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IRREDUCIBILITY OF UNITARY PRINCIPAL SERIES
FOR COVERING GROUPS OF SL(2,k)

COURTNEY MOEN

This paper establishes the irreducibility of certain unitary principal
series representations of covering groups of SL(2, k), where k is a p-
adic field, with p odd.

0.1. The theory of automorphic forms on covering groups of reduc-
tive groups over number fields has been shown to have important arith-
metical applications [5], [3]. It is thus natural to study the representa-
tion theory of covering groups over p-adic fields. The representation-
theoretic results which seem to be most applicable to automorphic
forms are those concerning the reducibility of non-unitary principal
series. The main results concern GL(#) and have been established by
Kazhdan and Patterson [3]. In this paper we undertake the study of
the unitary principal series by establishing complete reducibility re-
sults for n-sheeted covering groups of SL(2, k), where k is a p-adic
field containing the nth roots of unity. For ease of exposition, we
assume p is odd. The proof uses a detailed analysis in the Fourier
transform realization. This procedure is well known, but carrying out
the details in the general case is rather involved. In particular, a care-
ful study of matrix-valued Bessel functions is necessary.

The main result of the paper states that when 7 is even, all unitary
principal series are irreducible, and that when n is odd, the only re-
ducible ones are those induced from non-trivial characters of order 2
of k*. The reducibility results in the case of n odd follow from [6];
the proofs here deal with the irreducibility. These results can easily
be applied to establish the reducibility of certain unitary principal se-
ries of covering groups of p-adic Chevalley groups. A more complete
study, however, requires a completeness theorem like that proved by
Harish-Chandra for reductive p-adic groups.

1.1. Let k be a p-adic field. Let n be a positive integer and assume

k contains the nth roots of unity. Let (, ) be the norm residue symbol
of degree n. Let G = SL(2, k). There is a covering group G defined as
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follows [4]: if o = (*5) € G, put

x(a)—{c if ¢ #0,
“ld ifc=0.

For 6,7 € G, put B(g,7) = (x(0), x(1))(=x(6)"'x(1), x(07)). G is
the set {(0,7)|0c € G,y € Z/nZ}, with multiplication defined by
(01, 71)(02, 2) = (0102, 11728(01, 02)).

We will assume in this paper that p # 2 and that p does not divide
n. Let & be the ring of integers in k, P the prime ideal, and U the
units in &#. Let U™ = {u™ |u € U}. Let g be the order of the residue
class field, 7 a prime element of k, and ¢ a (¢ — 1)st root of unity in k.
Let x be a character of k* with conductor #. We take {1,¢,...,&""!}
to be representatives for U/U". Let { = (e, 1), |x| the absolute value
on k, and v the additive valuation. Once we fix n, we will let (, ),
be the norm residue symbol of degree m, where m # n, whenever the
symbol is defined.

Let N = {(o7)|x €k}, 4 = {(§ %) |a € k*}, and B = NA. Let
N, 4, B be the inverse images of N, 4, B in G with respect to the
canonical surjection G — G.

1.2. Let u be a character of k*, and let @ be a character of Z/nZ
of order #. We will write 6(y) = y!, with ¢ and n relatively prime.
LetAo_{(( ) y) € A|v(a) = O(n)}. Put k5‘={xekx|u (x) =
O(n)}. Then A~0 = k¥ x Z/nZ. Characters of Ay are thus of the form
Bo((8.2,). 7) = O(Pua)

Suppose first that # is odd. Then the induced representations ji =
IndA  flo are irreducible n-dimensional representations. We will use the
exp11c1t matrix realization of i obtained by choosing as representatives
for A/ Ay the set {1,r~!,...,r~ =D}, where r = ((619,), ). If % =
((2.2.),7) € 4, with u(x) = j(n),j € {0,1,...,n — 1}, the matrix
fi(%) is of the form [J &, where C and D are respectively jx jand
(n—j) x (n— j) diagonal matrices. In the (i, k)th place of ji(X), where
i—k =—jorn— j,wehave jig(ri-1xr-%+1),

Now assume that n is even. Let 4! = {((2,2.).7) € d|v(a) =
O(n/2)}. Each character of 4y can be extended to A! in two ways.
Choose x = ((%.2,),7) € A'. The two extensions of a character of A
defined by 6 and y are:

ey = { BOKE fxed,
0(7)0((x, 7))"20((z, 1)) *au(x) if x € 4' - Ay,
where o? = 6((z, 7))"/4.
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We obtain irreducible representations ji = Ind}, jil of dimension
n/2, and we will use the matrix realization corresponding to the rep-
resentatives {1,7~1,...,r~(®/2=D} of 4! in 4.

