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A relative width measure in a convex body K in R” for a set © of
directions is a Borel probability measure in X such that the measure
of the intersection of X with each-slab orthogonal to a direction in ©
is equal to the relative width of the slab. Such measures are studied
in connection with the unsolved plank problem of Th. Bang.

0. Introduction. Tarski’s plank problem was solved by Th. Bang [2]
when he showed that if a convex body K in R” is covered by a finite
number of slabs, the sum of their widths is at least the minimum width
of K. Bang conjectured that a stronger, and affine invariant, inequality
should hold; namely, that the sum of the relative widths of the slabs
is at least one (the relative width of a slab is its width divided by the
width of K in the same direction). This is still unsolved.

A relative width measure is a Borel probability measure in K such
that the measure of the intersection of K with any slab is precisely the
relative width of the slab. An example, known to Achimedes, is nor-
malized surface area measure in a ball in R3; another is the projection
of this measure, normalized, in a disc in R2. If such a measure exists
in K, then Bang’s conjecture is true for XK. This observation has been
made several times in the literature, but does not seem to have been
thoroughly investigated.

We study these measures, always with Bang’s conjecture in mind.
For this application, the measures need only have the relative width
property for directions corresponding to the covering slabs, and in fact
a reduction shows that we need only seek them for coordinate direc-
tions. Theorem 1 shows that measures with the latter property always
exist in R?, which generalizes the known special case of Bang’s con-
jecture for two slabs. However, Example 2 shows that even measures
with this weaker property do not generally exist for X in R3.

Section 3 concerns measures with the relative width property for
infinite sets of directions. Here, using Fourier transform techniques
and particularly a method due to K. Falconer, we show (Theorem 3)
that measures with the relative width property for all directions do
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not exist in the ball in R” for n > 3. (After this paper was written, I
learned that G. Schwarz also proves this in [23].) In Theorem 4 we
refine this result, and show that those in the disc in R? and ball in R3
are essentially the only such measures. Sufficiently ‘large’ infinite sets
of directions also guarantee uniqueness of relative width measures,
while in §4 we show that in R? and R3 finite sets of directions do not.

I thank Don Chakerian for many stimulating and helpful discus-
sions on Bang’s plank problem, and for providing some useful refer-
ences; and L. Zalcman for supplying the case n = 3 of Theo-
rem 5.

1. Relative width measures and the plank problem. We shall write
int E and OFE for the interior and boundary of a set E, respectively.

Suppose K is a compact convex set in R”?, and € is a direction
(which we identify throughout with the corresponding unit vector in
R"). We denote by W (K, 6) the width of K in the direction 8; that is,
the distance between two hyperplanes which are orthogonal to 8 and
which support K. If X is a fixed compact convex set, and H is a convex
set, the relative width of H in the direction 6, when W (K, 8) # 0, is

w(H,0) = WHNK,0)/W(K, ).

A slab orthogonal to 6 is the closed set between two hyperplanes
which are orthogonal to 6.

A measure is a non-negative set function, assumed countably addi-
tive unless otherwise stated. Let u be a Borel probability measure in
the compact convex set K, and let © be a set of directions. We say
that u is a relative width measure in K for © if

u( S NK)=w(S,0)

whenever S is a slab orthogonal to some 6 € 8.

Suppose now that © = {6,..., 0;} is a finite set of directions, K is
a compact convex set in R” and S; is a slab orthogonal to 6;, 1 < i < k.
If K C |J;S;, is it true that >, w(S;, 6;) > 1?7 This is Bang’s plank
problem (see [3]). It is an affine invariant form of Tarski’s plank
problem [24], solved by Bang in [2] when he showed that the weaker
inequality

(1) ;W(SiﬂK, 0:) 2 min{W (K, 8)}

holds.
It is not a new observation that relative width measures are relevant
to Bang’s plank problem. This has essentially been noted by G. Hajés
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and A. Rényi [20], D. Ohmann [17] and J. W. Green [12], among

others. For, if u is a relative width measure in K for © = {6y,..., 0},
then
(2) Y uSinK) > u(K)=1= w(Si6:)>1,

i i

as required.

