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ON A THEOREM DUE TO CASSELS

Jost M. Souto MENENDEZ

Using properties of one-dimensional formal groups, a proof is given
of a theorem on the valuations of the torsion points of elliptic curves
defined over p-adic fields.

1. Introduction. The aim of the present note is to give a proof of
Theorem 5, due to Cassels, on the valuations of the torsion points
of an elliptic curve defined over a local field K of characteristic zero.
Cassels’s proof relies on the addition formulas for the Weierstrass p
and g’ functions. The one given here follows from the properties of
the torsion points of one-dimensional formal groups defined over the
ring of integers of K.

The reader could also look at Oort [5] for another approach to
Cassels’ theorem.

2. Torsion points of formal groups. In the following we denote by K
a local field, finite extension of the field @, of p-adic numbers, with
ring of integers A; we assume that the normalized valuation v of K
is extended to the algebraic closure K of K. We denote by px (resp.
px) the maximal ideal of A4 (resp. of the valuation ring of K), and by
e = v(p) the ramification index of K/Qp.

Let F be a one-dimensional formal group of finite height # > 1,
defined over A4; as usual (see [3]), for each a € Z, we denote by
[al(X) € A[[X]] the unique endomorphism of F such that [a](X) =
aX + ---. The group of points F(pz) of F with values in X has a
structure of a module over Z ,, by means of the operation a-x = [a](x),
a€Zy, x € F(pg); F(pk) is a sub-Zp-module of F(pg).

Let [p](X) = Y2, a;X* (a; = p) be the “multiplication by p” in
the formal group F; setting ¢ = p*, one has q; epg ifi=1,...,q —
1 and v(a;) = 0. We shall be interested in the valuations of the
torsion points x € F(pg). The most convenient thing is to consider
the Newton polygon of the series [p](X), that is the lower convex
envelope of the points (i,v(a;)) € R? (i > 1).

If Pp=(1,e), P, =(q1,€1),...,Pm = (g, 0) are the vertices of such a
polygon (where e; = v(a,,)), the slopes are the negative of the numbers
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) = (e—el)/(ql - 1),...,am = em_l/(qm —qm_l) (a1 >ay > >
am). If ¢ <r < gjyy (fori =0,...,m~1), for any x € px one
has v(a,x") > inf(v(a,x?), v(a,,, x%+)); moreover, if r > g,, = g, for
X € pg, v(arx") > v(agx?). Therefore, for any x € p¢ with [p](x) =0,
there exists i = 0,..., m — 1 such that v(a,x%) = v(a,,,x%), so that
v(x) = a;41. Moreover (see Koblitz [4]) the number of roots x € px
of the series [p](X), of valuation o;,1, is ¢;11 — g;.

LEMMA 1. With the above notations, the q; are powers of p.

Proof. Foreachi=1,...,m, the set

{x € Flpg) |[Pp1(x) =0, v(x) > a;}

is an elementary abelian p-group (with the operation given by the
formal group law F); as its order is (g¢; — gi—1) + -+ (q1 — 1) + 1, the
lemma is obvious.

PROPOSITION 2. For any x € pg, one has

~-if v(x) < am, then v([p)(x)) = qu(x),

-if ajy1 < v(x) < o, then v([p](x)) = e; + q;v(x),
-if a1 < v(x), then v([p](x)) = e + v(x).

Proof. For x € F(pg) such that v(x) < am, then for any r # g =g,
v(agx?) < v(a,x"). In fact, when r > g such a relation is obvious
(since v(ay) = 0); when r < g, one may write

v(x) < am = (v(ag,_,) —v(a4))/(q — gm-1)
< (v(ar) —v(ag))/(g 1),
hence v(azx?) < v(a,x").

Ifaj, <v(x)<ea;(withi=1,...,m-1), then for any r # ¢;, one

has v(a,x%) < v(a,x"). In fact, for r > g; this relation comes from
v(x) > (0(ag) — v(@q.,))/ (@is1 — @) = (V(ag) ~v(@))/(r - 43
for r < g;, it comes from

v(x) < (v(dq.) — 0(8g))/ (@i — @i-1) < (v(@) - v(ag)/ (@i ~ ).
The case v(x) > a; is discussed similarly.

REMARKS. (1) If v(x) = a;, [pl(x) # 0 (for i = 1,..., m), arguing
as above, one gets v([p](x)) > e; + g;a;.

(2) For i > aj, x — [p](x) induces an isomorphism F(pk) —
F (pj;f ¢) (of course, we denote by F(p%) the set p} with the group
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structure given by the group law F). The injectivity comes from the
fact that in p3 the zeros of [p](X) have valuation < a;. To show
the surjectivity, let IT be a uniformizing parameter of K; we have
to see that if y € pg is such that v(y) = i +e > a; + e, there is
x = I1*¢ (¢t € A) such that [p](I1*¢) = y; now, the series

Haln+e( —y 4+ pII"T + @I T? + ... )
has coefficients in 4 and Weierstrass degree one, so the result follows
from the Preparation Theorem for power series.