For each n, whether odd or even, we obtain in this way all finite
dimensional representations of A~ . We extend these to B and form the
principal series (T3, H) = Indgﬁ. H; consists of all locally constant
functions ¢: G — Cdim E satisfying ¢(nxg) = |x|i(%X)p(2), where 7 €
N and % = ((§,2).7) € 4. Each function ¢ in Hj is determined
by the function x — ¢((19),1). These are functions on k, so we
take Fourier transforms and obtain a realization of T}; in a space of
functions we denote by I%ﬁ (for details see [6]). The action T,—, of Gon
fcﬂ is given by:

(5 o) 7)ro=taa((§ 2).r) s,
fi((5 1)01) S0 =x-os 0,
(% 9

[ [ ) ) (e 5) sy

1.3. In this paper we will study only the principal series Tj; coming
from unitary characters u of k*. We will determine which of these
are irreducible. The element w = ((%¢),1) = (w,1) of G acts on
representations 2 of 4 by i¥?(%) = j(Wwxw-!). An application of
Bruhat theory [1] shows that if i and ¥ are not equivalent, then T}
is irreducible. We will now determine which i satisfy g% ~ ji.

Suppose first that n is odd and 6 is fixed. Then

_((x O _fo if x & (k*)",
trace”((o x")’y) ‘{lz’-e(y)y(x) if x € (k*)".

Therefore, i1, ~ i, & u(x) = up(x) for all x in (k*)". Also,

cwf(f{x O _ ((x1 0
trace i ((0 x_,),y)—traceu(< 0 x>,y),
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SO jl ~ i¥ < u?(x) = 1 for all x in (k*)*. The characters u which
satisfy this property are those of the form u(x) = (a, x),(&'t/, x),, for
i,j€{0,1,...,n— 1}. But there are only four inequivalent ji coming
from these characters. They are the ones coming from the characters
u(x) = (e, x)3, for a € {1,¢,1,€e1}. It thus suffices to consider these
four characters.

Suppose now that 7 is even and 0 is fixed. Then

(R

[0, ifxg kN2,
- { 2ab(y)0((x, 7)) (1, T)"2u(x) if x € (k*)"/2,

Therefore, ji; ~ ji; € p1(x) = pz(x) for all x in (k*)*/2, and j* ~
it & u?(x) =1 for all x € (k*)"2. The characters u for which this is
true are those of the form u(x) = (¢‘t/,x) for i,j € {0,1,...,n—1}.
If p1(x) = (ek7!, x) is another of these, then i ~ ji; < i = k (mod2)
and j = / (mod2). It thus suffices to consider the four characters
u(x) = (o, x) for a € {1, ¢, 1!, et'}. It will prove more convenient to
consider (¢, x) than (7, x).
We can now state the main result of this paper.

THEOREM 1. Let u(x) = (a,x)y if n is odd, and let u(x) = (a, x) if
n is even, where o € {1,¢,1',e1'}. Then

(@) If n is odd, T} is irreducible if a = 1.

(b) If n is even, T} is irreducible for each a.

REMARKS. (a) It is also true that if n is odd and u(x) = (e, x);
for a € {¢, 7', et'}, then T} splits into a direct sum of two irreducible
representations. This follows from the results of [6].

(b) Since the result is well known when #» = 1 or 2, we assume in
the rest of this paper that n > 2.

1.4. We will assume in the rest of this paper that if n is odd, u = 1
and if n is even, u(x) = (a, x), a € {1,¢, 1, et'}.

Suppose that 7 is an intertwining operator for T~ Since I commutes
with all the operators 7;((1 9), 1), I is given by an End (C4im2)_yalyed
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function a(x) on k*. Since I commutes with all T((%,2,), 1), we have

(5 2)-)0)(5((5 2) )
> awbda (5 2) 1) £
12 (5 ) 1) a0s e

=>a(x-2t)=a(<’(§ x(zl),l)—la(t) ((0 x‘ll) 1).

Since I commutes with 7;(w, 1), we have

(I Ta(w, 1)£)(2) = (Ta(w, DIF)(?)

sa) [ [a((§ 1)) x(ux+5) rooanty
=[[a((§5 ) 1) x(we+ %) aoseans

= Jy(u,v)a(u) = a(v)Js(u,v) forallu,v €k”,

Jp(u,v)=/ﬁ(<)(; x91>,1)x(ux+—;) ]‘%

_ 1.5, We will now establish some results for later use. Any II €
k* has associated to it a p-adic gamma function I'(IT) and a p-adic
Bessel function Jpj(u, v) [7]. For y € k*, I'(y) will denote I'(IT), where
II(x) = (,x). If y € k* and u € k*, J4(u,v) will denote Jy;(u, v),
where I1(x) = (y, x)u(x). If u = 1, we will simply write J, (u, v).

where

LEMMA 2. Let Ug = (1/n) E,’:;é (kT (ut™, v), where u,v € U.