Since there seems to be some confusion about the status of Bang’s
problem, we shall briefly survey attempts to solve it. In [17], D.
Ohmann shows that it suffices to consider a convex body K in R”
covered by 7 slabs Sy, ..., S,, with S; orthogonal to the ith coordinate
axis. Further, a signed relative width measure is constructed in K for
these directions, but this is not enough for the implication (2), even
when u(S; N K) > 0 for each i. These and other remarks on the prob-
lem may be found in [4], where it is also shown that Bang’s conjecture
is true for covers of K by two slabs. Other proofs of this special case
are given in [1] and [15].

Let /; be the length of the longest chord of K parallel to 6;, i =
1,...,k. Then Bang’s proof actually shows that >, W(S;nNK)/l; > 1,
which is stronger than (1). According to a translation, the paper [14]
in Chinese only confirms this result, despite its title. Another attempt
in [18] breaks down; the error is pinpointed in the review by C. A.
Rogers cited under [18].

Lastly, we note variations in the proof of Bang’s result ([6], [10],
special cases in [7], [9]) and the interesting paper of R. Alexander [1]
which relates Bang’s problem for K a square to an unsolved problem
of Davenport.

We begin by considering those properties of u necessary to derive
(2). We actually only need u to be finitely additive and to satisfy
1S NK) < w(sS,0) for each slab S orthogonal to . Assuming only
this, we note that the support of u must lie in X for a straightforward
application to the plank problem. For if K C R?, © contains at least
two directions, and u(R? — K) > 0, it is easy to find slabs S; and
S, orthogonal to any two of these directions such that K C S US>
and u(S, US;) = ¢ < 1, from which we can only deduce that ¢ <
w(Sy, 0;) +w(S,, §,). Now the first two lemmas show that we lose no
generality in making our other stronger assumptions on u.

LEMMA 1. Suppose u is a finitely additive Borel probability measure
in K, such that u(S N K) < w(S, 8) for all slabs S orthogonal to 6.
Then u(S N K) = w(S, 8) for all such slabs.
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Proof. Let S; be any slab orthogonal to 8. We can find two dis-
joint slabs S, and 3, both orthogonal to 6, with K c |J,;S; and
2, w(S;,8) =1. Then

1<) wSiNK) < u(Si NK) +w(Sy, 0) +w(Ss, 6),
i

S0 u(S1NK) 2 1—w(S,, 0) —w(Ss, 0) = w(Sy, 0), giving u(S;NK) =
w(S], 0) as required.

LEMMA 2. Suppose u is a finitely additive probability measure in K,
defined on the algebra s/ generated by sets S N K, where S is a slab
orthogonal to 0, and 0 belongs to a fixed set © of directions. Suppose
also that u(S N K) = w(S, 8) for such sets. Then U can be extended to
a relative width measure in K for ©.

Proof. Let A € &/, Then A = |J7, 4;, where for each i there isa |
polytope P; such that

(intP,')ﬂKC A;Cc PNk,

and moreover for each face of P; there is a 6 € © such that this face
is orthogonal to 6.

For each i, let H; be a finite union of open slabs, each orthogonal
to some 8 € O, such that

P;—intP; C H;,

and the sum of the relative widths of the slabs in H; is less than ¢/m.
Let C; = (P, — H;) N K for each i, and C = Ui%; Ci. Then C is
compact, C C A4, and 1

u(C)>u (UP,-nK) — U (UH,-nK) > pu(A) —e,

where we have used the fact that P, N K, H;NK and C all belong
to &7,

This shows that u is inner regular on & with respect to the compact
sets. By Henry’s extension theorem [22, p. 51, Theorem 16], u can be
extended to a countably additive Borel measure.

REMARKS. (i) The extension provided by Henry’s theorem is unique
if the algebra ./ contains a base for the topology of R”. This will be
the case if © contains » linearly independent directions. However,
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even if &/ does contain a base, there may be more than one relative
width measure in K for © (see Theorem 5).

(it) Given any set © of directions, we may of course define x on the
sets S N K of Lemma 2 by u(S N K) = w(S, 8). However, z may not
extend to the algebra &/; Example 1 shows this.

2. Existence of relative width measures. Here and throughout A de-
notes linear Lebesgue measure in R”.

Suppose K is a convex body in R” and @ is a direction. Let / be
a chord of K meeting the two supporting hyperpltanes to K which are
orthogonal to 6. Define u in X by u(B) = A(BNI)/A(l). Clearly u is
a relative width measure in K for {6}.