(3) If F is the multiplicative group, the Newton polygon of [p](X)
only has one slope. Proposition 2 gives then the well-known effect of
“raising to the pth power” in the group of principal units of the local
field X (or of any of its finite extensions).

PROPOSITION 3. F(pk) is a Zp-module of finite type, whose rank
modulo torsion is [K: Qp). The torsion subgroup is a finite p-group.

Proof. For each i > 1, let us denote, as above, by F (pk) the abelian
group on the set pj with the operation given by (x,y) = F (x, y); of
course, F (p’,) is a Z,-submodule of F (pg). It is trivial that p’ x/P¥ i+l
Fpi)/Fpg!).

The filtration F(pgx) O F (p}() D -.- is separated and produces
in F(pg) the p-adic topology (if i is large enough, one of the re-
marks shows that pF(p%) = F (p’+" )). According to a well-known
lemma in commutative algebra, the finiteness of F(px) as a module
over Z,, follows from the finiteness of F(pg)/pF (pk), a quotient of
F(px)/F(pi€) = F(px)/PF (p) for i large enough.

Taking again i large enough so that F(p k) is torsion free, hence free,
its rank is the same as dimg (F (p%)/pF (p%)) = dimp, (F (pk)/F (p}));
since (F(pk): F(piF®)) = pl&:%], the proposition is clear.

PROPOSITION 4. Let x € F(pg) be a torsion point of order p". Then
v(x)<e/p(p")=e/p"'(p-1).

Proof. From Proposition 2, it is obvious that for any x € F(pg),
v([pl(x)) = v(x); therefore, if v(x) > a;, x is not a torsion point.

One proves the proposition by induction on r. If x is of order p,
v(x) <ay=(e—e)/(q1—1) <e/(p—1) (by Lemma 1). If x is of
order p" (r > 1), then v(x) < a; and v([p}(x)) < e/p""%(p — 1), by
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the induction hypothesis; again by Proposition 2,
v(x) < ay = v([pl(x)) = pv(x),

so v(x) < v([pl(x))/p < e/p""}(p - 1).

REMARK. Sometimes, one can be more precise about v(x). If the
height of F is & = 1, the Newton polygon has only one slope and
all the points of order p have valuation e/(p — 1); in this case, if
x € F(pg) is of order p” (r > 1), v(x) =e/p""!(p - 1).

If the height of F is & = 2, there are two possibilities for the Newton
polygon. If there is only one slope, the points x € F(py) of order p”
have exact valuation v(x) = e/ p2('~1(p2 — 1). If there are two slopes,
one cannot say more than in Proposition 4.

3. Cassels’s theorem. In the following theorem, E denotes an ellip-
tic curve defined over the local field K, given by a minimal Weierstrass
equation

(X) VI+aixy +asy = x3 + ayx? + asx +ag

(a; € A). We write E(K) for the group of points of E with values in K;
E(K) is an abelian group in the usual way, taking the point at infinity
(0,1,0) of E as zero element. Notations are the same as in Tate [6].

THEOREM 5. Let (x,y) € E(K) a torsion point of E. If the order
of (x, y) is not a power of p, then x,y € A. If the order of (x,y) is
p" (r > 1), then

v(x)>-2e/p" ' (p-1), v(y)>-3e/p" ' (p-1).

Proof. By reducing the equation (X) of £ modulo the maximal ideal
of A, we get the equation of a cubic E defined over the residue field
k of K. The set E,s(k) of nonsingular points of £ with values in k is
a group, and one has the exact sequence

0 — Ey(K) — Eo(K) — Ens(k) — 0;

here Ey(K) denotes the subgroup of the elements of E(K) that reduce
to the nonsingular points of E, and

E(K)=0U{(x,y) € E(K)|v(x) < -2, v(y) < -3}

is the kernel of the reduction map.
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One knows that there is a formal group law F defined over 4, and

an isomorphism N
Ey(K) — F(px),

(x.y) — -x/y
Such a formal group F is isomorphic to the additive one if E has bad
reduction and the singularity of £ is a cusp, and of height one or two
in the other cases; in the first case, F(pg) is of course torsion free,
and in the other ones, the only possible torsion is p-torsion. In these
cases, if z € F(pg) has order p’, v(z) < e/p"~!(p — 1) (Proposition
4); since we have for the corresponding point (x, y) € E;(K)

gz ' -ay—---,

1

X =2z

y=-z""X,

we get v(x) = —2v(z) 2 -2¢/p" ! (p - 1), v(¥) > ~3¢/p" (P - 1).
The theorem is proved taking account of the fact that

E(K) - E\(K) = {(x,y) € E(K)|x,y € 4}.

