Pacific Journal of Mathematics

THE GEOMETRY OF SUM-PRESERVING PERMUTATIONS

F. GARIBAY, PETER ABRAHAM GREENBERG, L. RESÉNDIS AND JUAN JOSÉ RIVAUD

Vol. 135, No. 2

October 1988

THE GEOMETRY OF SUM-PRESERVING PERMUTATIONS

F. GARIBAY, P. GREENBERG, L. RESENDIS AND J. J. RIVAUD

Geometric characterizations of the semigroup of permutations which preserve convergence of series are presented.

1. Introduction. A well-known result of Riemann asserts that the sum of a conditionally convergent series may be changed to any value by suitably permuting the terms of the series. We introduce geometric tools to prove, among other results, that the set S of permutations which do not change the value of any convergent series is exactly the set of permutations which fix a type of asymptotic density of subsets of the natural numbers (Theorem 1.6).

Several authors ([Le], [A], see Schafer's survey article [Sch]) have given characterizations of the set S of permutations. The ideas of Levi [Le] are combinatoric in nature. Those of Agnew, on the other hand, come from the theory of summability of series; see e.g. Chapter III of [H], especially Theorems 1-3 of Schur and Toeplitz. In fact, consideration of Theorem 1 leads to certain geometric notions (Definitions 1.2 and 2.1) with which we express our characterizations of S.

1.1. NOTATION. If (a_i) is a sequence of real numbers, $\sum a_i$ denotes the limit of partial sums $\lim_{n\to\infty} \sum_{k=1}^n a_i$. Let $\mathscr{C} = \{(a_i): \sum a_i \in \mathbf{R}\}$ be the set of convergent series.

Let P denote the group of permutations of the natural numbers $N = \{1, 2, ...\}$. If $\sigma \in P$ and (a_i) is a sequence, $\sigma(a_i)$ is the sequence whose *i*th term is $a_{\sigma^{-1}(i)}$. Let

$$S^* = \{ \sigma \in P : (a_i) \in \mathscr{C} \text{ implies } \alpha(a_i) \in \mathscr{C} \},\$$

$$S = \left\{ \sigma \in S^* : (a_i) \in \mathscr{C} \text{ implies } \sum(a_i) = \sum \sigma(a_i) \right\}.$$

It is proven in [Sch] that $S = S^*$; we see this as Corollary 3.5. Note, however, that S and S^* are clearly semigroups.

Last, #X denotes the cardinality of a set X, and if $n, m \in \mathbb{N}$, $n \leq m$, then $I(n, m) = \{n, n + 1, ..., m\}$.

We now give definitions necessary for the statement of our main results.

1.2. DEFINITION. Let $N = \{n_1 < \cdots < n_s\}$ and $M = \{m_1 < \cdots < m_s\}$, be subsets of the natural numbers. We say that M and N are collated if either $m_1 < n_1 < m_2 < n_2 < \cdots < m_s < n_s$ or else $n_1 < m_1 < n_2 < m_2 < \cdots n_s < m_s$. We say that M and N are separated if either $m_s < n_1$ or $n_s < m_s$. We say that M and N are separated or collated will imply that #M = #N.

1.3. DEFINITION. If $\sigma \in P$, σ satisfies condition A if there exists a natural number H so that if N and M are collated, and σN , σM separated, then #N = #M < H.

1.4. DEFINITION. Let $K = \{K_1 < K_2 < \cdots\}$ be an infinite subset of the natural numbers, and let $B \subseteq K$. Let $\alpha \in [0, 1]$. Then the asymptotic density of B in K is α and we write $D_K(B) = \alpha$ if, given $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if m - n > N,

$$\left|\frac{\#(B\cap\{K_i\}_{i=n+1}^m)}{m-n}-\alpha\right|<\varepsilon.$$

Note that $D_K(B)$ may not exist. If $\sigma \in P$, so that for all pairs $B \subseteq K$ so that $D_K(B)$ exists we have $D_{\sigma K}(\sigma B) = D_K(B)$, we say that σ preserves asymptotic density.