@Ifm=-1,U=Uy=—q,Uy=---=Uy_; =0.

O Ifm=0Uy=Uy1=1-¢g, U= =U,2=0U; =
gL,

(c) Ifme {1,2,...,”—3}, U =Uppy-1 = —q"l, Uy=Up-m =
Up-myr == nm1=1-q¢L Uy=Us=--=Upp»=0.

(d) Ifm=n-2U,= —2q‘1, U=U=U3=--=Up1 = l—q'l

(e)Ifm=n—-l, U0=U1=1—2q'1, Uy=.--= n_1=l—q‘1.
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Proof.
n—1

Ji(ut™, v) + Z T (ut™, v)
k=1

=(m+1)—qg '(m+3)

n—1
+ Y Rk, v (e ) + (675, ur™I(e%)] [4, p. 69],

k=1
—(m+1)— g '!(m+3)
— 1 C -m 1 - _lc_k
+ZC [ 4> i k—————l({_gk ]

-(m+1)— ‘1(m+3)

n—1
gks _ Cks 1) Ck —s—m) _ICk(—s—m—-l)
+Z[T-T i e A ]

Applying the identity

1 ok ﬂ‘_z%i_t_‘l fl<j<n—1,

1-¢k ) n-1
2

-

=1 ifj=0;

we obtain the result.

Recall that each II € k* can be written II(x) = IT*(x)|x|®. If II
is ramified of degree 4 > 1, then I'(IT) = cp.g*@1/2) [7]. Suppose
uU(x) = (&'t/, x)|x|* is a ramified character. Then

T(u) = {'C(e)g> ',

where C(7/) = (1/, t)cy-.

LEMMA 3. Let R; = (1/n) Z,’;;(l) 8 T irs (ut™, v), where u,v € U
and j # O(n).

(@) Ifs=1and m+2+# O(n), Ry = C(z~/)qg~1/2.

) Ifs=1andm+2=0(n), Ry =q~2C(z=/)+ (7, ut™)C (7).

(c) If s # 1, then R; = 0 unless s + m + 1 = O(n), in which case it
equals (t=J, ut™)C(1/)q~1/2.
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Proof.

1 n—1
—ZC‘kstk,,(utm,v)
0

n
n—1
- % E (R, v)T (e 177) + (e~ %1/, ur™)T'(ek /)]

= LS bk (od, ) Cleiyg 2

T n
k=0

+ {7 (e uem) R C (g

n—1
= (7, 0)C(x)g 20 3 ke
k=0

n—-1
+ (‘t—j, u,tm)C(.[j)q—l/Z_nl_ Z C—k(s+m+l).
k=0

2.1. In Part 2 of this paper we assume that n is odd and u = 1.
We will prove that T} is irreducible. The first step is to construct
the matrix J;(u,v), for u,v € U. If x € k* and v(x) = s(n), for
s€{0,1,...,n—1},then i1((} %), 1) is a matrix with non-zero entries
only in places (i, j), where i — j = —s or i — j = n—s. The (i, j)th
entry is (x, 7)'(+/=2), We thus obtain

Ja(,v) = Z/Zc ks(gk | p) M, ()% (uy+ )r;}l

where M;(y) is the n x n matrix with (y, 7)!i*J=2) in place (i, j), for i—
J = —s or n—s, and zeros elsewhere. Given i, j, and the corresponding
s, we thus obtain in the (i, j)th place of J;(u, v) the term

I/ZC (€%, x)(x, 7)!(+/=2) (ux+ )Tixl

15
—ZC" ekgia—i—n (U, V)

n

= ;l. Z C—ksJEkT—z(ZH:—Z)(u, ’U).

k=0
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Lemma 2 shows that for 2i+s5—2 = O(n), (1/n) X525 { T (u, v)
is non-zero only if s = 0, 1, or n — 1. The contributions to J;(#, v) in
this case are thus 1 —g~1in (1,1), —¢g~lin ((n+1)/2, (n +3)/2), and
—q~lin ((n+3)/2, (n+1)/2). Lemma 3 shows that if 2i+s—2 % O(n),

-1

1 n

;l- z :C—ksllgkt—l(lws-l)(u, ’U)
k=0

[ = (+1@-0,0)C(@@-D)g-12 s =1,i% 2F]

2 b
) ﬁi — (.[t(2i—-3)’ u)C(T—t(Zi—3))q—-1/2 ifs=n-1,

., n+3
1792,

| 0 in all other cases.

