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Let X be a relatively compact complex subspace of a hermitian
manifold N with hermitian distance dN. Let Q be a bounded do-
main with C1-boundary in Cm . A holomorphic mapping / : Q —• N9

/ ( Q ) c X, is called a normal mapping if the family {foy/: y/: A —• Q
is holomorphic}, A := {z e C: \z\ < 1}, is a normal family in the
sense of H. Wu. Let {/?„} be a sequence of points in Q which tends
to a boundary point £ e dQ, such that limn—oo dN(f(pn)J) = 0 for
some / E X. Two sets of sufficient conditions on {pn} are given for a
normal mapping / : Q —• X to have the non-tangential limit value /,
thus extending the results obtained by Bagemihl and Seidel.

1. Introduction. In [2], F. Bagemihl and W. Seidel posed the follow-
ing question: Given a sequence {zn} in the open unit disc A converging
to some £ £ dA and a meromorphic function / : A —• P\ (C) such that
]imn-¥OOf(zn) = c for some c e P\{C), under what conditions on /
and {zn} can / have the limit c along some continuum in A which
is asymptotic at £? They answer this question with two interesting
sufficient conditions on / and {zn}.

In this paper we extend their results to the higher dimensional case.
First we shall introduce a few terminologies.

Let Q be a bounded domain with C1 -boundary in Cm. Then at each
C G dQ, the tangent space 7j(dQ) and the unit outward normal vec-
tor z/j are well-defined. We denote by C7j(dQ) and O j the complex
tangent space and the complex normal space, respectively. The com-
plex tangent space at £ is defined as the (m - 1) dimensional complex
subspace of Tc(dQ) and given by CTc(dQ) := {z e Cm: (z,w) = 05

Vu; E Ci/C}, (z, w) = Yf/Li ZjWj.
We say that a subset S c Q is asymptotic at £ e dO if 5ndQ = {£}

and non-tangentially asymptotic at £ if 5 c Fa(C) for some a > 1,
where

(la) r a (C):={z€O: |z-C|<a<J f (z)} ,
(lb)
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and p denotes the euclidean distance in Cm. In particular, a curve
y: (0,1) -> Q is non-tangentially asymptotic at £ if y(t) e Ta(Q for
some a > 1 and all t e (0,1), and lim,_i_ y(t) = £.

Let iV be a connected paracompact hermitian manifold with hermi-
tian metric h^ which induces the standard topology of N. By d^ we
denote the distance function associated with IIN.

By Hol(Q, N) we denote the space of all holomorphic maps / : Q. ->
iV. We say that a mapping / e Hol(Q, iV) has an asymptotic limit I
at C £ #Q along the curve y in fl, write limy9z_>f f(z) = /, if y is
asymptotic at £ and limr_>i_df#(/(y(£)),/) = 0, a raaf/a/ limit I at
C if lim£_>o+ dN(f(C - ev{),l) = 0, a non-tangential limit I at £ if
limra(f)3Z_f dxifiz), /) = 0 for every a > 1 and an admissible limit I
at C if lim^(£)3z_^ dN(f(z), /) = 0 for every a > 0, where

(2) Aa(Q :={zeQ: \(z - ff i/c)| < (1 + a)Jc(z)f |z - C|

Let M be a connected complex manifold of dimension m. We
assume that M is hyperbolic, i.e., the Kobayashi pseudometric KM is a
metric. Denote the infinitesimal Kobayashi metric by KM> According
to H. Royden [10], the Kobayashi metric 1CM is the integrated form
of KM • M is hyperbolic if and only if for each p G M, there exists a
neighborhood t/p and a constant a^ > 0 such that

KM{q.Z)>au\Z\ for(q,£)eUxCm.

DEFINITION. A mapping / e Hol(Af, iV) is called normal if the
family {/ o y/\ y/ e Hol(A, M)}, A is the unit disc in C, forms a
normal family in the sense of H. Wu [11].

