Pacific Journal of Mathematics
\boldsymbol{q}-BETA INTEGRALS AND THE \boldsymbol{q}-HERMITE POLYNOMIALS Waleed A. Al-Salam and Mourad Ismail

q-BETA INTEGRALS AND
 THE q-HERMITE POLYNOMIALS

W. A. Al-Salam and Mourad E. H. Ismail*

The continuous q-Hermite polynomials are used to give a new proof of a q-beta integral which is an extension of the Askey-Wilson integral. Multilinear generating functions, some due to Carlitz, are also established.

1. Introduction. Let $q \in(-1,1)$ and define the q-shifted factorials by

$$
\begin{aligned}
(a)_{0} & =(a ; q)_{0} \\
(a)_{n} & =(a ; q)_{n}
\end{aligned}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right), \quad n=1,2, \ldots,
$$

Basic hypergeometric series are defined by

$$
\begin{aligned}
& { }_{r+1} \phi_{r}\left(a_{1}, a_{2}, \ldots, a_{r+1} ; b_{1}, b_{2}, \ldots, b_{r} ; z\right) \equiv{ }_{r+1} \phi_{r}\left[\left.\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{r+1} \\
b_{1}, b_{2}, \ldots, b_{r}
\end{array} \right\rvert\, z\right] \\
& \quad=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n}\left(a_{2}\right)_{n} \cdots\left(a_{r+1}\right)_{n}}{(q)_{n}\left(b_{1}\right)_{n} \cdots\left(b_{r}\right)_{n}} z^{n} .
\end{aligned}
$$

The continuous q-Hermite polynomials $\left\{H_{n}(x \mid q)\right\}$ are given by

$$
\begin{equation*}
H_{n}(\cos \theta \mid q)=\sum_{k=0}^{n} \frac{(q)_{n}}{(q)_{k}(q)_{n-k}} e^{i(n-2 k) \theta} \tag{1.1}
\end{equation*}
$$

(see [2]). Their orthogonality [2,3] is

$$
\begin{equation*}
\int_{0}^{\pi} w(\theta) H_{m}(\cos \theta \mid q) H_{n}(\cos \theta \mid q) d \theta=(q ; q)_{n} \delta_{n m} \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
w(\theta)=\frac{(q)_{\infty}}{2 \pi}\left(e^{2 i \theta}\right)_{\infty}\left(e^{-2 i \theta}\right)_{\infty} \tag{1.3}
\end{equation*}
$$

Rogers also introduced the continuous q-ultraspherical polynomials $\left\{C_{n}(x ; \beta \mid q)\right\}$ generated by

$$
\begin{equation*}
\sum_{n=0}^{\infty} C_{n}(\cos \theta ; \beta \mid q) t^{n}=\frac{\left(\beta t e^{i \theta}\right)_{\infty}\left(\beta t e^{-i \theta}\right)_{\infty}}{\left(t e^{i \theta}\right)_{\infty}\left(t e^{-i \theta}\right)_{\infty}} \tag{1.4}
\end{equation*}
$$

whose weight function was found recently [8,9]. It is easy to see that

$$
\begin{equation*}
C_{n}(x ; 0 \mid q)=H_{n}(x \mid q) /(q)_{n} . \tag{1.5}
\end{equation*}
$$

Rogers solved the connection coefficient problem of expressing $C_{n}(x ; \beta \mid q)$ in terms of $C_{n}(x ; \gamma \mid q)$ a consequence of which we get

$$
\begin{equation*}
C_{n}(x ; \beta \mid q)=\sum_{k=0}^{[n / 2]} \frac{(-\beta)^{k} q^{k(k-1) / 2}(\beta)_{n-k}}{(q)_{k}(q)_{n-2 k}} H_{n-2 k}(x \mid q) . \tag{1.6}
\end{equation*}
$$

Rogers evaluated explicitly the coefficients in the linearization of products of two q-Hermite polynomials. He proved

$$
\begin{equation*}
H_{m}(x \mid q) H_{n}(x \mid q)=\sum_{k=0}^{\min (n, m)} \frac{(q)_{m}(q)_{n}}{(q)_{k}(q)_{n-k}(q)_{m-k}} H_{m+n-2 k}(x \mid q) \tag{1.7}
\end{equation*}
$$

which can be iterated to obtain the sum

$$
\begin{align*}
& H_{k}(x \mid q) H_{m}(x \mid q) H_{n}(x \mid q) \tag{1.8}\\
& \qquad \begin{array}{l}
=\sum_{r, s} \frac{(q)_{k}(q)_{m}(q)_{n}(q)_{m+n-2 r}}{(q)_{m-r}(q)_{n-r}(q)_{r}(q)_{k-s}(q)_{m+n-2 r-s}(q)_{s}} \\
\end{array} \quad \times H_{k+m+n-2 r-2 s}(x \mid q) .
\end{align*}
$$

We shall also need the formula
(1.9) $\frac{H_{m}(x \mid q)}{(q)_{m}} C_{n}(x ; \beta \mid q)$

$$
=\sum_{k, j} \frac{(-\beta)^{k} q^{k(k-1) / 2}(\beta)_{n-k}}{(q)_{k}(q)_{m-j}(q)_{j}(q)_{n-2 k-j}} H_{m+n-2 k-2 j}(x \mid q),
$$

which follows from (1.6) and (1.7).
We shall also use the polynomials

$$
h_{n}(x \mid q)=\sum_{k=0}^{n} \frac{(q)_{n}}{(q)_{k}(q)_{n-k}} x^{k}
$$

so that

$$
\begin{equation*}
H_{n}(\cos \theta \mid q)=e^{i n \theta} h_{n}\left(e^{-2 i \theta} \mid q\right) \tag{1.10}
\end{equation*}
$$

It was shown in [1] and [14] that $\left\{h_{n}(a \mid q)\right\}$ are moments of a discrete distribution $d \psi_{a}(x)$, viz.,

$$
\begin{equation*}
h_{n}(a \mid q)=\int_{-\infty}^{\infty} x^{n} d \psi_{a}(x), \quad n=0,1,2 \ldots \tag{1.11}
\end{equation*}
$$

where $d \psi_{a}(x)$ is a step function with jumps at the points $x=q^{k}$ and $x=a q^{k}$ for $k=0,1,2, \ldots$ given by

$$
\begin{equation*}
d \psi_{a}\left(q^{k}\right)=\frac{q^{k}}{(a)_{\infty}(q)_{k}(q / a)_{k}}, \quad d \psi_{a}\left(a q^{k}\right)=\frac{q^{k}}{(1 / a)_{\infty}(q)_{k}(a q)_{k}} \tag{1.12}
\end{equation*}
$$

where $a<0,0<q<1$.
Askey and Wilson [9] proved

$$
\begin{equation*}
\frac{(q)_{\infty}}{2 \pi} \int_{0}^{\pi} \frac{\left(e^{2 i \theta}\right)_{\infty}\left(e^{-2 i \theta}\right)_{\infty}}{\prod_{1 \leq j \leq 4}\left(a_{j} e^{i \theta}\right)_{\infty}\left(a_{j} e^{-i \theta}\right)_{\infty}} d \theta=\frac{\left(a_{1} a_{2} a_{3} a_{4}\right)_{\infty}}{\prod_{1 \leq r<s \leq 4}\left(a_{r} a_{s}\right)_{\infty}}, \tag{1.13}
\end{equation*}
$$

where $\left|a_{r}\right|<1$ for $r=1,2,3,4$. They used this integral to prove the orthogonality of what is now known as the Askey-Wilson polynomials.