COROLLARY 6 (Nagell-Lutz). Let E be an elliptic curve defined over
Q, given by a minimal global Weierstrass equation of the form (X) with
the a; rational integers. Then the torsion points of E(Q) have integer
coordinates, with one possible exception: there could be a unique point
of order two of the form (a/4,b/8), with a,b,€ Z.

Proof. For each prime number p, we denote by v, the p-adic val-
uation of Q (extended to Q,). Since we have E(Q) C E(Q)p), we can
apply the last theorem.

If (x,y) € E(Q) is a torsion point whose order is not a power of
any prime number p, then x,y € Z, for each p,so x,y € Z.

If the order of (x,y) € E(Q) is p” (p prime, r > 1), then for each
prime [ # p, X, y € Z;; moreover

vp(x) 2 =2/p" "N p-1), v(y)>-3/p"(p-1),

so x,y € Zp unless, perhaps, p" = 2,3,4. If p" = 3 or 4, again
X,y € Zp, since X,y ¢ Z, implies v,(x) < -2, v,(y) < -3.

So we are only left with the possibility of points of order p" = 2;
if (x,y) € E(Q) is one of those points, x,y € Z, for each / # 2
and v,(x) = -2, v3(y) = —3; then (x, y) should belong to the kernel
E;(@,) of the reduction of £ modulo 2. Looking at the power series
[2)(X) = 2X —a; X2 - 2a,X3 + - -, we find that, in fact, if the formal
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group F associated to the model (X) of the curve E is of height one
in Zy (<= a, ¢ 2Z), there exists in E(Q,) a unique point of order
two whose coordinates are (a/4, b/8), a, b € Z,; such a point may or
may not be in E(Q).

REMARK. As shown in the proof, one has to study the possibility of
a torsion point of order two in E(Q) only when E has ordinary good
reduction or split multiplicative reduction at 2.

4. Appendix. If P = (x(P),y(P)) € E(Q) is a torsion point of
order different from two of the curve E given by the equation (X)—
where the a; € Z—we know that x(P), y(P) € Z, and so P verifies
the hypothesis of the following proposition.

PROPOSITION 7. Let A be the discriminant of the curve E. If
P = (x(P),y(P)) € E(Q) is a point with integer coordinates such
that 2P = (x(2P),y(2P)) has also integer coordinates, then
(2y(P) + a1x(P) + a3)*|A.

Proof. We only sketch it. We write, as in [6],

by=a}+4ay, by=aia3+2a4 bs=ad}+4a
by = atas — a a3y + 4azas + axa3 — a2,
A= —b22b8 - 8b2 - 27b62 + 9by b4 bg.

Multiplication by two, E LE , 1s given by a formula

2(x, y) = (x2, y2)

where x; = u(x)/f(x), with w(T) = T* — byT? — 2b¢T — bg and
f(T)=4T3 + byT? + 2b4T + bg; one has discs3(f(T)) = 164, and the
relation

16u(T) — f'(T)? +4(8T + by) f(T) = 0.
One verifies, with the notations of Bourbaki [1] (Ch. IV, §6),

Resy 3(16u(T), f(T)) = Resa 3(f'(T)? = 48T + by) f(T), f(T))

= Resy 3(/(T)?, f(T)) = [Resp,3(f'(T), f(T))PP
= 16(disc; f(T))? = 2!12A%;

therefore, Resy 3(u(T), f(T)) = A2,
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On the other hand
Resq 3(u(T), f(T))
1 0 0 4 0 0 O
0 1 0 b, 4 0 O
— by 0 1 2b, b, 4 O
=|—-2bg —by 0 b¢ 2by b, 4
—by —2bg —-by O bg 2bs by
0 —bg —2bs 0 O bg 2by4
0 — bg 0 bg
0 0 4 0
0 0 by 0
— by 0 1 2b,4 b, 0
=| —2by —by 0 be 2b, b, 4
— by —2bg —by 0 bg 2by b,
0 —bg —2bg 0 0 b 2b,
T*w(T) Tw(T) wT) T*f(T) T>f(T) Tf(T) f(T)

= —48AT?u(T) — 8b,ATu(T) + (b3 — 32b4)Au(T) + 12AT3 £(T)
— byAT?f(T) — 10b4ATSF(T) + (bybs — 27b6)Af(T);

here we have developed the last determinant by the last row, and made
systematic use of the relation 4bg = bybg — b3.
Therefore,

A = (—48T? — 8b,T + (b3 — 32b,))u(T)
+ (1273 — byT? — 10b4T + (bybs — 27b6)) f(T).

Now, if P = (x(P),y(P)) € E(Q) and 2P = (x(2P), y(2P)) have
integer coordinates, as u(x(P)) = x(2P)f(x(P)), we get

f(x(P))|A.
Since y? 4+ a;xy + asy = x3 + a,x? + asx + a5 implies
2y + a1x + a3)? = 4x3 + byx? + 2bsx + bg = f(x),

the proposition is proved.
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