We remark that the definition of normality adopted here does not
require M to be homogeneous and coincides with that of [7] when M
is homogeneous and N is compact [1], [6]. Therefore, it is a slightly
more general notion than that of [7].

2. Preliminary properties of normal mappings. Let X be a relatively
compact complex subspace of a hermitian manifold N. We shall de-
note by Hol(M, X) the space of all holomorphic maps f:M^N with
f(M) c X.

LEMMA 1. Let M be a hyperbolic manifold and let X be a relatively
compact complex subspace of a hermitian manifold N with hermitian
metric hN. The family F c Hol(M, X) is normal in the sense ofH. Wu
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if for each compact subset E c M there exists a constant C(E) > 0
such that

(3) Qf(p):- sup ""VW-f™ < C(E)

for all peE and all feF.

Due to the compactness of X, the proof of Lemma 1 can be carried
out in the same way as that of Lemma 2.7 of [7]. Therefore, we omit
the proof.

THEOREM 1. Let M be a hyperbolic manifold (not necessarily
homogeneous) and let X be a relatively compact complex subspace of
a hermitian manifold N. The following statements are equivalent for
feHol(M,X).

(a) / is normal.
(b) There exists a constant Q > 0 such that

Qf:=sup{Qf(p):peM}<Q.

(c) There is no P-sequence {pn} in M possessed by f, i.e., there
is no sequence {qn} in M such that Mmn->oo kM(pn,qn) = 0 but
Hindoo dN(f(pn),f(qn)) > e for some e>0.

Proof, (a) => (b): Assume that {/ o y/: \// e Hol(A, M)} is a normal
family. By Lemma 1, for each compact E c A, there exists a constant
Q = Q(E))> 0 such that

(4) hN(fov{0),(fo¥)'(0))<Q

for all y/ e Hol(A, M). By the definition of KM at (p, £) e M x Cm,
there exists y/ e Hol(A,M) such that ^(0) = p, i//'(0)a = £ for a > 0
and a/2 < KM(p,£) < a. Therefore, from (4),

hN(f(p),df(pK)<2QKM(p,£)

for all (p, £)eMx Cm. Namely, Qf < 2Q.

(b) => (c): If (c) fails to hold, then there exists a sequence {pn}
and {qn} in M with lim^oo kM(pn, qn) = 0 but timdN(f(pn),f(qn))
> e for some e > 0. It contradicts (b), because (b) implies that
dN(f(Pn)J(qn))<QkM(Pn,(ln)-

(c) => (a): If (c) holds, then for every e > 0 there exists a 6 > 0 such
that for all z,w eA, kA(z, w) < d implies dN(f o y/(z), f o y/(w)) < e
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for all i// E Hol(A,M), since otherwise there exists an e > 0 such
that for all n e N there exist sequences {zn} and {wn} in A with
k±{zn,wn) < I/n but dN(f o y/(zn), f o y/(wn)) > e for some y/ e
Hol(A, M). This means that {zn} is a P-sequence for / o y/m Since

kM{v(zn)> Viwn)) < k&(zn, wn) < l/n -+ 0,

{y/{zn)} is also a P-sequence for / in Af which contradicts (c). There-
fore, {/ o i//: if/ e Hoi (A, M)} is an equicontinuous family and hence
normal since X is compact. This proves (a).

Theorem 1 is also proved in [6] for compact N and in [3] for N =
the Riemann sphere.

3. Boundary behavior of normal mappings.

THEOREM 2. Let X and N be given as in Theorem 1, and let Q
be a bounded domain with C1 -boundary in Cm. Suppose that S is an
arbitrary asymptotic continuum at £ edQ such that

( 6 a )

where r(i/(z)) denotes the radius of the largest ball in Q n CTU(Z), cen-
tered at v{z), the orthogonal projection of z to Cv^ and CTU^ is the
hyperplane through u(z) that is parallel to CT^dQ). Iff e Hol(Q, X)
is a normal map such that lims^^f ^ ( / ( z ) , /) = 0 for some / G I ,
then limra(f)Bz_>f dxifiz),I) = 0 for alia > 1.