Ismail and Stanton [15] observed that the left hand side of (1.13) is a generating function of the integral of the product of four q-Hermite polynomials times the weight function $w(\theta)$. They used this observation, combined with (1.8) and (1.3), to give a new proof of (1.13). Other analytic proofs of (1.13) can be found in [6] and [18]. Furthermore a combinatorial derivation of (1.13) is given in [16].

Nasrallah and Rahman [17] proved the following generalization of (1.13).

Theorem (Nasrallah and Rahman). If $\left|a_{j}\right|<1, j=1,2,3,4,5$ and $|q|<1$ then

$$
\begin{align*}
\int_{0}^{\pi} w(\theta) & \frac{\left(A a_{5} e^{i \theta}\right)_{\infty}\left(A a_{5} e^{-i \theta}\right)_{\infty}}{\prod_{1 \leq k \leq 5}\left(a_{k} e^{i \theta}\right)_{\infty}\left(a_{k} e^{-i \theta}\right)_{\infty}} d \theta \tag{1.14}\\
= & \frac{\left(a_{1} a_{3} a_{4} a_{5}\right)_{\infty}\left(a_{1} a_{2} a_{3} a_{4}\right)_{\infty}\left(A a_{3} a_{5}\right)_{\infty}\left(A a_{4} a_{5}\right)_{\infty}\left(A a_{1} a_{5}\right)_{\infty}\left(a_{2} a_{5}\right)_{\infty}}{\left(A a_{1} a_{3} a_{4} a_{5}\right)_{\infty} \prod_{1 \leq i<j \leq 5}\left(a_{i} a_{j}\right)_{\infty}} \\
& \quad \times{ }_{8} W_{7}\left(A a_{1} a_{3} a_{4} a_{5} q^{-1} ; A a_{5} / a_{2}, A, a_{1} a_{3}, a_{1} a_{4}, a_{3} a_{4} \mid a_{2} a_{5}\right)
\end{align*}
$$

where
${ }_{8} W_{7}(a ; b, c, d, e, f \mid z)={ }_{8} \phi_{7}\left[\left.\begin{array}{c}a, q \sqrt{a},-q \sqrt{a}, b, c, d, e, f \\ \sqrt{a},-\sqrt{a}, q a / b, q a / c, q a / d, q a / e, q a / f\end{array} \right\rvert\, z\right]$.

Rahman [19] observed that the ${ }_{8} \phi_{7}$ in (1.14) can be summed when $A=a_{1} a_{2} a_{3} a_{4}$. In this case we have

$$
\begin{align*}
& \int_{0}^{\pi} w(\theta) \frac{\left(a_{1} a_{2} a_{3} a_{4} a_{5} e^{i \theta}\right)_{\infty}\left(a_{1} a_{2} a_{3} a_{4} a_{5} e^{-i \theta}\right)_{\infty}}{\prod_{1 \leq k \leq 5}\left(a_{k} e^{i \theta}\right)_{\infty}\left(a_{k} e^{-i \theta}\right)_{\infty}} d \theta \tag{1.15}\\
& =\frac{\prod_{k=1}^{5}\left(\frac{a_{1} a_{2} a_{3} a_{4} a_{5}}{a_{k}}\right)_{\infty}}{\prod_{1 \leq k<j \leq 5}\left(a_{k} a_{j}\right)_{\infty}}
\end{align*}
$$

Askey [7] gave an elementary proof of (1.15) by showing that the two sides of (1.15) satisfy the same functional equation.

The main purpose of this paper is to prove (1.14) and (1.15) using different techniques that are based on the orthogonality and some multilinear generating functions for the q-Hermite polynomials. This shall be done in $\S 3$. In $\S 2$ we shall start by illustrating this technique in rederiving some results of Carlitz on the q-Hermite polynomials ((2.1) and (2.5)). We shall also obtain incidentally a transformation formula for ${ }_{3} \phi_{2}$ functions. In $\S 4$ we derive a new multilinear generating function for the continuous q-Hermite polynomials. In the process of deriving such a formula we prove a reduction formula for the double series of the Kempe de Fériet type.
2. Generating functions. To illustrate our technique we begin by deriving Carlitz [11] extension of Mehler formula
(2.1) $S=\sum_{n=0}^{\infty} h_{n}(a \mid q) h_{n+k}(b \mid q) \frac{z^{n}}{(q)_{n}}$

$$
=\frac{\left(a b z^{2}\right)_{\infty}}{(z)_{\infty}(b z)_{\infty}(a z)_{\infty}(a b z)_{\infty}} \sum_{r=0}^{k} \frac{(q)_{k}(b z)_{r}(a b z)_{r}}{(q)_{r}(q)_{k-r}\left(a b z^{2}\right)_{r}} b^{k-r} .
$$

We begin by the generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} h_{n}(a \mid q) \frac{z^{n}}{(q)_{n}}=\frac{1}{(z)_{\infty}(a z)_{\infty}} . \tag{2.2}
\end{equation*}
$$

Multiply by z^{k}, then replace z by $x z$ and use (1.11). We get

$$
\left.\begin{array}{rl}
\sum_{n=0}^{\infty} h_{n}(a \mid q) h_{n+k}(b \mid q) \frac{z^{n}}{(q)_{n}} \\
& =\frac{1}{(\bar{b})_{\infty}(z)_{\infty}(a z)_{\infty}}{ }_{2} \phi_{1}\left[\left.\begin{array}{c}
z, a z \\
q / b
\end{array} \right\rvert\, q^{k+1}\right.
\end{array}\right] .
$$

Now using a transformation formula of Sears [21] (see also [12])

$$
\begin{align*}
&{ }_{2} \phi_{1}\left[\left.\begin{array}{c|}
a, b \\
c
\end{array} \right\rvert\, z\right]+\frac{(b)_{\infty}(q / c)_{\infty}(c / a)_{\infty}(a z / q)_{\infty}\left(q^{2} / a z\right)_{\infty}}{(c / q)_{\infty}(b q / c)_{\infty}(q / a)_{\infty}(a z / c)_{\infty}(q c / a z)_{\infty}} \tag{2.3}\\
& \times{ }_{2} \phi_{1}\left[\begin{array}{c}
q a / c, q b / c \\
q^{2} / c
\end{array}\right. \\
& \quad=\frac{(a b z / c)_{\infty}(q / c)_{\infty}}{(q / a)_{\infty}(a z / c)_{\infty}}{ }_{2} \phi_{1}\left[\left.\begin{array}{c}
c / a, c q / a b z \\
c q / a z
\end{array} \right\rvert\, b q / c\right]
\end{align*}
$$

we get that the left hand side of (2.1) is

$$
S=\frac{\left(a b z^{2} q^{k}\right)_{\infty}}{(z)_{\infty}(a z)_{\infty}\left(b z q^{k}\right)_{\infty}(q / z)_{\infty}}{ }^{2} \phi_{1}\left[\left.\begin{array}{c}
q / b z, q^{1-k} / a b z^{2} \\
q^{1-k} / b z
\end{array} \right\rvert\, a b z\right] .
$$