1.5. THEOREM. If $\sigma \in P$, then $\sigma \in S$ if and only if σ satisfies condition A.

1.6. THEOREM. If $\sigma \in P$, then $\sigma \in S$ if and only if σ preserves asymptotic density.

It seems difficult (see Example 1.8 and [St]) to arrive at combinatorial descriptions of the group G of elements of S whose inverses also are in S. However, Theorem 1.6 has the following corollary:

1.7. COROLLARY, $\sigma \in G$ if and only if, given $B \subseteq K$, $D_K(B)$ is defined if and only if $D_{\sigma K}(\sigma B)$ is, and $D_K(B) = D_{\sigma K}(\sigma B)$.

1.8. EXAMPLE. Let $\sigma_n: I(1, 2n) \to I(1, 2n)$ be defined by

 $\sigma_n(2i+1) = i+1, \qquad \sigma_n(2i) = n+i.$

Then σ_n separates the (collated) odd and even numbers in I(1, 2n). Further, using the graph of σ (see 2.1) one sees that σ_n^{-1} never separates collated sets whose cardinality exceeds 2.

Let $\sigma \in P$ be defined as σ_1 on I(1, 2), σ_2 on I(3, 6), σ_3 on I(7, 12)on so on. By Theorem 1.5, $\sigma \notin S$, but $\sigma^{-1} \in S$. (Note also that $D_N(2N) = \frac{1}{2}$, but that $D_N(\sigma 2N)$ is not defined.) Further, let τ be defined as σ_1 on I(1, 2), σ_2^{-1} on I(3, 6), σ_3 on I(7, 12), σ_4^{-1} on I(13, 20)and so on. Then neither τ nor τ^{-1} is in S.

1.9. ACKNOWLEDGMENTS. This work was motivated, in part, by A. Weil's book [W]. Also, we thank Adrian Alcantar for discussion.

1.10. ORGANIZATION. In §2 we introduce the graph of a permutation and establish some results. In §3 the idea of total family helps complete the proof of 1.5. In §4 we discuss asymptotic density, and its relation with equidistribution.

2. The graph of a permutation.

2.1. DEFINITION. Let $\sigma \in P$. Consider, in the plane $\mathbb{R} \times \mathbb{R}$ the polygonal path obtained by connecting the points $(i, \sigma(i))$ and $(i+1, \sigma(i+1))$ for all *i*. This path is the graph of a function called $g(\sigma)$. The path is called the graph of σ .

2.2. **PROPOSITION.** If $\sigma \in P$, the following are equivalent:

- (i) there exists $H \in \mathbb{N}$ so that $\#(g(\sigma)^{-1}(r)) < H$ for all $r \in [1, \infty)$.
- (ii) σ satisfies condition A.

(iii) There exists $H' \in \mathbb{N}$ so that, given $n, m \in \mathbb{N}$, if $\sigma^{-1}I(n, m)$ is written as the union $\bigcup_{j=1}^{s} I(n_j, m_j)$ with $m_j < n_{j+1} - 1$, then $s \leq H'$ (*R. P. Agnew, see* [Sch]).

To prove 2.2 we use the following lemma, whose proof we leave for the reader.

2.3. LEMMA. If σ does not satisfy condition A then there is an increasing sequence $K_1 < K_2 < \cdots$ of natural numbers, and sequences $\{A_i\}, \{B_i\}$ of subsets of N so that

(i) A_i , B_i , $\sigma(A_i)$, $\sigma(B_i) \subseteq I(K_i, K_{i+1})$,

(ii) A_i and B_i are collated, and σA_i and σB_i are separated, with $\sigma a < \sigma b$ for $a \in A_i$, $b \in B_i$,

(iii) $#A_i < #A_{i+1}$ for all *i*.

Proof of 2.2. (i) \Rightarrow (ii) Let $\sigma \in P$ so that σ does not satisfy condition A; there exist $\{A_i\}$, $\{B_i\}$, $\{K_i\}$ as in Lemma 2.3. For each *i*, let $M_i = \min\{\sigma(b): b \in B_i\}$ and $m_i = \max\{\sigma(a): a \in A_i\}$, and set $r_i = (m_i + M_i)/2$. Since $\sigma(a) < r_i < \sigma(b)$ for $a \in A_i$, $b \in B_i$ we have that $g(\sigma)^{-1}(r_i) \ge \#A_i$. By 2.3 (iii), 2.2 (i) does not hold.