Proof. By the definition of r(u(z)), QnCr i / (z) contains the euclidean
ball B(v(z), r(v(z)))\cT,,{=), the restriction to CTv^zy

The distance-decreasing property of the Kobayashi metric implies

(7) l]z-U{Z^

and hence, as S 3 z —> £, r\ := z/(z) —> £ along u(S) := {v{z): z e S}
from (7). Since / is normal, by Theorem 1, there exists a number
Q > 0 such that

(8) dN(f(z),f(v(z))<QkQ(z,v(z)).

Therefore, l i m ^ s ) ^ ^ */#(/(*/)> /) = 0- Let fij be the connected com-
ponent of fin O f with C G 9Q^. Then the restriction / | Q C is a normal
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map from the plane domain Q^ into X. Therefore, it follows from
Theorem 4 of [5] with a slight modification that

lim dN(f(ri), /) = 0 for all a > 1,
f ( C ) C

where f a(Q := Ta(Q n O j . The rest of the proof can easily be carried
over from the proof of Proposition 8.2 of [7] to this case with X
replaced by d^.

COROLLARY 1. Let X and N be given as in Theorem 1 and let Q
be a bounded domain with C2-boundary in Cm. Let S be an arbitrary
asymptotic continuum at £ EdQ such that

(6b) lim 4

Iff e Hol(Q, X) is a normal map such that l im^^f dN(f(z), /) = 0
for some I eX, then

lim dN{f{z), /) = 0 for all a > 1.
r ( C ) 3 c

Proof Since Q is a bounded domain with C2-boundary in Cm,
there exists an e = e(Q > 0 such that the euclidean ball Be: =
B(C-ev£, e) is contained in Q and tangent to dQ at £ from inside. The
order of tangency in this case is not worse than along the admissible
region Aa given in (2). In fact, there exists a constant C > 0 such that

for z eS. See Example 1 of [4], Therefore,

Cp(z,CvC)]2 \z-v(z)\2 p\
r(i/(z)) J - K-i'tol " P(zXTc)'

Corollary 1 now follows from Theorem 2 or directly from the Proof
of Proposition 8.2 of [7] with minor adjustments.

We now prove the following extensions of the results given in [2].

THEOREM 3. Let X and N be given as in Theorem 1. Let Q be a
bounded homogeneous domain in Cm and let {pn} be a sequence of
points in Q which tends to a boundary point £ e dQ where the outward
normal v^ exists, such that

(a) there exists a constant M> 0 with kQ(pn,pn+i) < M for all n,

n - o
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If f e Hol(Q, iV) is a normal map which omits I e ~X in Q but
dN(f(pn), /) = 0 then

lim dN(f(z),l) = O for all a > 1.
f ) 3 c

Proof Let (pn G Aut(Q) be such that <pn(Po) = Pn for some fixed
point po G fi. Then the family {gn}, gn = f°(pn> omits / for all n and
forms a normal family, since / is normal.

For R> M, let Bk(pQ,R) := {p eQ: ka(p0, p) < R}. Since Q, is
homogeneous, /CQ is complete and, hence T3k(po,R) is a compact sub-
set of Q. So, {#„} has a subsequence {gm} which converges uniformly
on Tik to # G Hol(Q, JV). Since each ^m omits / on Bk, by the Hur-
witz theorem [8], either g(z) ^ / or g(z) = / on Bk(p0,R). But since
dN(gm(Po),l) = dN(f(pm),l) -> 0, ^(z) = / for all z G Bk(p0,R).
This implies that / (z) = / for all z G Bk{pm,R) and all m, i.e.,
/(z) = / on |J~=i Bk(pm,R). Since

.i/(P«)) < tanh"1 | P 7 " ^ 7 } I - 0

as n —• oo, there exists mo such that for all m>m$ k^{pmi v(pm)) < R
which implies v{pm) e Bk(pmiR) for all m > mo- Let 51 := O j n

o

Then condition (6a) in Theorem 2 is trivially satisfied and also
_>f dN(f(z), I) = 0. Therefore, we have

for all a > 1 by Theorem 2.