By Heine's transformation formula

$$
{ }_{2} \phi_{1}\left[\left.\begin{array}{c|}
\alpha, \beta \tag{2.4}\\
\gamma
\end{array} \right\rvert\, z\right]=\frac{(\beta)_{\infty}(\alpha z)_{\infty}}{(\gamma)_{\infty}(z)_{\infty}} \phi_{1}\left[\left.\begin{array}{c}
\gamma / \beta, z \\
\alpha z
\end{array} \right\rvert\, \beta\right],
$$

we get that

$$
\left.S=\frac{\left(a b z^{2} q^{k}\right)_{\infty}(z)_{k} b^{k}}{(z)_{\infty}(a z)_{\infty}(b z)_{\infty}(a b z)_{\infty}{ }^{2} \phi_{1}\left[\begin{array}{c}
q^{-k}, a b z \\
q^{1-k} / z
\end{array} \frac{q}{b z}\right.}\right] .
$$

Now by a transformation formula [12; ex 1.14(ii)]

$$
{ }_{2} \phi_{1}\left[\left.\begin{array}{c}
q^{-n}, b \\
c
\end{array} \right\rvert\, z\right]=\frac{b^{n}(c / b)_{n}}{(c)_{n}} \sum_{j=0}^{n} \frac{\left(q^{-n}\right)_{j}(b)_{j}(q / z)_{j}(-1)^{j} q^{-j(j-1) / 2}}{(q)_{j}\left(b q^{1-n} / c\right)_{j}}(z / c)^{j}
$$

We next consider the sum

$$
\begin{aligned}
(2.5) G & =G(a, b, x, y, z)=\sum_{m, n, k} \frac{x^{m} y^{n} z^{k}}{(q)_{m}(q)_{n}(q)_{k}} h_{m+k}(a \mid q) h_{n+k}(b \mid q) \\
& =\sum_{m, n, k} \frac{x^{m} y^{n} z^{k}}{(q)_{m}(q)_{n}(q)_{k}} h_{n+k}(b \mid q) \int_{-\infty}^{\infty} u^{m+k} d \psi_{a}(u) \\
& =\int_{-\infty}^{\infty} \frac{1}{(x u)_{\infty}} \sum_{k, n} \frac{y^{n}(z u)^{k}}{(q)_{n}(q)_{k}} d \psi_{a}(u) \\
& =\int_{-\infty}^{\infty} \frac{1}{(x u)_{\infty}} \sum_{r=0}^{\infty} \frac{y^{r}}{(q)_{r}} h_{r}(b \mid q) h_{r}(z u|y| q) d \psi_{a}(a)
\end{aligned}
$$

Using the q-Mehler formula (formula (2.1) with $k=0$)

$$
G(a, b, x, y, z)=\frac{1}{(y)_{\infty}(b y)_{\infty}} \int_{-\infty}^{\infty} \frac{(b y z u)_{\infty}}{(x u)_{\infty}(z u)_{\infty}(b z u)_{\infty}} d \psi_{a}(u) .
$$

From (1.11) we get
(2.6) $G(a, b, x, y, z)$

$$
\begin{aligned}
= & \frac{(b y z)_{\infty}}{(y)_{\infty}(b y)_{\infty}(a)_{\infty}(x)_{\infty}(z)_{\infty}(b z)_{\infty}} 3 \phi_{2}\left[\left.\begin{array}{c}
x, z, b z \\
q / a, b z y
\end{array} \right\rvert\,\right. \\
& +\frac{(a b z y)_{\infty}}{(y)_{\infty}(b y)_{\infty}(1 / a)_{\infty}(a x)_{\infty}(a z)_{\infty}(a b z)_{\infty}} \\
& \times{ }_{3} \phi_{2}\left[\left.\begin{array}{c}
a x, a z, a b z \\
a q, a b z y
\end{array} \right\rvert\, q\right]
\end{aligned}
$$

But Carlitz [11] showed that

(2.7) $G(a, b, x, y, z)$

$$
=\frac{(a x z)_{\infty}(b y z)_{\infty}}{(x)_{\infty}(a x)_{\infty}(y)_{\infty}(b y)_{\infty}(z)_{\infty}(a z)_{\infty}(b z)_{\infty}}{ }^{3} \phi_{2}\left[\begin{array}{c|c}
x, y, z & a b z z, b y z
\end{array}\right] .
$$

Although (2.6) and (2.7) are the same we shall nevertheless need to use (2.6) for the representation of $G(a, b, x, y, z)$. Equating G in (2.6) and (2.7) we get the transformation formula
(2.8) ${ }_{3} \phi_{2}\left[\begin{array}{c|c}x, y, z & a b z \\ a x z, b y z\end{array}\right]$

$$
\begin{aligned}
= & \frac{(a x)_{\infty}(a z)_{\infty}}{(a)_{\infty}(a x z)_{\infty}} \phi_{2}\left[\left.\begin{array}{c}
x, z, b z \\
q / a, b z y
\end{array} \right\rvert\,\right. \\
& +\frac{(a b z y)_{\infty}(x)_{\infty}(z)_{\infty}(b z)_{\infty}}{(b z y)_{\infty}(1 / a)_{\infty}(a b z)_{\infty}(a x z)_{\infty}} \phi_{2}\left[\left.\begin{array}{c}
a x, a z, a b z \\
a q, a b z y
\end{array} \right\rvert\, q\right] .
\end{aligned}
$$

An interesting special case of (2.8) is $x=q^{-n}$ for $n=0,1,2, \ldots$ We get

$$
{ }_{3} \phi_{2}\left[\left.\begin{array}{c}
q^{-n}, y, z \tag{2.9}\\
a z q^{-n}, b y z
\end{array} \right\rvert\, a b z\right]=\frac{(q / a)_{n}}{(q / a z)_{n} z^{n}} 3 \phi_{2}\left[\left.\begin{array}{c}
q^{-n}, z, b z \\
q / a, b z y
\end{array} \right\rvert\, q\right]
$$

which is due to Sears [20]. Formula (2.9) in turn implies Jackson's Theorem for the summation of a terminating balanced (Saalschültzian) ${ }_{3} \phi_{2}$ with argument q, viz.,

$$
{ }_{3} \phi_{2}\left[\left.\begin{array}{c}
q^{-n}, a, b \tag{2.10}\\
c, a b q^{1-n} / c
\end{array} \right\rvert\, q\right]=\frac{(c / a)_{n}(c / b)_{n}}{(c)_{n}(c / a b)_{n}} .
$$

