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C H U L L P A R K A N D D A V I D S K O U G

Yen's inversion formula for conditional Wiener integrals is very
complicated to apply when the conditioning function is vector-valued.
This paper gives a very simple formula for such integrals. In par-
ticular, we express the conditional Wiener integral directly in terms
of an ordinary (i.e., nonconditional) Wiener integral. Using this new
formula, it is very easy to generalize the Kac-Feynman formula and
also to obtain a Cameron-Martin type translation theorem for general
conditional Wiener integrals.

1. Introduction. Consider the Wiener measure space (C[0, Γ],^*,

mw) where C[0, T] is the space of all continuous functions x on [0, T]

vanishing at the origin. For each partition τ = τn = {t\9...,tn} of

[0, T] with 0 = t0 < tι < < t n = T, let Xτ: C[0, T] -> R" be

defined by Xτ(x) = (x(t\),...,x(tn)). Let 3Sn be the σ-algebra of

Borel sets in R n . Then a set of the type

/ = {x e C[0, T]: Xτ{x) eB} = X~

is called a Wiener interval (or a Borel cylinder). It is well known that

(1.1) mw(I)= [
B

where

(1.2) _ ^ _

= 0.

mw is a probability measure defined on the algebra & of all Wiener
intervals and mw is extended to the Caratheodory extension ^* of &.
Let ^ be the cr-algebra generated by the set {X~ι (B): B e &n} with τ
fixed. Then, by the definition of conditional expectation (see Tucker
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[6] and Yeh [8]), for each Wiener integrable function F(x)

(1.3) μτ(B) = [ F(x)mw(dx) = ί E(F\^τ)mw(dx)

= f E{F(x)\Xτ{x)=ξ)Pxχdξ),B< =
JB

where Pχτ(B) = mw{χ-\B)), and E(F(x)\Xτ(x) = ζ) is a Borel mea-
surable function of <f which is unique up to Borel null sets in R".
According to Yeh [8], the conditional expectation E(F(x)\Xτ(x) = <f)
can be found by the Fourier transform

(\A)E(F(x)\Xτ(x)=ξ)

» f
where m^ is Lebesgue measure on Rn. Using the above inversion
formula (changing the conditional expectation into non-conditional
expectation) for the special case Xτ{x) = x(T), i.e., Τ consists of the
endpoint only, Yeh [9, 10] obtains very useful results including the
Kac-Feynman integral equation and the conditional Cameron-Martin
translation theorem. However, Yeh's inversion formula (1.4) is very
difficult and complicated to apply for general Τ'S. Some results are
obtained by Chang and Chang [3] for the latter case using Yeh's for-
mula (1.4), but these results are somewhat limited in scope and the
calculations are quite lengthy in general.

The main purpose of this paper is to develop a new simple formula
for the conditional Wiener integral when the conditioning function is
vector-valued and then to obtain a general form of the Kac-Feynman
formula and a general conditional Cameron-Martin translation theo-
rem.

We thank the referee for very helpful suggestions, which have led
to the present version of this paper.

2. A simple formula for conditional Wiener integrals. For a given
partition Τ = τn of [0, T] and x £ C[0, T], define the polygonal func-
tion [x] on [0, T] by

(2.1)

0-1 <t <tj,
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Similarly, for each £* = (ξι,.. .,ξn)eR n, define the polygonal function
[<f]ofcfon[0,:r]by

(2.2) ^ f ^ ^ ^
tj-\ <t <tj, j =l,...,n and ξ0 = 0.

Then both [x] and [<f] are continuous on [0, Γ], their graphs are line
segments on each subinterval [tj-\, tj], and [x](tj) = x{tj) and [ζ]{tj) =

ξj at each tj e Τ.
The following theorem gives an interesting observation for the pro-

cess x(t) - [x](0 While the process [x](t) has been widely used to
approximate the Brownian motion x(t), recognizing x(t) — [x](t) as
a Brownian bridge on each subinterval is new as far as the authors
know.

THEOREM 1. If{x(t),0 < t < T} is the standard Wiener process,
then the process {x(t)-[x](ή, 0<t<T} andXτ(x) = (x(tι),..., x{tn))
are (stochastically) independent

Proof. I n v i e w o f ( 2 . 1 ) , w e m a y w r i t e f o r tj-\ <t<tj

( 2 . 3 ) x(t) - [x](t) = (x(t) -JC(O-I)) " ^ — ^ W j ) -x(tj.i)).
ij i

Note that x{t) — [x](t) is a Brownian bridge process on [tj-χ, tj] van-
ishing at tj-χ and t j. Thus Y = {x(t) - [x](t), tj-ι < t < tj} is
independent of the process {x(t): t £ [0, ί/-i] U [ί/, T]}. In particular,
Y is independent of Xτ{x) = (x(t\),..., x{tn)). Since j was arbitrary,
the proof is complete.