THEOREM 4. Let X and N be given as in Theorem 1. Let {pn} be
a sequence of points in a bounded domain Q c Cm which tends to a
boundary point £ G dQ, where the unit outward normal v^ exists such
that

n—+oo
(a) lim

n+oo

0,)

Iff G Hol(Q, X) is a normal map such that limn_*oo ̂ ( / ( p « ) , /) = 0
for some I G X, then lirar^Q3z^ rf^(/(z), /) = Ofor all a > 1.
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Proof. Let {qn}, qn = v{pn)> be the orthogonal projection of {pn}
to Ci/f. Then

(10) kQ{qn,qn+i) <kQ(pn,pn+i)

so that kQ(qn,qn+\) —> 0 as n —> oo. Let y be a curve in QnCi/f joining
qn and #„+! by shortest curves. Since ICQ is an inner metric, such curves
exist for sufficiently large n. Since / is normal, by Theorem 1, there
exists Q > 0 such that

(11) dN(f(pn),f(qn))<Qkn(pn,qn).

Therefore, condition (b) together with (7) implies

limodN(f(pn)J(qn)) = 0,

and hence,

(12) limdN(f(qn),l) = 0
n—*oo

by the triangle inequality. We wish to show:

(13) lim dN(f(z),I) = 0.
y 3 £

Suppose there is a sequence {qf
n} on y converging to £ for which /

fails to have the limit /. By the compactness of X there must be a
subsequence {qf

m} such that

(14) \imJN{f{q'm),l') = 0

for some / ' G ! , / ' / / . We may assume that q'm are all distinct from
the points qm. For each m, there exists an index nm such that q'm lies
on the geodesic segment of y that joins qHm and qnm+\- By (10),

q n m + l - > 0

as m —• oo. Since / is normal, for some Q > 0 we have

dN(f(qnm)J(Qr
m)) < QMdn^q'm) - 0

as m —• oo. From this and (12) we conclude limm_00 dN{f(ql
m)t 1) = 0,

contradicting (14). Therefore we have (13). Since condition (6a)
of Theorem 2 holds trivially in this case, Theorem 4 follows from
Theorem 2.

We remark that if the domain Q in Theorems 3 and 4 is assumed
to have C2-boundary, then both theorems hold when condition (b) is
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replaced by

( b 0

in both cases.
Introducing the notion of hypoadmissible limit, J. Cima and S.

Krantz have proved the Lindelof Principle for normal meromorphic
functions on domains in Cn with C2-boundary in [3]. The author
wishes to thank the referee for pointing this out to him.
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constants for Legendre series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157
John Brendan Sullivan, The Euler character and cancellation theorems for

Weyl modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Pacific
JournalofM

athem
atics

1988
Vol.135,N

o.1

http://dx.doi.org/10.2140/pjm.1988.135.1
http://dx.doi.org/10.2140/pjm.1988.135.17
http://dx.doi.org/10.2140/pjm.1988.135.29
http://dx.doi.org/10.2140/pjm.1988.135.29
http://dx.doi.org/10.2140/pjm.1988.135.65
http://dx.doi.org/10.2140/pjm.1988.135.81
http://dx.doi.org/10.2140/pjm.1988.135.89
http://dx.doi.org/10.2140/pjm.1988.135.89
http://dx.doi.org/10.2140/pjm.1988.135.111
http://dx.doi.org/10.2140/pjm.1988.135.111
http://dx.doi.org/10.2140/pjm.1988.135.157
http://dx.doi.org/10.2140/pjm.1988.135.157
http://dx.doi.org/10.2140/pjm.1988.135.189
http://dx.doi.org/10.2140/pjm.1988.135.189

	
	
	