If p is a relative width measure in K for ©, and ¢ is a nonsingular
affine transformation, there is a corresponding relative width measure
in ¢(K). Define u¢~! on ¢(K) by

(up™')(B) = u(¢~'(B))

for each Borel set B in ¢(K). If # € 6, and H is a hyperplane or-
thogonal to 6, then ¢(H) is a hyperplane orthogonal to some direction
0'. If & = {6': 8 € B}, it is easy to see that u¢~! is a relative width
measure in ¢(K) for &'.

THEOREM 1. Let K be a convex body in R" and 0, 6, two directions.
Then there is a relative width measure in K for {6, 6,}.

Proof. If n > 2, let P be the span of the directions 8; and 6,, and let
¥ denote projection onto P. Let E be any Borel subset of X for which
¥ is a bijection from E to W(K) (such a set exists; see [16, 4D.13]).
If u is a relative width measure in ¥(K) for {6, 6,}, define /i in K by

A(B) = u(¥(BNE))

for Borel sets B C K. Then i is a relative width measure in K for
{61, 05}. So it suffices to consider the case n = 2.

By using an affine transformation, and the remarks preceding this
theorem, we may assume that 6, and 6, are parallel to the coordinate
axes, and K is contained in the unit square 7 and meets all its sides.
Let a;, a; be the x-coordinates of any two points in the intersections
of 8K with the bottom and top sides of I, respectively, and b;, b, the
y-coordinates of any two points in the intersections of 4K with the
right and left sides of I, respectively. The four points so obtained
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form the vertices of a quadrilateral Q C K (which may degenerate to
a triangle).
We consider two cases.

Case (i) by < by and a; < a,, or by > by and a; > a,. Let [,
1 < i < 4, be the sides of Q (which cannot in this case be degenerate)
labelled clockwise with /| the segment joining the points (a;,0) and
(0,5,). Let m be the line segment joining the points (a,, 5;) and
(a3, by). For Borel sets B in K define

K(B) = [a1b24(B N 11)[A(h)] + [ax(1 — b)A(B N b) /A(L)]
+[(1 = ap)(1 = b)A(B N 1) /A(3)]
+[(1 = a))biA(B N 1) /A(l4)]
+ (a2 — a1)(b2 — b1)A(B N m)/A(m)].

Of course, u is the sum of suitable multiples of A restricted to the
line segments /; and m. To check that M 1s a relative width measure in
K for the coordinate directions is now simply a matter of computation.

Case (ii) b; > b, and a, > ay (or b, < b, and a; < a;). Let [,
1 < i < 4, be the sides of Q as in Case (1). Since m may not be
contained in @, and even if it is, & as defined above does not work,
we use instead the two diagonals d; (joining (a1,0) and (a,, 1)) and
d, (joining (0, b,) and (1, b;)).

We seek non-negative multiples «; and B; of A normalized on /; and
d;, respectively, such that the sum of these measures is the required
relative width measure.

Assuming b; > b, and a, > a,, and considering slabs of the form
{(x,y): 0<x <c, c <a;} we see that the equation

«

1 Q)
P — —_— =1
a +a2 +ﬂ2

must be satisfied. Slabs of the form {x.y)ia;<x<c,c< a,}.and
{xy)iaa <x<ec,c< 1} yield similar equations, and we obtain
three more by looking at horizontal slabs. In addition, we require

Za,'-i-Zﬂj:l

for a probability measure.
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The equations can be solved by setting #; =0 or §, =0. If §; =0,
we obtain:

o) = ayb1 by /A,

az = ax(1 - b1)(1 - by)/A,,

a3 = (1 —ay)(1 = by)(1 = by) /A,

ag = (1 —a))b1by/A; and

B2 = (by — b2)(a15(1 = by) — axby(1 — by) — ayax(by — by))/A, - Ay,

where Ay = by + ay(b; — by) and Ay = (1 — ay)(b; — by) + (1 — by).

These are the solutions if the second factor I'; in the numerator of
B2 1s non-negative. If not, we set B, = 0, obtaining solutions for «;
from those above by interchanging a, and b,, a, and b, and a; and
as. We also get

B = (a2 — a1)(axb2(1 — a1) — a1y (1 — az) — biby(ay — ay))/A] - AS,

where A’ is the expression corresponding to A;. Denoting the second
factor in the numerator of 8, by I';, we see that I'; + I', = 0, so that
Br1>0ifT <.