COROLLARY 1. If {x(t),Q < t < T} is the standard Wiener process,
then {x(t) - [x](t), tj-X < t < tj}, j = 1,2,...,/i are independent
Brownian bridge processes.

The following theorem is one of our main results:

THEOREM 2. Let F be any Wiener integrable function on C[0, T].
Then, for every Borel measurable set B in Rn,

(2.4) μτ(B)= ί F(x)mw(dx)

[
B
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Proof. First assume that F is the characteristic function of a Wiener
measurable set A9 i.e., F{x) = XA(X) Then

f XA{x)mw{dx) = mw(AnX-l(B))
JXr-\B)

= / mw(xe A\Xτ{x) =
JB

= / mw(x- [x] + [ξ] € A\Xx{x) =
JB

But, x — [x] and Xτ(x) are independent by Theorem 1. Thus,

[ XA(x)mw(dx) = / mw(x - [x] + [ξ] e A)PXτ(dξ)
xτ~[(B) JB

[
B

Thus, the result holds for the characteristic function of any Wiener
measurable set. The general case follows by the usual arguments in
integration theory.

If F is a Wiener integrable function on C[0, Γ], then from (2.4),
the Radon-Nikodym derivative of μτ with respect to Pχτ is

for a.e. cf in Rw. But (1.3) yields

for a.e. ξ in Rn. Thus E(F(x)\Xτ(x) = ξ) and E[F(x - [x] + [ξ])]
are equal a.e. on Rn. However, while E(F(x)\Xτ(x) = ξ) is always
Borel measurable in ξ by definition, E[F(x - [x] + [ξ])] is Lebesgue
measurable in ζ but not necessarily Borel measurable as the following
example shows.

EXAMPLE 1. Let G be a Legesgue measurable null set in R that is not
Borel measurable. Then the function f(ξ) = ΧO{Ζ) is Lebesgue mea-
surable but is not Borel measurable. Let A = {x e C[0, T]: x(T) e
G}. Then mw(A) = 0. Define F: C[0, T] -• R by F(x) = ΧA(X).

Then F(X) = ΧG(X(T)) and

E[F(x - [x] + [ξ])] = E[XG(x(T) -
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However, if /(<f) is Lebesgue measurable on Rπ, then there exists
a Borel measurable function /(<f) such that /(<f) = /(<f) almost ev-
erywhere. Moreover /(<f) is unique up to Borel null sets. Thus the
following definition makes sense.

DEFINITION 1. If F is a Wiener integrable function on C[0, T]9 then
by E[F(x - [x] + [ξ])] we mean any Borel measurable function of ζ
which is equal to E[F(x - [x] + [ζ])] for a.e. ξ in R".

We thus have the following useful formula, which is much simpler
to apply than the inversion formula (1.4).

THEOREM 3. IfF is a Wiener integrable function on C[0, Γ], then

(2.5) E(F(x)\Xτ(x) = ξ) = E[F(x - [x] +

In particular, if F is also Borel measurable then

(2.6) E(F(x)\Xτ(x) = ξ) = E[F(x - [x] +

The equality in (2.5) {and in (2.6)) means that both sides are Borel
measurable functions of ξ and they are equal except for Borel null sets.

Proof. Equation (2.5) is obvious by the discussion following The-
orem 2 and Definition 1. If F is also Borel measurable, then by the
Fubini Theorem, E[F(x - [x] + [ξ])] is a Borel measurable function
of <f, and hence (2.6) holds.

3. Examples. The following examples show that Theorem 3 above
is indeed quite powerful and very simple to apply.

EXAMPLE 2. Let F(x) = ff' x(t)dt, x e C[0, T]. Then by (2.6) we

x(t)dt\Xτ(x)=ξ) =E
o )

= f E[x{t) - [x]{t) + [<f](0] dt = / [<f](0 dt
Jo Jo

7=1
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In the above calculation, we used the Fubini Theorem to interchange
the order of integration. In particular when n = 1,

which was computed by Yeh [9, pp. 629-631] using (1.4) with n = 1;
the computation was rather lengthy.