(ii) \Rightarrow (i) Let $\sigma \in P$, and consider the function $g(\sigma)$. Local maxima and minima of $g(\sigma)$ occur only at natural numbers; further, a value $n \in \mathbb{N}$ can occur at most once as a local maximum or minimum of $g(\sigma)$. Thus, given $r \in [1, \infty]$, we can perturb r slightly, to r', so that r' is not a local maximum or minimum of $g(\sigma)$, and further $|\#g(\sigma)^{-1}(r) - \#g(\sigma)^{-1}(r')| \leq 1$.

Let $g(\sigma)^{-1}(r') = \{x_i: i = 1, ..., n\}$ with $x_i < x_{i+1}$. For each *i*, there exist $a, b \in \mathbb{N}$, $a < x_i < b$, so that $\sigma(a) < r' < \sigma(b)$; let a_i (resp. b_i) be the sup (resp. inf) of all such *a* (resp. *b*). Then the sets $A = \{a_{2i+1}\}$, $B = \{b_{2i+1}\}$ are disjoint, collated and σA and σB are separated, and $\#A = \#B > \frac{1}{2}(\#g(\sigma)^{-1}(r')) - 1$. Thus if the $\#g(\sigma)^{-1}(r)$ are unbounded, σ does not satisfy condition A.

(i) \Rightarrow (iii) Let $\sigma \in P$, with H as in 2.2 (i), and $n, m \in \mathbb{N}$. Suppose that $\sigma^{-1}I(n,m) = \bigcup_{i=1}^{s} I(n_i,m_i)$ with $m_i < n_{i+1} - 1$. By continuity, $g(\sigma)^{-1}[n,m] = \bigcup_{j=1}^{k} [x_i, y_i]$ (where [a, a] denotes $\{a\}$ if necessary), and k < s. But

$$K < \#\{x_i, y_i, i = 1, ..., K\} = \#(g(\sigma)^{-1}(n) \cup g(\sigma)^{-1}(m)) < 2H,$$

so S < 2H.

(iii) \Rightarrow (ii) Let $\sigma \in P$, and suppose that A and B are collated, and σA and σB separated, with $\sigma(a) < \sigma(b)$ for $a \in A$, $b \in B$. Let $n = \sup\{\sigma(a): a \in A\}$. Then $\sigma^{-1}I(1,m) = \bigcup_{j=1}^{s} I(n_j,m_j)$ with s > #A. Hence if condition A is not satisfied, neither is 2.2 (iii).

This completes the proof of 2.2. We now prove part of Theorem 1.5. Actually, this is the same proof after the first sentence, as given in [Sch]; we include it because it is short, and for completeness.

2.4. **PROPOSITION.** If $\sigma \in P$ and σ satisfies condition A, then $\sigma \in S$.

Proof. We show that if σ satisfies 2.2 (iii), then $\sigma \in S$. So, let $H' \in \mathbb{N}$ so that if $n, m \in \mathbb{N}$ and $\sigma^{-1}I(m, n) = \bigcup_{i=1}^{s} I(m_i, n_i)$ with

 $m_j < n_{j+1} - 1$, then s < H'. Let $\varepsilon > 0$; we show that there exists an $N \in \mathbb{N}$ so that if $n \ge N$,

$$\left|\sum_{i=1}^n a_i - \sum_{i=1}^n a_{\sigma^{-1}(i)}\right| < \varepsilon.$$

Since $\sum a_i \in R$, there is some M so that if $n, m \ge M$, $\left|\sum_{i=m}^n a_i\right| < \epsilon/2H'$. Let $N = \max\{\sigma(1), \sigma(2), \ldots, \sigma(M), M\}$. Note that if n > N, we can write $\sigma^{-1}I(1, n)$ as the disjoint union $\sigma^{-1}I(1, n) = I(1, m_1) \cup \bigcup_{i=2}^k I(m_i, n_i)$ where $M \le m_1 \le n$. Further, K < H'.