If a) = a3y and by = b,, we solve as in Case (i). Degenerate cases
where Q reduces to a triangle may be solved as above, and here the
measure is supported by the boundary of the triangle.

It follows that Bang’s conjecture is true for two slabs, and so Theo-
rem 1 can be regarded as a generalization of this known result. In fact,
only Case (i) of Theorem 1 is needed for this. To see this, suppose
K C §1US,, where S; and S, are slabs orthogonal to the coordinate
axes. Let R = §1 NS, and let Q be the quadrilateral obtained by
drawing tangent lines to the convex hull of K and R at the vertices
of R. Now Q C S US,, and we may assume Q is inscribed in the
unit square. Then Q is as in Case (i) of Theorem 1. Since Q is wider
than K in the coordinate directions, the existence of a relative width
measure in Q gives the result for K.

In fact, the measure from Case (i) of Theorem 1 was found by
analyzing the proof of Bang’s conjecture for two slabs in [15].

In view of the difficulty of finding a relative width measure in X
for two directions, it is surprising that there are convex bodies which
have relative width measures for all directions; namely, the ellipses
in R? and ellipsoids in R (see Theorem 3). It would perhaps be
unreasonable to expect all convex bodies to support such measures,
but the point is that by Ohmann’s reduction of Bang’s problem, we

= o S
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|

|

! only require a relative width measure in a convex body K in R” for
the n coordinate directions. However, we show in Example 2 that this
may not exist, even when n = 3.

I The proof of the following lemma is a slightly modified version of
‘ ([8], Theorem 3), due to K. Falconer, which deals only with absolutely
1 continuous 4.

i LEMMA 3. Suppose K is a compact convex set in R", © is a set of

I directions, and u is a relative width measure in K Jor ®©. Let the centroid
3 of K with respect to the density du be at the origin, and the support
' Junction of K be k(6). Then there is a second-degree homogeneous
b polynomial p(6) such that k?(8) = p(6) for all § € ©.

Proof. Let 6 € ©, let L be the line through the origin in the direction
6, and suppose that v is the projection of pon L. Since u is a relative
width measure in K for {6}, we have

v = (k(0) + k(=6))"12,,

where A, is A restricted to L. Now if f isa ‘ridge function’—a function
on K which depends only on x - 8 = ¢ for all x € K—then

k(8)
/ £(x) du(x) = / £(8)dv(2)
K —k(—8)

k(6)
= (k(0) + k(—0))"! /_ ws) f(t)ar

; ! Since the centroid of K with respect to du is at the origin, we have
0= [/ xdu(x)] -0=/(x-0)d/4(x)
K K
k(0)
= (k(6) +k(—0))“/ tdt,

—k(~6)

giving k(0) = k(-8).
Taking second moments, we get

k(6)
/ (x - 6)2du(x) = (k(0) + k(—8))"! / £2dt = k() /3.
K —k(-6)

e S At

The left-hand side is a second-degree homogeneous polynomial in
0 =(6y,...,6,), giving the result.

ExXAMPLE 1. A convex body T in R? with no relative width measure
! for a certain set of three directions.
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Let T' be the triangle with vertices at the origin, (0, 1) and (1, 0),
and O the set of directions orthogonal to the edges of 7. Suppose u
were a relative width measure in T for ©, and let ¢ be the centroid
of T relative to du. From Lemma 3 we require only the fact that if
¢(0) is the support function of T with respect to ¢, then t(0) =t(-6)
for 6 € ©. From the coordinate directions, we get ¢ = (17, %), which
contradicts ¢(6) = £(—0) for 6 orthogonal to the hypoteneuse of T.

EXAMPLE 2. A convex body U in R3? with no relative width measure
for the three coordinate directions.

Let U be the tetrahedron in R? with vertices at the origin, (1,0, 0),
(0,1,0) and (0,0, 1). If a relative width measure u with centroid c
existed, then, as in Example 1, using the x- and y-directions, ¢ =
(3, %, a) for some a > 0. Since ¢ € U, a = 0, contradicting symmetry
of the support function at ¢ in the z-direction.

