then

k+T
H,lrx_l__ I i Hll"z

oM+ ok+1+T ank+1 -1

Hence, (1+ T) < a(m+1)/m.

Let d be the greatest integer such that d < (m + 1)/m. Then, by
construction, {/,} is monotone nondecreasing with the property that
it cannot stay constant for more than d consecutive times. Then, by
using the same idea as in Example (3.7), it is easy to see that I'y may
be constructed to be a uniformly locally finite graph.

Finally, we show that if o« = f# then I'y is positive recurrent. Note
that for every n we have

fI W)
. n+
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Thus

log fén+1ﬂ)

—1 e
LogL, = 11’511 n T

1 l
=_—— 1 -1 =1 —Cl-
1_*_CogW ,  where C ll—,,mn
Thus we have Ly = W}/(I+C). Now, for every n we have I, > n/d,
C =lim,(l,/n) > 1/d > 0, and Wj < L. Since a = B, Ry = Wy, we
have Ry < Ly and I' is positive recurrent. O

This result shows that in the Countable-alphabet case, 4z and A*
can be anything, unlike the finite-alphabet case, where the possible
entropies are exactly the Perron numbers (see [7]).

4. Computational examples. In this section we present some com-
putational results of the topological entropy for certain classes of ex-
amples of chains. Consider a chain X over Z x Z with the following
transitions: (xj, ¥;) — (X, y2) if either x = x; £ 1 or y; = y; £ 1.
We picture X as follows:

!
!

!

O— O— O
1
e O —> Q= O -
!
O— O«— O

!

We compute the entropy of some subchains of X whose states are
contained in some nice region of R2. The following result will be used
in the computation.

Let X be a chain with state space S, and f: S — C. Let f, be the
corresponding map of X generated by f and Y = f(X). For every
n>1,let BX(n,s) (BY(n,c)) be the set of n-blocks in X (Y) starting
with s € S (¢ € C); and let f, be the corresponding n-block map
generated by f. For B € BY (n,¢) let f;7!(B) = {B'| B' € BX(n,s) and
/n(B') = B}.

With these notations we have:

PROPOSITION (4.1). Let X and Y = f(X) be connected chains. If
for i = 1,2 there exists c; € C and s; € f~1(c;) such that
(i) for every n > 1, f,(BX(n,s,)) = BY(n,c,), and
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(ii) {#f,1(B)} is bounded as B varies over all blocks in Y starting
with c,, then h*(X) = h*(Y).

Proof. For s € S and ¢ € C, let Ts(n) (T/(n)) be the number of
blocks in X (Y) starting with s (¢). Then

R R — 1 .
h*(Y) = hrrln % log T, (n) < llr{n; log 7},(n) = h*(X).
On the other hand, if the bound on #f,,!(B) is k, then we have

B*(X) =T+ log T, (n) < T ~ log(k - T4 (m)) = h*(Y). O

REMARK (4.2). Proposition (4.1) holds for the following two more
general cases:
(i) f is an m-block map of X.
(ii) X and Y = fo(X) are both transitive symbolic dynamical sys-
tems.

EXAMPLE (4.3). Chains contained in the domain D(m,n, w). Let
D(m, n, w) be the domain in R? bounded by two parallel lines of slope
m/n with horizontal distance w. We assume that one of these lines
passes through (0, 0). Let I'(m, n, w) be the largest subchain of X con-
tained in D(m,n,w). To compute the A*-entropy of I'(m, n, w), we
note that it consists of a “fundamental” finite chain Iy which repeats
itself periodically in an obvious way giving I'(m, n, w). I'y may be cho-
sen to include the states (x, y) in I'(m, n, w) such that y = 1,2,..., m.
Let ¢ be the number of states in I’y and consider the following ordering
or labelling of these states by 1,2, ..., ¢ as follows: (x, y1) < (x3, y») if
¥1 = y; and x; < X, or y; > y,. If we repeat this labelling periodically
in an obvious way to cover all states of I'(m, n, w), we obtain a one
block map, f, from the states of I'(m, n, w) to the set {1,...,c}. The
map f generated by f gives a finite chain I'z(m, n, w) over {1,...,c}
and f satisfies the condition of Proposition (4.1). Hence we have
h*(T'(m, n,w) = h*(Tp(m, n, w)).

For example consider I'(1, 2, 2):
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the fundamental chain is given by o__o__o and may be labelled by 1,
2 and 3. I'r(1,2,2) is given by

2
Fﬂhlﬂtﬂz_gh

(o]
V3

—o0

In general, the transition matrix for I'(1, », w) is given by the (w+1) x

(w + 1) matrix J{"),, where

JMW(ij)=1 ifli—jl=lornw>n>1
We note that for w < n, h*(I'(1, n, w)) = 0. Also, for n = 1, we have
Jij)=2 forli—j]=1.

Computation of Ag for I'(m, n, w) is generally harder. If we like to
compute s; from the definition, then we should be able to identify
hg for suitable subchains of I'(m, n, w). This may be easily done in
two cases: I'(1, 1, w) and the infinite vertical rectangular strip denoted
here by I'(1,0, w).