Formula (2.8) can also be obtained as a limiting case of Bailey's transformation [12; (3.3.1)]
3. The q-beta integral. . We consider in this section the NasrallahRahman formula (1.14). We first consider the integral

$$
\begin{equation*}
J=\int_{0}^{\pi} w(\theta) \frac{\left(A a_{5} e^{i \theta}\right)_{\infty}\left(A a_{5} e^{-i \theta}\right)_{\infty}}{\prod_{1 \leq k \leq 5}\left(a_{k} e^{i \theta}\right)_{\infty}\left(a_{k} e^{-i \theta}\right)_{\infty}} d \theta \tag{3.1}
\end{equation*}
$$

We recall from (1.4) and (1.5) that

$$
\begin{equation*}
\sum_{n=0}^{\infty} H_{n}(\cos \theta \mid q) \frac{t^{n}}{(q)_{n}}=\frac{1}{\left(t e^{i \theta}\right)_{\infty}\left(t e^{-i \theta}\right)_{\infty}} \tag{3.2}
\end{equation*}
$$

so that

$$
\begin{aligned}
J= & \sum_{n_{t}} \int_{0}^{\pi} w(\theta)\left\{\prod_{1}^{3} H_{n_{i}}(\cos \theta \mid q) a_{l}^{n_{t}}\right\} \\
& \times\left\{\frac{H_{n_{4}}(\cos \theta \mid q)}{(q)_{n_{4}}} C_{n_{5}}\left(\cos \theta ; a_{1} a_{2} a_{3} a_{4} \mid q\right) a_{4}^{n_{4}} a_{5}^{n_{5}}\right\} d \theta
\end{aligned}
$$

We now linearize the quantities in braces using (1.7) and (1.9) respectively. We get

$$
\begin{aligned}
J= & \sum_{n_{i}, k, j, s, s} \frac{a_{1}^{n_{1}} a_{2}^{n_{2}} a_{3}^{n_{3}} a_{4}^{n_{4}} a_{5}^{n_{3}}(-A)_{j}^{r} q^{r(r-1) / 2}(q)_{r}(q)_{n_{2}+n_{3}-2 k}(q)_{k}(q)_{n_{5}-r}}{n_{n_{2}-k}(q)_{n_{3}-k}(q)_{n_{1}-j}(q)_{n_{2}+n_{3}-2 k-j}(q)_{n_{4}-s}(q)_{n_{5}-2 r-s}} \\
& \times \int_{0}^{\pi} H_{n_{4}+n_{5}-2 r-2 s}(\cos \theta \mid q) H_{n_{1}+n_{2}+n_{3}-2 j-2 k}(\cos \theta \mid q) w(\theta) d \theta .
\end{aligned}
$$

We apply the orthogonality relation (1.2) and then shift the summation indices so that $n_{1} \rightarrow n_{1}+j, n_{2} \rightarrow n_{2}+k, n_{3} \rightarrow n_{3}+k, n_{4} \rightarrow$ $n_{4}+s, n_{5} \rightarrow n_{5}+2 r+s$.

We get

$$
\begin{aligned}
J= & \sum_{n_{i}, k, j, r^{\prime} s} \frac{a_{1}^{n_{1}+j_{1}} a_{2}^{n_{2}} a_{3}^{n_{3}} a_{4}^{n_{4}} a_{5}^{n_{5}}\left(a_{2} a_{3}\right)^{k}\left(a_{4} a_{5}\right)^{s}\left(-A a_{5}^{2}\right)^{r} q^{r(r-1) / 2}}{(q)_{j}(q)_{r}(q)_{s}(q)_{k}(q)_{n_{1}}(q)_{n_{2}}(q)_{n_{3}}(q)_{n_{4}}(q)_{n_{5}}} \\
& \times \frac{(q)_{n_{4}+n_{5}}(q)_{n_{2}+n_{3}}(A)_{n_{3}+r+s}}{(q)_{n_{2}+n_{3}-j}} \delta_{n_{1}+n_{2}+n_{3}-j, n_{4}+n_{5}}
\end{aligned}
$$

so that $j=n_{1}+n_{2}+n_{3}-n_{4}-n_{5}$.
Evaluating the sums over s and k

$$
\begin{gathered}
J=\sum_{n_{1}, r} \frac{a_{1}^{2 n_{1}}\left(a_{1} a_{2}\right)^{n_{2}}\left(a_{1} a_{3}\right)^{n_{3}}\left(a_{4} / a_{1}\right)^{n_{4}}\left(a_{5} / a_{1}\right)^{n_{5}}\left(-A a_{5}^{2}\right)^{r} q^{r(r-1) / 2}}{(q)_{j}(q)_{r}(q)_{n_{1}}(q)_{n_{2}}(q)_{n_{3}}(q)_{n_{4}}(q)_{n_{5}}} \\
\times \frac{(q)_{n_{4}+n_{5}}(q)_{n_{2}+n_{3}}(A)_{n_{5}+r}\left(A a_{4} a_{5} q q^{r+n_{5}}\right)_{\infty}}{(q)_{n_{4}+n_{5}-n_{1}}\left(a_{4} a_{5}\right)_{\infty}\left(a_{2} a_{3}\right)_{\infty}}
\end{gathered}
$$

The sum over r is

$$
\sum_{r} \frac{\left(A q^{n_{5}}\right)_{r} q^{r(r-1) / 2}\left(-A a_{5}^{2}\right)^{r}}{(q)_{r}\left(A a_{4} a_{5} q^{n_{5}}\right)_{r}}=\lim _{\lambda \rightarrow \infty}{ }_{2} \phi_{1}\left[\left.\begin{array}{c}
\lambda, A q^{n_{5}} \\
A a_{4} a_{5} q^{n_{5}}
\end{array} \right\rvert\, \frac{A}{\lambda} a_{5}^{2}\right]
$$

Apply Heine transformation (2.4) to the $2 \phi_{1}$ in the above limit to identify the r-sum as

$$
\frac{\left(A q^{n_{5}}\right)_{\infty}\left(A a_{5}^{2}\right)_{\infty}}{\left(A a_{4} a_{5} q^{n_{5}}\right)_{\infty}} 2_{1} \phi_{1}\left[\left.\begin{array}{c}
a_{4} a_{5}, 0 \\
A a_{5}^{2}
\end{array} \right\rvert\, A q^{n_{5}}\right]
$$