Many examples such as those above could be obtained in the same
way. Let us note, however, that there are convex bodies in R3 without
relative width measures for the coordinate directions, to which Lemma
3 cannot be applied. One such is the regular octahedron centered
at the origin, with axes in the coordinate directions. This has all
the required symmetry, and another proof is needed to show that
there is no measure; we omit this here. Despite the non-existence
of a relative width measure for this regular octahedron or for the
tetrahedron in Example 2, Bang’s conjecture is true for 3 slabs covering
these polyhedra orthogonal to the coordinate directions. To see this,
apply Bang’s theorem in its stronger form mentioned in §1.

3. Existence and uniqueness for infinite ©. In this section we apply
Fourier transform techniques to study the existence and uniqueness of
relative width measures in convex bodies for infinite sets of directions.

THEOREM 2. Let K be a compact convex set in R", and © a (necessar-
ily infinite) set of directions with the property that each analytic function
on R" vanishing on each line through the origin parallel to some 0 € ©,
is identically zero. Then if u is a relative width measure in K for ©, U
s unique.

Proof. Suppose y;, i = 1,2, are relative width measures in X for
©. Let f1; be the Fourier transform of u;. Then for d € R* with
d/|d| =6 €O and x - § = ¢, we have

ad) = [ e ) = (e6) + k(-0))" [ i((ejo) e~k gy

Pzt

T S ol e T o o
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as in the proof of Lemma 3, since e~™*¢ is a ridge function. Here
we are assuming that K contains the origin, and k(8) is the support
function of K. It follows that j1;(d) = fi,(d) for each d on a line
through the origin parallel to some 6 € 6. It is known (see 5, p. 272])
that j; is analytic, so by our assumptions i; — i is identically zero.
Since a measure is uniquely determined by its Fourier transform [S5,
Theorem 8.2.4], the result follows.

ReEMARK. In R2, any infinite set of directions satisfies the condi-
tions of Theorem 2. In R3 more is required, as easy examples show;
however, a set of directions which is infinite in each of an infinite set
of planes would do.

The following result was first proved in [23], in the language of
probability theory.

THEOREM 3. There is a relative width measure v, in the unit ball B"
in R” for the unit sphere, S"~!, the set of all directions, if and only if
n=2or3.

Proof. Let d € R", d/|d| = 6 and x - 8 = t. Then the Fourier
transform 7, of v, must satisfy

. l Y
)= [ e () =5 [ et

_ {(Sinldl)/ldl (|d] #0),
1 (Id] = 0).

For n = 2, this is the Fourier transform of the function

(P2 (x| < 1),
§(x) = {0 (x| > 1),

so that v, is the measure with this density function (and is therefore
absolutely continuous with respect to Lebesgue measure in R?).

For n = 3, it is known (see, for example, [11, p. 199]) that 73 is
the Fourier transform of the distribution é(|x| — 1)/4=, so that v3 is
normalized surface area measure in B3.

If n > 3, the Fourier transform of o, is known, since it appears in
the solution of the wave equation [11, pp. 197-9], and is a distribution
of higher order and not a measure. However, a more straightforward
way to see that no measure exists for n > 3 is as follows. Suppose
v, to exist, and let u be the projection of v, onto any 3-dimensional
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coordinate plane L, so that for Borel sets B in L, we have u(B) =
Vn(B x R"73). Then u is a relative width measure in B3 for S2, so
that 4 = v3 by Theorem 2. By the above, the support of v lies in S2,
so the support of v, is contained in (§% x R"~3) N B", which lies in
R3 x {0}, and hence in a coordinate hyperplane. This is impossible,
since v, must vanish on each hyperplane.

The above theorem uses ideas of K. Falconer [8, Theorem 3] for n =
2 and 3. The existence of v, and v; have long been known. Indeed,
v, is the projection of (v3/2), and that v; has the right properties was
observed by Archimedes!

THEOREM 4. Let K be a convex body in R", and © a set of directions
as in Theorem 2. Suppose a relative width measure u in K for ©
exists, the centroid of K with respect to du is at the origin, and k()
is the support function of K. Then K contains a line segment 1, or a
2-dimensional ellipse E or a 3-dimensional ellipsoid E, such that k(6)
agrees with the support function of | or E, respectively, for 6 € ©, and
W is either

(1) normalized linear Lebesgue measure in 1, or

(ii) the canonical relative width measure in E obtained by a suitable

affine transformation of v, or v, respectively.