We set a(y11)/2 = Bn+3)2 = —¢~'. We have thus shown

LEMMA 4. Foru,v € U,

'l—q‘l op 0 O B
By 0 a O 0
0 B 0 as 0
0 0 B 0
Ja(u,v) =
0 a,-1
L Qpn ﬁn 0 J

with a; and B; given above.

2.2. In this section we begin the proof that if n is odd and 4 =1,
any intertwining operator of 7T}, is scalar.

PRrOPOSITION 5. a(1) is scalar.
Proof. Using the relations established in §1.4, we have that

wr=a(§ 8)) (5 2)-)

and that
Ja (8‘2", 1) a(e=2) = a(1)J (=%, 1).
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Combining these equations, we see that a(l) commutes with
Ju(e~ 2k, 1)( (8(;@9&) 1)-1fork=0,1,...,n—1. a(1) thus commutes

with 1
n— k -1
_ -2k o ((E O
M—IgJﬁ(s ,1)u((0 8_k),l) .

Using the formulas for J;(e=2%, 1) we derived above, a calculation
shows that the matrix M has only three non-zero entries. They are:
My =1-q7!, My, = C(1")q7 /%, and M,; = C(z™")g™ /%,

Writing a(1) = (a;;), the equation Ma(1) = a(1)M implies that for
2<i<n-1, wehave a;a,; = ajn = a;; = 0.

We now use the equation a(1)J;(1, 1) = Jz(1, 1)a(1). Notice that
Bi = a;— for 2 < i < n and that g; = a,. Also, @; = a,-;;; and
ajop_jip1 =q 1 forl <i<n.

Equating the first rows gives:

(1) ap = axn,

(2) 0nQy) = A1pQp,

(3) aj=0 for3<j<n-2,
(4) Q14,51 = Gp—1Q1,

(5) (1- q—l)aln + Qndnp = A1 0.

Equating the ith rows, for 2 < i < (n — 3)/2 gives:

(6) Qii = jy1,i+1s
(7) 081 n—i = Bin—iGn—i,
(8) ai+1,;=0 forj#i+1,n—1i

An inductive step is necessary here.
Equating the (n — 1)/2st rows gives:

+1

9 Ani1))2.j = :
Equating the (n + 1)/2st rows gives:
(10) @n(n-1)/2,(n-1)/2 + ¥n+1)/2¥(n+3)/2,(n—1)/2

= A(n+1)/2,(n+1)/2%(n-1)/2»
(11) Q(n—1)/28(n—1)/2,(n+3)/2 T Un+1)/28(n+3)/2,(n+3)/2

= Q(n+1)/2,(n+1)/2%(n+1)/25

n + 1 n+ 3

(12) An+3)2, =0 1if j# 3
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Now we start at the bottom row and proceed upwards. Equating
the nth rows gives:

(13) Ann = Ap—1,n-1,
(14) ap-1,;=0 forj#2,n-1,
(15) Gp-1an-12 = An101-

Equating the ith rows, forn — 1> i > (n+ 5)/2 gives:

(16) ai_l,j=0 forj#i-1,n—i+2,
(17) @181 ,n—i+2 = On—it1in—i+1
(18) Qji = Gj_1,i-1-

An inductive step is also necessary here.
Using (1), (6), (13), and (18), we obtain

(19) an=ayp =-+=dp-1)/2,(n-1)2 and
A(n+3)/2,(n+3)/2 = *** = Qnn-

We also have

(20) a;; =0 unless j=iorj=n—i+1

Using (15) and (17) gives

(21) Anl = G(n43)2,(n—1)/28(n+3)2(c1) .
Using (14) and (17) gives

(22) A1n = A(n-1)/2,(n+3)/201 (@(n43)2) "
But (2) implies

AUn(n+3)/2 _ An+3)20n O(ni3))2
= an = —1=q

(23) agm-1)/2,(n+3)/2 =

oy ajan, an M
_ (5(n+3)/2)2a 2 ni)rz = An+3)/2 , i
BT e L e O XL

Recalling that ay; = a(n—_1y/2,(n—1)2, (10) implies that

_ Ont1)/2

24 an—a = ——
(24) 1= G /22 = 75 T

A(n+3)/2,(n—1)/2
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Recalling that A(n+3)/2,(n+3)/2 = Qnn, (11) implies that

Q(n-1)/2
Q(n+1)/2

(25) A(ni1)/2.(n+1)/2 — Ann = A(n—1)/2,(n+3)/2-

Adding (24) and (25) and employing (23), we get

(26) aj; —any = [—a("“)/z + Hn=1)/2%(n+3)/2
Qn-1)/2  Xn+1)/20(n+3)/2

_ a7 =a D +a7!