We therefore get

$$
\begin{aligned}
& \frac{\left(a_{4} a_{5}\right)_{\infty}\left(a_{2} a_{3}\right)_{\infty}}{(A)_{\infty}\left(A a_{5}^{2}\right)_{\infty}} J \\
& \quad=\sum_{n_{1}, r} \frac{a_{1}^{2 n_{1}}\left(a_{1} a_{2}\right)^{n_{2}}\left(a_{1} a_{3}\right)^{n_{3}}\left(a_{4} / a_{1}\right)^{n_{4}}\left(a_{5} / a_{1}\right)^{n_{5}+n_{2}+n_{3}-n_{4}-n_{5}}(A)_{r}(q)_{n_{1}}(q)_{n_{2}}(q)_{n_{3}}(q)_{n_{4}}(q)_{n_{5}}}{(q)_{n_{4}+n_{5}}(q)_{n_{2}+n_{3}}\left(a_{4} a_{5}\right)_{r}} \\
& \quad \times \frac{(q)_{n_{4}+n_{5}-n_{5}}\left(A a_{5}^{2}\right)_{r}}{(1)}
\end{aligned}
$$

Now set $m=n_{4}+n_{5}, n=n_{2}+n_{3}, k=n_{4}+n_{5}-n_{1}$. Thus

$$
\begin{align*}
& \frac{\left(a_{4} a_{5}\right)_{\infty}\left(a_{2} a_{3}\right)_{\infty}}{(A)_{\infty}\left(A a_{5}^{2}\right)_{\infty}} J \tag{3.3}\\
& =\sum \frac{a_{1}^{n+m-2 k} a_{2}^{n_{2}} a_{3}^{n-n_{2}} a_{4}^{m-n_{5}} a_{5}^{n_{5}}(q)_{m}(q)_{n}\left(a_{4} a_{5}\right)_{r}\left(A q^{n_{5}}\right)^{r}}{(q)_{n_{2}}(q)_{m-k}(q)_{n-n_{2}}(q)_{m-n_{5}}(q)_{n_{5}}(q)_{k}(q)_{n-k}(q)_{r}\left(A a_{5}^{2}\right)_{r}} \\
& =\sum \frac{a_{3}^{n} a_{4}^{m} a_{1}^{m+n-2 k}\left(a_{4} a_{5}\right)_{r} A^{r}}{(q)_{r}(q)_{k}(q)_{m-k}(q)_{n-k}\left(A a_{5}^{2}\right)_{r}} h_{m}\left(\left.\frac{a_{5}}{a_{4}} q^{r} \right\rvert\, q\right) h_{n}\left(\left.\frac{a_{2}}{a_{3}} \right\rvert\, q\right) \\
& =\sum \frac{a_{1}^{m+n} a_{3}^{n} a_{4}^{m} A^{r}\left(a_{3} a_{4}\right)^{k}\left(a_{4} a_{5}\right)_{r}}{(q)_{r}(q)_{m}(q)_{n}\left(A a_{5}^{2}\right)_{r}(q)_{k}} \\
& \quad \times h_{n+k}\left(a_{2} / a_{3} \mid q\right) h_{m+k}\left(a_{5} q^{r} / a_{4} \mid q\right) \\
& =\sum_{r} \frac{A^{r}\left(a_{4} a_{5}\right)_{r}}{(q)_{r}\left(A a_{5}^{2}\right)_{r}} G\left(\frac{a_{5}}{a_{4}} q^{r}, \frac{a_{2}}{a_{3}}, a_{1} a_{4}, a_{1} a_{3}, a_{3} a_{4}\right) .
\end{align*}
$$

Using (2.6) for the value of G we get, after some simplifications,

$$
\begin{aligned}
& \frac{\prod_{1 \leq j<k \leq 5}\left(a_{j} a_{k}\right)_{\infty}}{\left(a_{1} a_{2} a_{3} a_{4}\right)_{\infty}\left(a_{1} a_{2} a_{3} a_{4}\right)_{\infty}(A)_{\infty}\left(A a_{5}^{2}\right)_{\infty}} J \\
& =\frac{\left(a_{1} a_{5}\right)_{\infty}\left(a_{2} a_{5}\right)_{\infty}\left(a_{3} a_{5}\right)_{\infty}}{\left(a_{1} a_{2} a_{3} a_{5}\right)_{\infty}\left(a_{5} / a_{4}\right)_{\infty}} \\
& \times \sum_{j} \frac{\left(a_{1} a_{4}\right)_{j}\left(a_{2} a_{4}\right)_{j}\left(a_{3} a_{4}\right)_{j} q^{j}}{(q)_{j}\left(a_{1} a_{2} a_{3} a_{4}\right)_{j}\left(q a_{4} / a_{5}\right)_{j}} \phi_{1}\left[\left.\begin{array}{c}
a_{4} a_{5}, a_{5} q^{-j} / a_{4} \\
A a_{5}^{2}
\end{array} \right\rvert\, A q^{j}\right] \\
& +\frac{\left(a_{1} a_{4}\right)_{\infty}\left(a_{2} a_{4}\right)_{\infty}\left(a_{3} a_{4}\right)_{\infty}}{\left(a_{1} a_{2} a_{3} a_{4}\right)_{\infty}\left(a_{4} / a_{5}\right)_{\infty}} \\
& \times \sum_{j} \frac{\left(a_{1} a_{5}\right)_{j}\left(a_{3} a_{5}\right)_{j}\left(a_{2} a_{5}\right)_{j} q^{j}}{(q)_{j}\left(a_{1} a_{2} a_{3} a_{5}\right)_{j}\left(q a_{5} / a_{4}\right)_{j}} 2 \phi_{1}\left[\begin{array}{c|c}
q^{-j} a_{4} a_{5} & A a_{5} q^{j} \\
A a_{5}^{2} & a_{4}
\end{array}\right] \\
& =\frac{\left(a_{1} a_{5}\right)_{\infty}\left(a_{2} a_{5}\right)_{\infty}\left(a_{3} a_{5}\right)_{\infty}\left(A a_{5} / a_{4}\right)_{\infty}\left(A a_{4} a_{5}\right)_{\infty}}{\left(a_{5} / a_{4}\right)_{\infty}\left(a_{1} a_{2} a_{3} a_{5}\right)_{\infty}\left(A a_{5}^{2}\right)_{\infty}(A)_{\infty}} \\
& \times{ }_{4} \phi_{3}\left[\begin{array}{c|c}
a_{1} a_{4}, a_{2} a_{4}, a_{3} a_{4}, A & q \\
q a_{4} / a_{5}, a_{1} a_{2} a_{3} a_{4}, A a_{4} a_{5} & q]
\end{array}\right. \\
& +\frac{\left(a_{1} a_{4}\right)_{\infty}\left(a_{2} a_{4}\right)_{\infty}\left(a_{3} a_{4}\right)_{\infty}}{\left(a_{4} / a_{5}\right)_{\infty}\left(a_{1} a_{2} a_{3} a_{4}\right)_{\infty}}{ }_{4} \phi_{3}\left[\left.\begin{array}{c}
a_{1} a_{5}, a_{2} a_{5}, a_{3} a_{5}, A a_{5} / a_{4} \\
A a_{5}^{2}, q a_{5} / a_{4}, a_{1} a_{2} a_{3} a_{5}
\end{array} \right\rvert\, q\right] .
\end{aligned}
$$

We now can use Bailey's transformation of a very well-poised $8 \phi_{7} \mathrm{se}$ ries in terms of two balanced ${ }_{4} \phi_{3}$ series ($[10 ;$ p. 69] and [12; (2.10.10)]). In that transformation put $q a=A a_{1} a_{3} a_{4} a_{5}, f=A, g=a_{3} a_{4}, h=$ $a_{1} a_{4}, d=A a_{5} / a_{2}, e=a_{1} a_{3}$ we get the Nasrallah-Rahman formula (1.14).