EXAMPLE (4.4). hg for T'(1, 1, w). Consider the chain I';(1, n) given
by
e i N
Iy(1,n): %N/ %\_/. ' '\._/no_pA—/ ?-,

Let I';j(n®m) be the Cartesian product of I';(1, n) and I';(1, m). That
is, I';(n®m) is the chain over {1,...,n}x{1,..., m} with the following
transitions: (xj, y1) — (x2,¥2) if x; —» x; in I';(1,n) and y; — y; in
I'y(1,m). If T, and T,, are the transition matrices for I';(1,n) and
I';(1, m), respectively, then T,g, = T, ® T), is the transition matrix
for I';(n ® m) (in some order of the state space of I';(n ® m)), and
he(T;(n @ m)) = hg(Ty(1,n)) + hg(T;(1,m)). Note that I';(n @ m)
is the disjoint union of two chains, and the entropy of I';(n ® m) is
the maximum of the entropy of these two chains. Since any finite
subgraph of I'(1, 1, w) is contained in a component of I';((w + 1) ® m)
for some integer m, we have

hg(I'(1,1,w)) = log <2 x 2 cos wit{-Z) .

An application of Theorem (2.1) shows that I'(1, 1, w) is transient.
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ExXAMPLE (4.5). hg for I'(1,0,w) and the Cartesian sum of two
chains. The chain I'(1, 0, w) is given as

«>

0 0 o ... 0
! ! !
0 « 0 ... 0
(0,0) (1,0 (W -1,0)
In order to compute 4g(I'(1,0, w)) we find an easy way to compute the

topological entropies of some finite rectangular chains, that is chains
of the form

(1Lm) (2,m) (n,m)
0 &« 0 ... 0

! ! !

(') Aand (‘) > ... & 6
! ! !
(L)  (21) (n,1)

This is done using an idea we introduce as follows. Let I'; and I',
be finite chains with state space U and V respectively. We define the
Cartesian sum I') &1, to be the chain over U x W with the following
transitions; (¥, vy) — (#3,v2) if uy > up inI'y and vy = vy or vy — v,
in I'; and u; = u,.

Let T} and T be the transition matrices for I'; and I', respectively.
Order U x V according to the following: (uy,vy) < (4a, v,) if vi < v,
or v; = v and u; < u,. According to this order, the transition matrix
TofI''@l,isgivenby T =T1® 1, + 1, ® T>. The matrix T satisfies
the following two properties: (1) The eigenvalues of T are given by
a+ B where a and g are eigenvalues for 77 and T3 respectively, (2) the
eigenvectors of T are given by X ® Y, where X and Y are eigenvectors
for T, and T, respectively.

Now, the finite rectangular chain given above is in fact I';(1,n) ®
I';(1, m) and is denoted here by I';(n®m). It follows from the previous
discussion that

hg(T')(n ® m)) = log (2cosn Z i + 2cos m7-tl— 1).
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Direct application of the definition of A yields:
/4
he(T(1,0,w)) = log (2 + 2c0s 2 2) .

REMARK (4.6). Let D be a region in R? such that D contains arbi-
trarily large rectangles, and let I'p be the largest subchain of X con-
tained in D. Then Ag(I'p) = log4. We also note that for any region D,
we have h;(I'p) = h*(I'p), as indicated in Petersen [9]. We note that
the computation for the entropy of I'p, where D is a region bounded
by two parallel lines of irrational slope, is hard. We feel that the meth-
ods introduced here are not going to work in this case. One possible
approach may be through studying the continuity properties of A* or
hg.

Finally, the entropies of the following examples may be computed
by first constructing chains which factor onto them. For details see
[10].

EXAMPLE (4.7). The sum-bounded systems X(n, m). Consider the
closed shift-invariant set

K
X(n,m)= {{xi}‘i%o |xi=+1,-n<) x<m,
1=k

k and K are integers and n, m > 0} i

Then for n, m > 0, the system X (n, m) is sofic with topological entropy

h(X(n, m)) = log (2 cos m) .

ExXAMPLE (4.8). The sum-bounded-above systems X (—oo, m). Con-
sider the system X (—o0, m), where

K
X (00, m) = {{xi}?fwm =+ x<m
1=k

k and K are integers and m > 0} X

Then A(X(—oo, m)) = logx*, where x* is the largest root of the
equation (1 — x)fin41(x) + fn—1(x) =0, and

fu(x) = (=)™ [mzm(l ( ) —2k,
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EXAMPLE (4.9). The sum-bounded run-length-limited systems
X(n,m;Lk). Let x € {~1,1}% and B, = x| ---X, be an r-block in
x. If x; =--- = x,, then B, is said to be a run of length r of x. B,
is a positive (negative) runif x; =---=x, =1 (x;=---=x, = -1).
A subblock B of B, is said to be an end run for B, if B, = x; --- x; B,
and B is a run of maximal length, that is B is a run by x;B is not a
run.

For n, m, [ and k positive integers we define

X(n,mylLk)={x={x}*]x; =x1,n < the length of a
positive run in x < m, [/ < the
length of a negative run in x < k}.
Then, h(X(n, m;l k)) = logx*, where x* is the largest root of the
equation E;’:,‘,ﬁ, a;/x' =1 (see Petersen [9]), and the a;’s are given as

follows:
Let M =min((k —/)+1,(m —n) +1). Then

i—-(n+D)+1 ifn+l<i<(n+1)+(M-2),

a1 M if(n+)+(M~-1)<i<(m+k)—(M-1),
U @i i (mAk) = (M =2)Si<m+k
0 otherwise.
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