(=g Veni3)2

_(g' -1

Q(n+3)/2

] A(n+3)/2,(n—1)/2

A(n+3)/2,(n—1)/2

A(n+3)/2,(n-1)/2-

Using (5) we find that

_ 1-¢7!) o

27 ay —a l1-¢g 1a"’=( Ap—

(27) ay1 = ann = ( ) P G VG TE
_1=a

T oe3))2

A(n+3)/2,(n—1)/2-

Comparing (26) and (27), we see that a(,.3)/2,(n-1)/2 = 0; implying
that

Qn) = Ap-12 = = Q(n+3)/2,(n—1)/2
= Qn-1)/2,(n+3)2 = " = Bn-1 =A1n = 0.

This implies also that a;; = a,,. Recalling (19) and (20), we see that
a(1) is scalar.

REMARK. For small values of n, of course, the above proof is not
precisely true, but the same method applies to these special cases.

2.3. In this section we complete the proof that T} is irreducible.
It suffices to show a(x) = a(l) for all x € k*. Since a(x™%) =

A((5.2). D-'a@)a((F,2). 1), it suffices to show a(e) = a(1) for
a € {g, 1), er71}. If Jy(e, 1) is invertible, then we have a(a) =
Ji(a, 1)~ a(1)Jz(e, 1) = a(1). We therefore proceed to calculate the
determinants of the J;(a, 1).
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LEMMA 6. detJ;(e, 1) # 0« n=3(4) or q # 3.

Proof. We showed in Lemma 4 that

1-¢7! o O B T
B 0 o
0 B 0
Ju(e, 1) = where
0 a,—-1
277} ﬁn 0

a; = C(Tt(Zi—l))q—l/Z if i # (n + 1)/2’ ﬂi = C(r"<2i—3))q"/2C"(2"3)
if i #(n+ 3)/2, and Q(n+1)/2 = ﬂ(n+3)/2 = —q‘l. An easy calculation
shows that
(n—1)/2
detJy(e, 1) = (- 1)(n b /2(1 - —1) H a2 B2i+1 +Ha1 + Hﬂz
i=1 i=1 i=1
Using the values for a; and §;, we obtain [Jo; = [[ 8 = —¢~*~V/2,
Now consider the remaining term. a(,.1);2 appears in this product if
and only if B, 3)/; appears, and this happens if and only if (n + 1)/2
is even. If (n 4+ 1)/2 is even, we thus obtain (—1)(1 — g~1)g(-"-1/2,
If (n + 1)/2 is odd, we get ¢{~"*1)/2, Combining the three terms, we
find that if (n 4+ 1)/2 is even,

det (e, 1) = (=1 — g~")gt=n=D/2 _ 3g(~1=n)/2
— q(—3—n)/2 3q ~1-n)/2 _ q(—3-—n)/2(l _ 3q) # 0.
If (n+1)/2 is odd,
detJy(e, 1) = (1 — g~ 1)gl=r+1/2 _ 24(=n-1/2
= g=m+D/2 _ 3g(=n=1/2 — g(=n+1)/2(] _ 341y,

which equals zero < g = 3. If ¢ = 3, however, the field cannot contain
an nth root of unity for any » > 2, and we are not concerned with the
case n = 2.

We now construct the matrices Jﬁ(uf—l, 1), for u € U. We must
consider the sums

-1
1 n
-ﬁ kZO C-ksJekT—l(Zl+s—2) (u‘t'l , 1 )

If 2i + s — 2 = O(n), Lemma 2 shows that the sum is non-zero only
if s = 0 or 1. The contributions to J;(ut~!, 1) in this case are —g~!
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in (1,1) and ((n + 1)/2,(n + 3)/2). If 2i + s — 2 # O(n), Lemma
3 shows that the sum is non-zero only if s = O or 1. If s = O, it
equals B; = (7!2-2), u)C(¢*2i-2)g~1/2 for i £ 1. If s = 1, it equals
Q; = C(Tt(zi_l))q—l/z for i # (n + 1)/2 We set A(n+1)/2 = B = —q“‘.
The a; occur in places (i, j), for i — j = —1 or n — 1, and the B; occur
in places (i, ). We have thus shown:

LEMMA 7. Forue U,

f1 o O 1
0 B o
0 0 B
Ja(ut™1,1) =
Bno1 an—y
LOp 0 ﬂn J

with o; and B; given above.
LEMMA 8. detJy -1 1) = —2qC""D/2 £ 0,

Proof.. A calculation shows det J;(ut~!, 1) = [T}, a;+I]}, Bi- Sub-
stituting the values for o; and f§;, we obtain the result.