However if we choose

$$
\begin{gathered}
f=a_{1} a_{4}, \quad g=a_{2} a_{4}, \quad h=a_{3} a_{4}, \quad q a=a_{1} a_{2} a_{3} a_{4}^{2} a_{5}, \\
d=a_{1} a_{2} a_{3} a_{4} / A, \quad e=a_{4} a_{5}
\end{gathered}
$$

we get
(3.4) $J=\frac{\left(A a_{4} a_{5}\right)_{\infty}\left(a q / a_{4} a_{1}\right)_{\infty}\left(a q / a_{2} a_{4}\right\}_{\infty}\left(a q / a_{3} a_{4}\right)_{\infty}\left(a_{1} a_{2} a_{3} a_{5}\right)_{\infty}\left(A a_{5} / a_{4}\right)_{\infty}}{(q a)_{\infty} \prod_{1 \leq j<k \leq s}\left(a_{j} a_{k}\right)_{\infty}}$

$$
\times{ }_{8} W_{7}\left(a ; \frac{q a}{a_{4} a_{5} A}, a_{4} a_{5}, a_{2} a_{4}, a_{1} a_{4}, a_{3} a_{4} \left\lvert\, A \frac{a_{5}}{a_{4}}\right.\right) .
$$

Formula (3.4) seems to be the more useful form of (1.14). In fact if we put $A=a_{1} a_{2} a_{3} a_{4}$ it then follows that $q a=a_{4} a_{5} A$ and in this case the ${ }_{8} W_{7}$ in (3.4) becomes 1 and (1.15) follows immedjately. In contrast Askey [7] used the summation of a very well-poised ${ }_{6} \phi_{5}$ to show that in that case (1.14) reduces to (1.15).
4. Miscellaneous results. We next consider the integral

$$
I=\frac{\Pi_{j=1}^{4}\left(t_{j}\right)_{\infty}\left(a t_{j}\right)_{\infty}}{\left(s_{1}\right)_{\infty}\left(s_{2}\right)_{\infty}\left(a s_{1}\right)_{\infty}\left(a s_{2}\right)_{\infty}} \int_{-\infty}^{\infty} \frac{\left(x s_{1}\right)_{\infty}\left(x s_{2}\right)_{\infty}}{\left(x t_{1}\right)_{\infty}\left(x t_{2}\right)_{\infty}\left(x t_{3}\right)_{\infty}\left(x t_{4}\right)_{\infty}} d \psi_{a}(x)
$$

and integrate it in two different ways. If we evaluate I directly using (1.12) we get

$$
\begin{aligned}
I= & \frac{\left(a t_{1}\right)_{\infty}\left(a t_{2}\right)_{\infty}\left(a t_{3}\right)_{\infty}\left(a t_{4}\right)_{\infty}}{(a)_{\infty}\left(a s_{1}\right)_{\infty}\left(a s_{2}\right)_{\infty}} \phi_{3}\left[\left.\begin{array}{c}
t_{1}, t_{2}, t_{3}, t_{4} \\
s_{1}, s_{2}, q / a
\end{array} \right\rvert\, q\right] \\
& +\frac{\left(t_{1}\right)_{\infty}\left(t_{2}\right)_{\infty}\left(t_{3}\right)_{\infty}\left(t_{4}\right)_{\infty}}{(q / a)_{\infty}\left(s_{1}\right)_{\infty}\left(s_{2}\right)_{\infty}}{ }_{4} \phi_{3}\left[\left.\begin{array}{c}
a t_{1}, a t_{2}, a t_{3}, a t_{4} \\
a s_{1}, a s_{2}, a q
\end{array} \right\rvert\, q\right] .
\end{aligned}
$$

Thus if we choose $s_{1}=s_{2}=q / a, a^{3} t_{2} t_{3} t_{4}=q^{2}$, and use a transformation formula of Bailey [10, p. 69]

$$
\begin{equation*}
I=\frac{\left(a t_{3} t_{4}\right)_{\infty}\left(a t_{2} t_{3}\right)_{\infty}\left(a t_{2} t_{4}\right)_{\infty}\left(a t_{1}\right)_{\infty}}{\left(a t_{2} t_{3} t_{4}\right)_{\infty}\left(a s_{1}\right)_{\infty}\left(a s_{2}\right)_{\infty}} W_{7}\left(q / a^{2} ; q / a t_{1}, q / a t_{1}, t_{2}, t_{3}, t_{4} \mid a t_{1}\right) . \tag{4.1}
\end{equation*}
$$

On the other hand if we first expand the integrand in I we get

$$
\begin{aligned}
& \frac{\left(s_{1}\right)_{\infty}\left(s_{2}\right)_{\infty}\left(a s_{1}\right)_{\infty}\left(a s_{2}\right)_{\infty}}{\prod_{j=1}^{4}\left\{\left(t_{j}\right)_{\infty}\left(a t_{j}\right)_{\infty}\right\}} I \\
& \quad=\sum_{n_{1}, n_{2}, n_{3}, n_{4}} \frac{t_{1}^{n_{1}} t_{2}^{n_{2}} t_{3}^{n_{3}} t_{4}^{n_{4}}\left(s_{1} / t_{1}\right)_{n_{1}}\left(s_{2} / t_{2}\right)_{n_{2}}}{(q)_{n_{1}}(q)_{n_{2}}(q)_{n_{3}}(q)_{n_{4}}} \int_{-\infty}^{\infty} x^{n_{1}+n_{2}+n_{3}+n_{4}} d \psi_{a}(x) \\
& \quad=\sum_{n_{1}, n_{2}, n_{3}, n_{4}} \frac{t_{1}^{n_{1}} t_{2}^{n_{2}} t_{3}^{n_{3}} t_{4}^{n_{4}}\left(s_{1} / t_{1}\right)_{n_{1}}\left(s_{2} / t_{2}\right)_{n_{2}}}{(q)_{n_{1}}(q)_{n_{2}}(q)_{n_{3}}(q)_{n_{4}}} h_{n_{1}+n_{2}+n_{3}+n_{4}(a \mid q)} \quad=\sum_{m, n_{1}, n_{2}} \frac{t_{1}^{n_{1}} t_{2}^{n_{2}} t_{4}^{m_{1}}\left(s_{1} / t_{1}\right)_{n_{1}}\left(s_{2} / t_{2}\right)_{n_{2}}}{(q)_{n_{1}}(q)_{n_{2}}(q)_{m}}\left(\left.\frac{t_{3}}{t_{4}} \right\rvert\, q\right) h_{n_{1}+n_{2}+m}(a \mid q) \\
& \quad=\sum_{m, k} \frac{t_{4}^{m} t_{2}^{k}\left(q / a t_{2}\right)_{k}}{(q)_{m}(q)_{k}}{ }_{2} \phi_{1}\left[\left.\begin{array}{c}
q^{-k}, q / a t_{1} \\
a t_{2} q^{-k}
\end{array} \right\rvert\, a t_{1}\right] h_{m}\left(t_{3} / t_{4} \mid q\right) h_{m+k}(a \mid q)
\end{aligned}
$$