Proof. Lemma 3 shows that k%(8) = p(6) for 6 € ©, where p(8) is
a second-degree homogeneous polynomial in . It follows that k(6)
agrees with the support function of an m-dimensional ellipsoid for
6 € ©, for some m with 1 < m < n. (For the non-degenerate case
m = n, the proof is given in [19, p. 825, second paragraph]. In the de-
generate case, suppose p(f) contains only the variables 6,...,8,, for
m < n. Then there is an m-dimensional ellipsoid E in R” whose sup-
port function 4 (6) satisfies A2(6) = p(6). Now note that the support
function of E regarded as a subset of R” is still #(6).) By taking an
affine transformation we may assume that this ellipsoid is B™. There-
fore u has the relative width property in B™ for ©, and even though
the support of u may a priori not lie inside B™, we may use Theo-
rems 2 and 3 to see that m < 3 and u is an affine image of v, in B2
or v3 in B3; except in the degenerate case m = 1, when k(0) agrees
with the support function of a line segment for € © and u must be
normalized linear Lebesgue measure on this segment (this is the case
n =1 in Theorem 3).
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Since the support of x4 must lie inside K, we see that K contains the
line segment, ellipse or ellipsoid, completing the proof.

Theorem 4 goes quite far in characterizing relative width measures
for infinite ©. Although constraints are also placed on K, it need
not actually be an ellipsoid. To see this, let © be an infinite set of
directions in R? which is sparse enough to allow the existence of a
convex body K, containing B2 but different from B2, such that for
0 € ©, K and B? have common supporting lines parallel to 6.

4. Uniqueness for finite ©. The results of §3 raise the question
whether certain finite sets of directions might force uniqueness of the
corresponding relative width measures. The next theorem uses a result
from the theory of Radon transforms to show that this is not so, at
least in dimensions two and three.

THEOREM 5. Let n = 2 or 3, and let © be a finite set of directions in
R”. Then there are two different relative width measures in B" for ©.

Proof. Let n > 2. Denote by H(t, 0) the hyperplane in R" orthog-
onal to @ at distance |¢| from the origin. By [13, Proposition 7.6], if
K is any compact set there is a function f supported in K, infinitely
differentiable on K and not identically zero, such that

/ F(x)dm(x) =0
H(1,8)

for all ¢ and 6 € ©, where m is (n — 1)-dimensional Lebesgue measure
in the hyperplane H(t, 9).

To deal with the case n = 2, take K = B2 and let f be any such
function; then f is bounded, |f(x)| < M say. Let g(x) be the density
function for the measure v, (see Theorem 3), and note that g(x) >
(1/2n) for x € int B2, It follows that if we define

u(E) = /E (8(x) — (f (x)/22M)) dx

for Borel sets E in B2, then u is a Borel measure in B2 which is
different from v,.

Let @ € ©, and let S be the slab orthogonal to 8 bounded by the
hyperplanes H(¢,, 8) and H(t,, 8). Then

u(s) = /S g dx — o /S £(x)dx

1 h2 ~
2nM /, /H(w) f(x)dm(x)dt = 12(S),

so that u is a relative width measure in B? for ©, as required.

=1,(S) -
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Now let n = 3. If f is a spherical surface harmonic of order n on
S2, and 6 is a direction in R? such that f() = 0, then

, / fdi, =0,
S2NH(1,0)

where 4, is normalized linear measure in the circle S2NH (¢,0). (This
follows from [25, p. 100], which uses the expansion of f involving
Legendre polynomials.) Suppose that © = {6:,...,6;} is a finite set
of directions. By [21, §18], the vector space of (pure) harmonics on
S? of order n has dimension 21+ 1. Therefore if 2 +1 > k, by linear
algebra there is a spherical harmonic f of order 7 such that f(6:)=0
fori=1,...,k. If |f| < M on S? and E is a Borel set in B, we put

u(E) = /E (= £ M) dg(x),

The proof that u is a relative width measure in B3 for © which is
different from v3 now follows that from the case n = 2 above.

It remains open whether there is a relative width measure in B,
n 2 4, for the coordinate directions (or any finite set of directions).
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