Letting u = 1 and &, we see that a(t~!) = a(er~!) = a(1). This
completes the proof of the first part of our main result.

THEOREM 1(a). If n is odd and p = 1, T} is irreducible.

REMARK. Let Jy(x, y) denote the Bessel function attached to the
trivial character of the field. It seems likely that for m > —1 and
n=1Q2m+4), detJ(ur™, 1) = ¢-**V/2J (ur™, 1), where u € U.
Lemmas 6 and 8 show this to be true when m = —1 and 0. Additional
calculations show this is so for m = 1 and 2 and for some cases when
m = 3 and 4. The restriction on 7 is necessary, as the following results
show.

(@ If n=3(6)and n > 3,

detJ;(ut, 1) = 2¢C0"92[g2 + 1 — 6g — g(z + 2)],
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where
n-3/3

z = H [C(Tt(61+1))C(T—t(6l+2))(1t(61+2),u)];
1=0
(®) If n= 5 (6), detJz(ut, 1) = —2¢(-"-V/2,
() If n=5(8), detJu(ur?, 1) = qg-"*+D/2(4 - 12¢=1 + 7¢~%2 — ¢73).

3.1. In Part 3 of this paper we assume that » is even and that
u(x) = (a, x) for a € {1,¢, t*, er'}. We will show T}, is irreducible for
each u. Since n is even, we write, letting m = n/2,

Jﬂ(u,v)=/lﬂm<l(g ) x(we2) 2
-2 [ a((3 ) 1)x(we) 2

r=0 s=0

where 4,5 = {y € k*| u(y) = mr + s(n)}.

For y € Ars, (3} y_.) 1) has non-zero entries only in places (i, j),
wherei—j=—sifl <i<m-s,andi-j=m-sifm—-s+1<i<m.
The (i, j)th entry of i((} y‘l,), 1) is

~ i_'j 0 o o
‘ul ((T Oy Tj—iy—l)’(y"t)l+j 2(1:,1_-)](1 1)).

Using the formula for ji! in §1.2, we obtain the following result.

LEMMA 9. Given 1 < i, j < m, choose the unique s € {0,1,...,
m — 1} for which i — j=—s ori— j=m—s. Then the (i, j)th entry
of Ju(u,v) is

— Za(z r,s) Z {kmr) gt (2i +5 — 2+ mr)(u,v),
r—O k=0
where for | < i < m—s, a(i,r,s) = u(t=%)0((z, ))SA-D+mis+) | gnd
form—s+1<i<m, a(irs)=puT")0((t, 7)) Dmli+1+rm),

3.2. In this section we assume first that n/2 is even. In this case,
we may take the value of o to be one in the definition of u!. We also
take 4 = 1. Consider the sum

1<
_ E C_k(’""”)Jekt_,(zm_zw)(u, ’U), for Uu,v e U
k=0
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If r =0and 2i+s—2 = O(n), Lemma 2 shows that the sum is non-zero
only if s = 0 or 1, when it equals 1 — g~! and —g~! respectively. If
r =1and 2i+s—2+m = O(n), the sum is non-zero only if s = m—1,
when it equals —g~!. The only contribution to J;(u, v) in this case is
1—g¢~'lin (1,1), since 2i +s—2 = O(n) cannot be solved for i if s = 1,
and 2i+5—2+m = O(n) cannot be solved fori if s =m—1. If r=0
and 2i +s — 2 # O(n), Lemma 3 shows that the sum is non-zero only
if s = 1, in which case it equals a; = (v~/2-1), v)C(¢12i-D)g~1/2,
Ifr =1and 2i +s — 2+ m # O(n), the sum in non-zero only if
s =m — 1, when it equals b; = (¢/?~3),y)C(z~42-3))q~1/2, We have
thus shown:

LEMMA 10. For u=1andu,v € U,

[1-g7! o 0O B T
B2 0 a
Ja(u,v) = ,
0 am
. QG ﬂm 0 |

where o; = (1,7)" " 'a;, and B; = (t,7)" " 'b;.

Letting a(x) denote the function on k* determined by an intertwin-
ing operator of T, we have:

ProrosiTiON 11. a(l) is scalar.

Proof. As in the case of n odd, a(1) commutes with

n—1 e o ([E O -1
N=I§)Jﬂ(s ,1)u<(0 8_k>,1) .
The only non-zero entries of N are
Ny=1-g"',  Np=C)g 'z, )",

and
Npi = C(t70)g™ (1, 7).

This condition implies that for 2 < i < m — 1, we have a;; = a;; =
Ami = Qim.
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We next use the relation a(1)J;(1, 1) = Ji(1, 1)a(1). Equating the
first rows gives:

(28) ap = ax,

(29) a;=0 for3<j<m-2,
(30) AmBm = @182, m—1,

(31) anpr=(1-g Haym + Pramm.