Equating the two values of I we get

$$
\begin{align*}
& \sum_{m, k} \frac{t_{4}^{m} t_{2}^{k}\left(q / a t_{2}\right)_{k}}{(q)_{m}(q)_{k}}{ }_{2} \phi_{1}\left[\left.\begin{array}{c}
q^{-k}, q / a t_{1} \\
a t_{2} q^{-k}
\end{array} \right\rvert\, a t_{1}\right] h_{m}\left(t_{3} / t_{4} \mid q\right) h_{m+k}(a \mid q) \tag{4.2}\\
& \quad=\frac{(q / a)_{\infty}(q / a)_{\infty}\left(q^{2} / a^{2} t_{4}\right)_{\infty}\left(q^{2} / a^{2} t_{3}\right)_{\infty}\left(q^{2} / a^{2} t_{2}\right)_{\infty}\left(a t_{1}\right)_{\infty}}{\left(q^{2} / a^{2}\right)_{\infty} \prod_{j=1}^{4}\left\{\left(t_{j}\right)_{\infty}\left(a t_{j}\right)_{\infty}\right\}} \\
& \quad \times{ }_{8} W_{7}\left(q / a^{2} ; q / a t_{1}, q / a t_{1}, t_{2}, t_{3}, t_{4} \mid a t_{1}\right) .
\end{align*}
$$

Since I is symmetric in t_{1} and t_{2} it follows from (4.1) that

$$
\begin{align*}
& { }_{8} W_{7}\left(q / a^{2} ; q / a t_{1}, q / a t_{1}, t_{2}, t_{3}, t_{4} \mid a t_{1}\right) \tag{4.3}\\
& \quad=\frac{\left(a t_{2}\right)_{\infty}}{\left(a t_{1}\right)_{\infty}} 8 W_{7}\left(q / a^{2} ; q / a t_{2}, q / a t_{2}, t_{1}, t_{3}, t_{4} \mid a t_{2}\right) .
\end{align*}
$$

Let us now reconsider the last step in the derivation in (3.3). Instead of replacing the inside sum by (2.6) we use (2.7). The result is

$$
\begin{aligned}
J= & \frac{(A)_{\infty}\left(A a_{5}^{2}\right)_{\infty}\left(a_{1} a_{3} a_{4} a_{5}\right)_{\infty}\left(a_{1} a_{2} a_{3} a_{4}\right)_{\infty}\left(a_{2} a_{5}\right)_{\infty}}{\prod_{1 \leq j<k \leq 5}\left(a_{j} a_{k}\right)_{\infty}} \\
& \times \sum_{r} \frac{A^{r}\left(a_{4} a_{5}\right)_{r}\left(a_{1} a_{5}\right)_{r}\left(a_{3} a_{5}\right)_{r}}{(q)_{r}\left(A a_{5}^{2}\right)_{r}\left(a_{1} a_{3} a_{4} a_{5}\right)_{r}}\left[\left.\begin{array}{c}
a_{1} a_{4}, a_{1} a_{3}, a_{3} a_{4} \\
a_{1} a_{3} a_{4} a_{5} q^{r}, a_{1} a_{2} a_{3} a_{4}
\end{array} \right\rvert\, a_{2} a_{5} q^{r}\right] \\
= & \sum_{j} \frac{\left(a_{1} a_{4}\right)_{j}\left(a_{1} a_{3}\right)_{j}\left(a_{3} a_{4}\right)_{j}\left(a_{2} a_{5}\right)^{j}}{(q)_{j}\left(a_{1} a_{3} a_{4} a_{5}\right)_{j}\left(a_{1} a_{2} a_{3} a_{4}\right)_{j}}{ }_{3} \phi_{2}\left[\left.\begin{array}{c}
a_{4} a_{5}, a_{3} a_{5}, a_{1} a_{5} \\
A a_{5}^{2}, a_{1} a_{3} a_{4} a_{5} q^{j}
\end{array} \right\rvert\, A q^{j}\right] .
\end{aligned}
$$

We then transform the ${ }_{3} \phi_{2}$ using Hall's formula [13]

$$
{ }_{3} \phi_{2}\left[\left.\begin{array}{c}
a, b, c \\
d, e
\end{array} \right\rvert\, e d / a b c\right]=\frac{(e / c)_{\infty}(e d / a b)_{\infty}}{(e)_{\infty}(e d / a b c)_{\infty}}{ }_{3} \phi_{2}\left[\begin{array}{c}
d / a, d / b, c \\
d, d e / a b
\end{array} e / c\right]
$$

we obtain, after some simplification, that

$$
\begin{aligned}
& J= \frac{\left(A a_{5} / a_{3}\right)_{\infty}\left(A a_{3} a_{5}\right)_{\infty}\left(a_{1} a_{2} a_{3} a_{4}\right)_{\infty}\left(a_{1} a_{3} a_{4} a_{5}\right)_{\infty}\left(a_{2} a_{5}\right)_{\infty}}{\prod_{1 \leq j<k \leq 5}\left(a_{j} a_{k}\right)_{\infty}} \\
& \times \sum_{m, n} \frac{(A)_{n}\left(a_{1} a_{4}\right)_{n}\left(a_{3} a_{5}\right)_{m}\left(a_{1} a_{3}\right)_{m+n}\left(a_{3} a_{4}\right)_{n+m}}{(q)_{n}(q)_{m}\left(a_{1} a_{2} a_{3} a_{4}\right)_{n}\left(A a_{3} a_{5}\right)_{m+n}\left(a_{1} a_{3} a_{4} a_{5}\right)_{m+n}} \\
& \times\left(a_{2} a_{5}\right)^{n}\left(A a_{5} / a_{3}\right)^{m} .
\end{aligned}
$$

If we compare this value for J with that in (3.4) we get a reduction formula of a q-analog of a Kampé de Fériet type function to a single very well-poised series. After some simple change of notation this can be stated as

$$
\begin{align*}
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} & \frac{(A)_{m}(\alpha)_{m}(\beta)_{n}(\delta)_{n+m}(\gamma)_{m+n}}{(q)_{m}(q)_{n}(\eta)_{m}(\alpha \beta)_{n+m}(A \beta)_{m+n}}\left(\frac{\eta \beta}{\delta \gamma}\right)^{m}\left(A \frac{\alpha \beta}{\delta \gamma}\right)^{n} \tag{4.4}\\
= & \frac{(A \alpha \beta / \delta)_{\infty}(\beta \eta / \delta)_{\infty}(\alpha \beta \eta / \delta \gamma)_{\infty}(\beta \eta / \gamma)_{\infty}(A \beta / \gamma)_{\infty}}{(\alpha \beta \eta / \delta)_{\infty}(A \alpha \beta / \delta \gamma)_{\infty}(A \beta)_{\infty}(\eta)_{\infty}(\beta \eta / \delta \gamma)_{\infty}} \\
& \times{ }_{8} W_{7}\left(\frac{\alpha \beta \eta}{q \delta} ; \frac{\eta}{A}, \frac{\alpha \beta}{\delta}, \frac{\eta}{\delta}, \alpha, \gamma \mid A \beta / \gamma\right) .
\end{align*}
$$

Acknowledgment. The authors wish to acknowledge with thanks remarks made by Professors D. Masson and M. Rahman which resulted in an improved version of this paper.