Therefore, if n > N we have

$$\left|\sum_{i=1}^{n} a_i - \sum_{i=1}^{n} a_{\sigma^{-1}(i)}\right| = \left|\sum_{i=1}^{m_1} a_i - \sum_{i=m_1+1}^{n} a_i - \left(\sum_{i=1}^{m_1} a_i + \sum_{j=2}^{k} \sum_{i=m_j}^{n_j} a_i\right)\right|$$
$$\leq \left|\sum_{i=m_1+1}^{n} a_i\right| + \sum_{j=2}^{k} \left|\sum_{i=m_j}^{n_j} a_i\right| \leq \varepsilon/2H' + H'\varepsilon/2H' < \varepsilon.$$

3. Complete families. Recall that $\mathscr{C} = \{(a_i): \sum a_i \in \mathbf{R}\}$.

3.1. DEFINITION. If $B \subseteq \mathscr{C}$, B is a complete family if given $\sigma \in P$, $\sigma \notin S$ there exits $(b_i) \in B$ such that $\sum_{i=1}^{\infty} b_{\sigma^{-1}(i)}$ is undefined or unequal to $\sum b_i$.

3.2. DEFINITION. Let (a_i) be a sequence, and $K = \{K_i : K_i \in \mathbb{N}, K_i < K_{i+1}\}$ an infinite subset of N. By $K(a_i)$ we mean the sequence b_i , where $b_i = a_j$ if $i = K_j$, $b_i = 0$ if $i \notin K$. Let $E(a_i) = \{K(a_i) : K \subseteq \mathbb{N} \text{ infinite}\}$.

3.3. PROPOSITION. Let $(a_i) \in \mathcal{C}$ so that $(|a_i|) \notin \mathcal{C}$. If σ does not satisfy condition A, there exists $K \subset \mathbb{N}$ so that $\sigma(K(a_i)) \notin \mathcal{C}$.

Proof. We can assume that $a_{2j} \ge 0$, $a_{2j+1} \le 0$; if not, insert zeros in the sequence (a_i) , obtaining (by "dilution", **[H]**) a $(b_i) = K(a_i)$ so that $b_{2j} \ge 0$, $b_{2j+1} \le 0$. Let j_n , $n \ge 1$, be the smallest natural number so that $\sum_{i \le j_n} a_{2i} > n$ and $\sum_{i \le j_n} a_{2i+1} < -n$. Since $\lim_{n\to\infty} a_n = 0$, $\lim(j_n - j_{n-1}) = \infty$. By Lemma 2.3, there exist pairwise disjoint subsets $A_n, B_n \subseteq N$ so that A_n, B_n are collated, $\sigma A_n, \sigma B_n$ are separated, so that $\#A_n > j_n - j_{n-1}$, and such that if $a \in A_i$, $a' \in A_{i+1}$, $b \in B_i$, $b' \in B_{i+1}$ then a < a', b' and b < a', b'. Let $f_n: I(2_{j_{n-1}} + 1, 2_{j_n}) \to$ $A_n \cup B_n$ be an order preserving one to one map taking even numbers to A_n and odd numbers to B_n . Let $K = \bigcup_{n=1}^{\infty} \text{Image}(f_n)$. It is not hard to see that the points of accumulation of the partial sums of $\sigma K(a_i)$ include 0 and 1.

Proof of 1.5. This is immediate from 3.3 and 2.3, as are:

3.4. COROLLARY. If $(a_i) \in \mathcal{C}$, $(|a_i|) \notin \mathcal{C}$ then $E(a_i)$ is a complete family.

3.5. Corollary. $S = S^*$.

With respect to 3.4, the $E(a_i)$ are not *minimal* complete families. (For example, $E(a_i) - \{N\}$ is complete.) However, we have the following:

3.6. PROPOSITION. There are no countable complete families.

Proof. Let, for j > 1, $j \in \mathbb{N}$, $(a_i^j) \in \mathscr{C}$. We will prove that there exists $\sigma \in P$, $\sigma \notin S$ so that for all j, $\sum a_{\sigma^{-1}(i)}^j = \sum a_i^j$.

First note that by Theorem 1.5, given any infinite subset $K \subseteq N$ there exists $\sigma \in P$, $\sigma \notin S$ so that $\sigma(j) = j$ if $j \notin K$. Thus, it suffices to find a sequence $K_1 < K_2 < \cdots$ such that for all j, the series $\sum a_{K_i}^j$ is absolutely convergent.