Equating the second rows gives

(32) ax; = as3,
(33) a3j=0 forj#3,m-2,
(34) a2, m—1Pm-1 = @203 ;2.

Equating the ith rows for 3 < i < n/4 — 1 and using an inductive step
gives:

(35) Qji = Ajy1it1s
(36) Qi m—i+1 Pm—i+1 = Ci@ig1 m—is
(37) i1, =0 forj#i+l,m—i

Equating the n/4th rows gives:

(38) Qpja,(n)8)+1Bnjd)+1 = Cnjalin/4)+1,n/4s
(39) Qn/a,n/4 = Anja)+1,(n/4)+1>

., n n
(40) Anjay+1,j = 0 forj# 33 + 1.

Equating the ith rows for n/4+1 < i < m — 2 and using an inductive
step also gives (35), (36), and (37) for these values of i.
Equating the (m — 1)st rows gives

(41) Am-1.2P2 = am_1ami
(42) Am—1,m—-1 = Gmm.

We now have a;; = a = -+ = amm. By (31), aj, = 0. Us-
ing (30), (34), (36), (38), and (41), we see that each of the elements
aym-1,3,m-2,"** ,am1 1S a non-zero constant times a;,, and is thus
zero. We conclude that a(1) is scalar.

We now proceed to show a(x) = a(1) for each x € k*. As in the
case of n odd, we will calculate detJ;(a, 1), for a € {&, 77!, er71}.
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LEMMA 12. detJ;(e, 1) # 0.

Proof. Lemma 10 gives the matrix J;(g,1). A calculation shows
that

mj/2 m/2 m m
det Ju(e, 1) = (—1)™2 | T] c2i-182i + [ Bair02i| = [ [ i =[] B:-
it i=1 =l

i=1
Substituting the values for o; and g; given in Lemma 10, with u = ¢
and v = 1, we obtain detJ;(e, 1) = —2¢=™/2(7,7)™?2 # 0.
LEMMA 13. For ue€ U, detJ;(ut~!,1) #£0.

Proof. The usual calculations give

" pr a;r O 1
0 B m
0 0 pB;

J,;(u‘t'l,l)= ,

ﬂm—l Qpp—-1

LOm 0 ﬂm d

with B, = —q~1, B; = C(x~12=2)q=1/2(¢12i=2) y) for i # 1, and
a; = ¢~ Y2(1, 7)I"1C(1!?-1), We then obtain

m m
detJa(ur™!, 1) = [[ Bi + =[] i = a1 + ¢~ 13(z*, w)"/?] £ 0.

i=1 i=1

Letting # = 1 and &, we see that a(t~!) = a(er™!) = a(1). This
completes the proof that Tj; is irreducible if # = 1 and »/2 is even.

Assume now that u(x) = (¢, x) and n/2 is even: the proof that T}
is irreducible is virtually identical to the case when u = 1, so we omit
the details.

3.3. In this section we assume first that u(x) = (7%, x) and n/2 is
even. We first consider, for u € U, the sums

1

n-1 n—1
Z - 1 E -
; c k(mr+s)J5‘T_,(2,+:_z+m,)(u, 1) = ;l" C k(mr+s)J8kT—t(2:+:—3+mr)(u, l)
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If r =0and 2i + s — 3 = O(m), Lemma 2 shows that the sum is non-
zero only if s = 0, when it equals 1 —g~!, and if s = 1, when it equals
—q~ 1. If r =1 and 2i + s — 3+ m = O(n), the sum is non-zero only if
s = m— 1, when it equals —¢g~!. If r = 5 = 0, there is no contribution
to J(u, 1), since 2i —3 = O(n) is not solvable. The only contributions
in these cases are therefore r = 0, s = 1, which gives —¢~! in (1, 2),
and r =1, s = m — 1, which gives —g~! in (2,1). For the cases when
2i + s — 3+ mr = O(n), the sum is non-zero only when r =0, s =1,
in which case it equals a; = C(t"?-2)q~1/2 for i # 1; or when r =
1, s = m—1, in which case it equals b; = (t%2i=4), 4)C(1~12i-4))gq~1/2,

for i # 2. We have thus shown:

LeEMMA 14. Foru e U,

0 o
B O
0 B
Ja(u, 1) =
. Gty

0
125)

0

0
Bm

B ]

Qpy—1

0 |

where a; = —(1,71)q7 1, oy = (z.0)a; fori # 1, By = —q~, and B; =

(t,7)'b; for i # 2.