References

[1] W. A. Al-Salam and L. Carlitz, Some orthogonal g-polynomials, Math. Nachr., 30 (1965), 47-61.
[2] W. A. Al-Salam and T. S. Chihara, Convolution of orthogonal polynomials, SIAM J. Math. Anal., 7 (1976), 16-28.
[3] W. Allaway, The identification of a class of orthogonal polynomial sets, Ph.D. Thesis, University of Alberta, Edmonton, Canada, 1972.
[4] G. E. Andrews, q-series: Their development and application in analysis, number theory, combinatorics, physics, and computer algebra, CBMS Regional Conference Series, number 66.
[5] G. E. Andrews and R. Askey, Classical orthogonal polynomials, Polynòmes Orthogonaux et Applications, Lecture Notes in Mathematics, vol. 1171, pp. 36-62, Springer-Verlag, Berlin, 1984.
[6] R. Askey, An elementary evaluation of a beta type integral, Indian J. Pure Appl. Math., 14 (1983), 892-895.
[7] _, Beta integrals in Ramanujan's papers, his unpublished work and further examples, to appear.
[8] R. Askey and M. E. H. Ismail, A generalization of titraspherical polynomials, Studies in Pure Mathematics, edited by P. Erdös, pp. 55-78, Birkhäuser, Basel, 1983.
[9] R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Memoirs Amer. Math. Soc. no 319, 1985.
[10] W. N. Bailey, Generalized Hypergeometric Series, Cambridge Univ. Press, Cambridge 1935.
[11] L. Carlitz, Generating functions for certain q-orthogonal polynomials, Collectanea Math., 23 (1972), 91-104.
[12] G. Gasper and M. Rahman, Basic Hypergeometric Series, to appear.
[13] N. A. Hall, An algebraic identity, J. London Math. Soc., 11 (1936), 276.
[14] M. E. H. Ismail, A queueing model and a set of orthogonal polynomials, J. Math. Anal. Appl., 108 (1985), 575-594.
[15] M. E. H. Ismail and D. Stanton, On the Askey-Wilson and Rogers polynomials, Canad. J. Math., 39 (1987), to appear.
[16] M. E. H. Ismail, D. Stanton, and G. Viennot, The combinatorics of the q Hermite polynomials and the Askey-Wilson integral, European J. Combinatorics, to appear.
[17] B. Nasrallah and M. Rahman, Projection formulas, a reproducing kernel and a generating function for q-Wilson polynomials, SIAM J. Math Anal., 16 (1985), 186-197.
[18] M. Rahman, A simple evaluation of Askey and Wilson q-integral, Proc. Amer. Math. Soc., 92 (1984), 413-417.
[19] \ldots._., An integral representation of $a_{10} \phi_{9}$ and contintuous biorthogonal ${ }_{10} \phi_{9}$ rational functions, Canad. J. Math., 38 (1986), 605-618.
[20] D. B. Sears, On the transformation theory of basic hypergeometric functions, Proc. London Math. Soc. (2), 53 (1951), 158-180.
[21] —, Transformations of basic hypergeometric functions of any order, Proc. London Math. Soc. (2), 53 (1951), 181-191.
[22] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.

Received August 21, 1987. Research by the first author was supported by NSERC Canada \#A2975 and research by the second author was supported by NSF grant \#DMS: 8714630.

University of Alberta
Edmonton, Alberta, Canada T6G 2GI

AND
University of South Florida
TAMPA, FL 33620

PACIFIC JOURNAL OF MATHEMATICS
 EDITORS

V. S. VARADARAJAN
(Managing Editor)
University of California
Los Angeles, CA 90024
HERBERT CLEMENS
University of Utah
Salt Lake City, UT 84112
R. FINN

Stanford University
Stanford, CA 94305

HERMANN FLASCHKA
University of Arizona
Tucson, AZ 85721
vAUGHAN F. R. JONES
University of California
Berkeley, CA 94720
Stevenkerckhoff
Stanford University
Stanford, CA 94305

ROBION KIRBY
University of California
Berkeley, CA 94720
C. C. MOORE

University of California
Berkeley, CA 94720
HAROLDStARK
University of California, San Diego
La Jolla, CA 92093

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

(1906-1982)

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY

UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pácific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50 .

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $\$ 190.00$ a year (5 Vols., 10 issues). Special rate: $\$ 95.00$ a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924 (ISSN 0030-8730) publishes 5 volumes per year. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Copyright © 1988 by Pacific Journal of Mathematics

Pacific Journal of Mathematics Vol. 135, No. $2 \quad$ October, 1988
Waleed A. Al-Salam and Mourad Ismail, q-beta integrals and the q-Hermite polynomials 209
Johnny E. Brown, On the Ilieff-Sendov conjecture 223
Lawrence Jay Corwin and Frederick Paul Greenleaf, Spectrum and multiplicities for restrictions of unitary representations in nilpotent Lie groups 233
Robert Jay Daverman, 1-dimensional phenomena in cell-like mappings on 3-manifolds 269
P. D. T. A. Elliott, A localized Erdős-Wintner theorem 287
Richard John Gardner, Relative width measures and the plank problem 299
F. Garibay, Peter Abraham Greenberg, L. Reséndis and Juan José Rivaud, The geometry of sum-preserving permutations 313
Shanyu Ji, Uniqueness problem without multiplicities in value distribution theory 323
Igal Megory-Cohen, Finite-dimensional representation of classical crossed-product algebras 349
Mirko Navara, Pavel Pták and Vladimír Rogalewicz, Enlargements of quantum logics 361
Claudio Nebbia, Amenability and Kunze-Stein property for groups acting on a tree 371
Chull Park and David Lee Skoug, A simple formula for conditional Wiener integrals with applications 381
Ronald Scott Irving and Brad Shelton, Correction to: "Loewy series and simple projective modules in the category O_{S} " 395
Robert Tijdeman and Lian Xiang Wang, Correction to: "Sums of products of powers of given prime numbers" 396