Now let K_1 be the smallest natural number so that $|a_{K_1}^1| < \frac{1}{2}$. Assuming K_1, \ldots, K_{l-1} defined, let K_l be the smallest natural number, $K_l > K_{l-1}$ so that $|a_{K_l}^1|, |a_{K_l}^2|, \ldots, |a_{K_l}^l| < 2^{-l}$. Then for all j, $\sum_{i=1}^{\infty} |a_{K_i}^j| < 2^{1-j}$.

4. Density. In one direction, the proof of Theorem 1.6 is a straightforward application of Lemma 2.3.

4.1. PROPOSITION. If $\sigma \in P$, $\sigma \notin S$ then there exists $K \subseteq \mathbb{N}$, $A \subseteq K$ so that $D_K(A) = \frac{1}{2}$ but $D_{\sigma K}(\sigma A)$ is not defined.

Proof. Let A_n , B_n as in Lemma 2.3. Set $K = \bigcup_{n=1}^{\infty} (A_n \cup B_n)$, and $A = \bigcup A_n$. Then $D_K A = \frac{1}{2}$, but $D_{\sigma K}(\sigma A)$ is not defined.

The following completes the proof of 1.6.

4.2. PROPOSITION. If $\sigma \in S$ then if $A \subseteq K \subseteq \mathbb{N}$ and $D_K(A) = \alpha \in [0, 1]$ then $D_{\sigma K}(\sigma A) = \alpha$.

Proof. We first reduce to the case where K = N, as follows. If $K \subseteq N$ is any infinite subset, let $i_K \colon K \to N$ be the unique order preserving bijection. Given $\sigma \in P$, define $\sigma_K \in P$ by $\sigma_K = i_{\sigma(K)}\sigma i_K^{-1}$. If σ satisfies condition A, so does σ_K ; thus $\sigma \to \sigma_K$ is a function from S to S, a homomorphism of semigroups if $K = \sigma K$. Further, if $D_K(A) = \alpha$, $D_N(i_K A) = \alpha$ and $D_{\sigma K}(\sigma A) = \alpha$ if and only if $D_N(\sigma_K(i_K A)) = \alpha$.

So assume that $K = \mathbb{N}$, and $A \subseteq \mathbb{N}$ with $D_{\mathbb{N}}(A) = \alpha$, and let $\sigma \in S$. We begin with a lemma: let H' be the bound guaranteed in Proposition 2.2 (iii). Let $m, n \in \mathbb{N}$ and write $\sigma^{-1}I(n, m) = \bigcup_{i=1}^{k} I(m_i, n_i)$ with $n_i < m_{i+1} - 1$. Let $N \in \mathbb{N}$, and let $L_N = \{i : n_i - m_i + 1 < N\}$. (Note that #I(m, n) = n - m + 1.)

4.3. LEMMA. Given $\varepsilon > 0$ there exists $M \in \mathbb{N}$ such that if n - m + 1 > M,

$$\frac{1}{n-m+1}\sum_{i\in L_N}(n_i-m_i+1)<\varepsilon.$$

Proof. Pick $M \ge H'N/\varepsilon$. Since $\#L_N \ge H'$,

$$\frac{1}{n-m+1}\sum_{i\in L_N}(n_i-m_i+1)<\frac{1}{n-m+1}H'N<\varepsilon.$$

Now we proceed with the proof that $D_N(\sigma A) = \alpha$. That is, let $\varepsilon > 0$. We show that there exists N so that if n - m > N then

$$\left|\frac{\#(\sigma A\cap I(m,n))}{n-m+1}-\alpha\right|<\varepsilon.$$

Since $D_N(A) = \alpha$, there exists an N' so that if n - m > N' then

(4.4)
$$|\#(A \cap I(m, n))/(n - m + 1) - \alpha| < \varepsilon/3H'.$$

By Lemma 4.3 there exists an M so that if n - m > M, then

(4.5)
$$\frac{1}{n-m+1} \sum_{i \in L_{N'}} (n_i - m_i + 1) < \varepsilon/3.$$

Let $N = \max(N', M)$. Since $\sum_{i=1}^{k} n_i - m_i + 1 = n - m + 1$, we obtain the following estimation:

$$\begin{aligned} \left|\frac{\#\sigma A \cap I(m,n))}{n-m+1} - \alpha\right| &= \left|\frac{1}{n-m+1}\sum_{i=1}^{k} \#(A \cap I(m_{i},n_{i})) - \alpha\right| \\ &\leq \left|\sum_{i \in L_{N'}} \frac{\#(A \cap I(m_{i},n_{i}))}{n-m+1}\right| \\ &+ \left|\sum_{i \notin L_{N'}} \frac{\#(A \cap I(m_{i},n_{i}))}{n-m+1} - \alpha \sum_{i=1}^{k} \frac{n_{i}-m_{i}+1}{n-m+1}\right| \\ &\leq \left|\sum_{i \in L_{N'}} \frac{\#(A \cap I(m_{i},n_{i}))}{n-m+1}\right| \\ &+ \sum_{i \notin L_{N'}} \left|\frac{\#(A \cap I(m_{i},n_{i}))}{n-m+1} - \alpha\right| \frac{(n_{i}-m_{i}+1)}{n-m+1} \\ &+ \alpha \sum_{i \in L_{N'}} \frac{n_{i}+m_{i}+1}{n-m+1} \\ &< \varepsilon/3 + H'\varepsilon/3H' + \varepsilon/3 = \varepsilon. \end{aligned}$$

where (4.4) is used to estimate the first and third terms, and (4.5) for the estimation of the second term.

For examples of sets of natural numbers with arbitrary asymptotic density, let us consider the circle, as [0, 1] with 0 and 1 identified. If $a, b \in [0, 1]$, let [a, b] be the interval from a to b in the circle. If a < b, the length l[a, b] = b - a, while if b < a, l[a, b] = 1 - a + b. Let $r \in \mathbf{R}$, and let $nr \in [0, 1]$ be the value of nr modulo 1. Let

$$J_{\{a,b\}}^r = \{n \in \mathbb{N} \colon nr \in [a,b]\}.$$

4.6. PROPOSITION. If r is irrational, $D_N(J_{la,b1}^r) = l[a, b]$.

Proof.

320

$$\frac{\#\left(I(m,n) \cap J_{[a,b]}^r\right)}{n-m+1} = \frac{\#\{k; m < k < n, kr \in [a,b]\}}{n-m+1}$$

The fact that, as n - m tends to ∞ the latter expression approaches l[a, b] is the Weyl Equidistribution Theorem when m = 1; the same proof works for general m (see e.g. [DMc, p. 54]).

4.7. DEFINITION. Let $\sigma \in P$, $a, b \in [0, 1]$, and $r \in \mathbb{R}$ irrational. Let

$$\mu^{\sigma,r}[a,b] = \lim_{n \to \infty} \frac{\#\{[a,b] \cap \{\sigma^{-1}(k)r\}_{k=1}^n\}}{n}$$

when the limit exists.

The theorem of Weyl asserts that if σ is the identity, $\mu^{\sigma,r}[a,b] = l[a,b]$.

4.8. THEOREM. If $\sigma \in S$, $\mu^{\sigma,r}[a, b] = l[a, b]$.

Proof. As in the proof of Proposition 4.6,

$$\mu^{\sigma,r}[a,b] = \lim_{n \to \infty} \frac{\#\{[a,b] \cap \{\sigma^{-1}(k)r\}_{k=1}^n\}}{n}$$

=
$$\lim_{n \to \infty} \frac{\#\{I(1,n) \cap \sigma J_{[a,b]}^r\}}{n}$$

=
$$l[a,b] \quad \text{by Proposition 4.6.}$$

One might well ask: What is the set of $\sigma \in P$ such that $\mu^{\sigma,r}[a,b] = l[a,b]$? For which σ does $\mu^{\sigma,r}$ extend to some measure; when is the limit in 4.7 well defined? And if so, when is the measure continuous, smooth, etc., with respect to the usual Lebesgue measure?