Similar calculations yield the following two lemmas:

LEMMA 15. Forue U,

P

I
coPog o

[

Ja(u213,1) =

0 0 7
B O
B3
Qm—1
0 |
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where a; = B3 = —(1,71)g7 !, a; = (1, 7)!C(z"%~D)g~1/2 for i > 1, and
ﬂi = (1.’ T)i(Tt(Zi—6), u‘z)C(‘t—’(Zi'6))q‘1/2 for i # 3.

LEMMA 16. Forue U,

J,;(u‘216,1)
[0 o O fp 0 0 O O 0 07
y 0 a f 0 0 O 0 0
pf3z 0 O 0 y
Bs O » O
Bs 0 O
Bs O
= B
Bs
ﬂm Apr—1
SN 0-

where 7= l—q—l,al = ﬂs = "(1_', '[)q"‘l, o = C(Tt(Zi—2))q—-l/2 l_fl > 1,
and B; = (t!(2i-10), u—Z)C(T—t(Zi—lO))q—l/Z ifi#5.

PROPOSITION 17. a(1) is scalar.

Proof. Using Lemma 15, a calculation shows that

m-1 2% .2 ~ EkT—l 0 -1
Ay =) Ju(e7 e ,1);4(( 0 E_kr),l)
k=0

is a matrix with all zero entries except for places (2,2), (2, m), and
(m, 2), which are occupied by distinct non-zero constants. The rela-
tion a(1) 4; = A, a(1) implies that for i # 2, m, we have a;; = a;,, =
azi = am; = 0.

Using Lemma 16, we see that

m—1 k.—3 -1
- et 0
Ay =) Ju(e 78, 1) (( 0 8-k13> , 1)
k=0

is a matrix with all zero entries except for places (3,3), (3,m — 1),
and (m — 1, 3), which are occupied by distinct non-zero constants.
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The relation a(1) A, = A, a(1) implies that for i # 3, m — 1, we have
as; = a;3 = Ap-1,i = Aim—1 = 0.

Now we use the relation a(1) Jz(1,1) = J5(1, 1)a(1). Equating the
first rows gives:

(43) ajjay = aiax + fram,
(44) aj=0 forj=4,5...,m-2,
(45) anBi = B1amm + a1a2m.

Equating the second rows gives:

(46) a = axp = ass,
Note that (46) and (43) imply that a,,; = 0. Equating the i/th rows,
for3<i<m-2,gives:
(48) a,~+1,j=0 forj#i+1,
(49) Qjj = @it 1,is1-

Equating the (m — 1)st rows gives:

(50) Am—-1,m—1 = Amm>
(51) am_1,3 = 0.
Employing all these identities yields the result that a(1) is scalar.

The next step is to prove that J;(e, 1) is invertible for a € {¢, 77!,
-1
eT '},

LemMA 18. detJ;(e, 1) # 0.

Proof. Lemma 14 gives the form of J;(¢, 1). A calculation shows
that

m/2

m/2 m m
detJy(e, 1) = (=)™ | ] e2i1B2i + [ [ Bair02| = [[ i = [ B
i=1 =l

i=1 i=1

Using the values of a; and §; from Lemma 14, we obtain detJ;(e, 1) =
(. 0)™2q~m[1 - g~'] # 0.

LEMMA 19. detJy(ut!,1)#0 forue U.
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Proof. The usual calculations show that

"B oy O T
0 B o
Ja(ut™!, 1) = . ,  where
Cm—1
LOm, ,Bm .

a; = —(1,7)¢7}, a; = (1,7)IC(x"&D)g~1/2 for i > 1, and B; =
(7, 7)(z13-3), u)C(r71(2-3))g~1/2, We therefore have

m m
det Ju(ut™', 1) = [J i + [[ B: = a7/ *(z. 0)™*[1 - g7 1?1 # 0.
i=1 i=1
Letting u = 1 and &, we see that a(t~!) = a(er™!) = a(1). This
completes the proof that T} is irreducible if u(x) = (7, x) and n/2 is
even.
Assume now that u(x) = (et’, x) and n/2 is even. The proof that
T} is irreducible is virtually identical to the case when u(x) = (7, x),
so we omit the details.

3.4. In §§3.2 and 3.3, the proofs are not precisely as given if z is
small, but the same methods apply and the results still hold, so we
omit the details.

As for the cases when 7 is even and n/2 is odd, there is nothing
new here. If u(x) = (e, x), where a = 1 or ¢, the proof is generally
the same as for n odd, u = 1. If u(x) = (a, x), where a = 1’ or et?,
we proceed as we did for n divisible by four.

Combining these remarks with the results of §§3.2 and 3.3, we ob-
tain:

THEOREM 1(b). If n is even and u(x) = (a, x) for c € {1,¢, v, et'},
T} is irreducible.
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