References

- [A] R. P. Agnew, Permutations preserving convergence of series, Proc. Amer. Math. Soc., 6 (1955), 563-564.
- [B] A. Borel, Sur le changement d l'ordre des termes d'une serie semiconvergente, Bulletin des Sci. Math. (2), t. 14 (1890), p. 97.
- (Br) T. J. I'A. Bromwich, An Introduction to the Theory of Infinite Series, 2nd Ed., MacMillan and Co., Ltd., London 1942.
- [Dmc] H. Dym and H. P. Mckean, Fourier Series and Integrals, Academic Press, New York (1972).
- [H] G. H. Hardy, Divergent Series, Oxford Clarendon Press, London (1949).
- [Le] F. W. Levi, Rearrangement of convergent series, Duke Math. J., 13 (1946), 579-585.
- [Sch] P. Schaefer, Sum-preserving rearrangements of infinite series, Amer. Math. Monthly, 88 (1981), 33-40.
- [St] G. S. Stoller, The convergence-preserving rearrangements of real infinite series, Pacific J. Math., 73 No. 1, (1977), 227–231.
- [T] Toeplitz, Über allgemeine lineare Mittelbildungen, Prace matematycznofizyczne, 22 (1911), 113-119.

322 F. GARIBAY, P. GREENBERG, L. RESENDIS AND J. J. RIVAUD

[W] A. Weil, *Elliptic Functions according to Eisenstein and Kronecker*, Springer-Verlag, New York (1976).

Received May 5, 1987 and in revised form December 28, 1987.

Centro de Investigacion y de Estudios Avanzados del I. P. N. Apartado Postal 14-740 Mexico 14, D. F.

EDITORS

V. S. VARADARAJAN (Managing Editor) University of California

Los Angeles, CA 90024 HERBERT CLEMENS University of Utah

Salt Lake City, UT 84112 R. FINN

Stanford University Stanford, CA 94305 HERMANN FLASCHKA University of Arizona Tucson, AZ 85721

vAUGHAN F. R. JONES University of California Berkeley, CA 94720

STEVEN KERCKHOFF

Stanford University Stanford, CA 94305 ROBION KIRBY University of California Berkeley, CA 94720

C. C. MOORE University of California Berkeley, CA 94720

HAROLDSTARK

University of California, San Diego La Jolla, CA 92093

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH (1906-1982) B. H. NEUMANN

F. WOLF

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON UNIVERSITY OF SOUTHERN CALIFORNIA UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF NEVADA. RENO UNIVERSITY OF UTAH NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON OREGON STATE UNIVERSITY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is issued monthly as of January 1966. Regular subscription rate: \$190.00 a year (5 Vols., 10 issues). Special rate: \$95.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924 (ISSN 0030-8730) publishes 5 volumes per year. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Copyright © 1988 by Pacific Journal of Mathematics

Pacific Journal of Mathematics

Vol. 135, No. 2 October, 1988

Waleed A. Al-Salam and Mourad Ismail, q-beta integrals	and the
<i>q</i> -Hermite polynomials	
Johnny E. Brown, On the Ilieff-Sendov conjecture	
Lawrence Jay Corwin and Frederick Paul Greenleaf, Sp	bectrum and
multiplicities for restrictions of unitary representations	in nilpotent Lie
groups	
Robert Jay Daverman, 1-dimensional phenomena in cell-l	ike mappings on
3-manifolds	
P. D. T. A. Elliott, A localized Erdős-Wintner theorem	
Richard John Gardner, Relative width measures and the p	blank problem299
F. Garibay, Peter Abraham Greenberg, L. Reséndis and	Juan José
Rivaud, The geometry of sum-preserving permutations	s
Shanyu Ji, Uniqueness problem without multiplicities in va	alue distribution
theory	
Igal Megory-Cohen, Finite-dimensional representation of a	classical
crossed-product algebras	
Mirko Navara, Pavel Pták and Vladimír Rogalewicz, En	largements of
quantum logics	
Claudio Nebbia, Amenability and Kunze-Stein property fo	r groups acting
on a tree	
Chull Park and David Lee Skoug, A simple formula for ca	onditional Wiener
integrals with applications	
Ronald Scott Irving and Brad Shelton, Correction to: "Lo	bewy series and
simple projective modules in the category \mathbb{O}_S "	
Robert Tijdeman and Lian Xiang Wang, Correction to: "	Sums of products
of powers of given prime numbers"	