EXAMPLE 3. Let JF(jc) = ^{x{t))2dt, x e C[0, T]. Then, again by
(2.6)

EU\x(t)fdt\Xτ{x)=ξ

= Γ E[(x(t))2 + (M(ί))2 + ([ξ](t) f - 2x(t)[x](t)
Jo

+ 2x(t)[ξ](t)-2[x](t)[ζ](t)]dt.

Using the properties E[x(t)] = 0 and E[x(s)x(t)] = min{s, t} repeat-
edly, we obtain:

(x(t))2 dt\Xτ(x) =

j=

n

2 3

In particular when » = 1, E{^ {x{t))2 dt\x{T) = ξ) = T2/6 + ξ2T/3,
which agrees with Yeh's computation [9, 631-632].



SIMPLE FORMULA FOR CONDITIONAL WIENER INTEGRALS 387

EXAMPLE 4. Let F(x) = exp{/0

Γ x(t) dt}, x e C[0, T]. Then

E[cxp{ Tχ(t)dt\\Xτ{x)=ξ)

= E exp

= exp KKO dt E expi / (x(t)-[x](t))dt

It is interesting to note that for each fixed u e C[0, Γ], we have, as
expected,

lim El exp I f x(t) dt \ \Xr(x) = Xz(u)) = exp { f u(t) dt \ .
Ikll-o ^ y0 J J [Jo J

Some of the above examples are also considered by Chang and Chang
[3] using the inversion formula (1.4); their computations are very com-
plicated.

4. A generalization of the Kac-Feynman formula. Under the assump-
tion that V is a nonnegative continuous function on R satisfying the
condition

f V(ξ)e~ξ2/2t dξ<oo for every t > 0,f
JR

Yeh [9] has shown that the function U defined on R x (0, oo) by

(4.1) U(ξ, t) = E (exp j - f V(x(s))ώ| \x(t) =

.(2*r"2exp(-g)

satisfies the Kac-Feynman integral equation

(4.2) U{ξ,t) =
(2nt

•V(t1)U(r],s)dri\ ds,

whose solution is given by
oo

k=0
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where the sequence {U^} is defined inductively by

U0{t.t) =
\J2nt

= f ί ) Γ exp{-^£)V(η)Uk(η,s)dη] ds
Jo \^2n(t-s) J-oo I 2V-s)) J

fork = 0,1,2,.... Thus E(exp{-f t V(x(s))ds}\x(ή = ξ) can be
found using (4.1).

Now, under the same assumptions of V, using Theorem 3, we pro-
ceed to find the multi-conditional expectation

is I x p l - ί V(x{s))ds\\x(ti) =ξi, i =l,...,nj ,

where 0 < ί i < ί 2 <•••<*« = *• F i f S t consider the conditional
expectation for 0 < t\ < t,

(4.3) I = E (exp | - | ' V(x(s))ds}

Then, by Theorem 3, (2.1) and (2.2),

(4.4) / = E [e*p{-/' V

Since the Brownian motion x(t) has stationary increments, it fol-
lows from (4.4) that

/ = E [exp { - f ' ' V (x{u)- j ^

= E (exp | - ^ '' W(x(u))du} \x(t - h) = £ -

where W(x(u)) = V(x(u)+ξι). Next, let

,Z-Zi,t-t1) = I- [2n(t - tfiT112 exp | - | ~



SIMPLE FORMULA FOR CONDITIONAL WIENER INTEGRALS 389

Then, applying (4.1) and (4.2) to (4.5), we obtain that

du-

Since W{η) = V(η + ξχ), we may use the transformation γ = η + ξι to
obtain

''

But this equation is similar to the Kac-Feynman integral equation,
and hence its solution is given by

k=0

where

Uotfi.e-Sx,t-h) = [2n(t -tx- M)

and

du

for k = 0,1,2, In particular the solution U(ξ,t) of the Kac-
Feynman integral equation (4.2) is a special case, namely
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We are now ready to write out an expression for the multi-condition-
al expectation. Using the Markov property of the conditional process
and the multiplicative nature of the exponential function, we may
write

(4.6) -FT V(x(s))ds\\x(ti)=ξi,i =l,2,...,r

= f[E (exp {- Γ V(x(s))ds\ \x(tî ) = ξi-ι,x(ti) = ξ )

/=i

Also, we have

- f V(x(s))ds\\at<x(ί,-)<bh i=\,2,...,n

= Λ fblflU(ξi-i,ξi-ξi-ι,ti-ti-l)dζι---dξn.

5. Translation of multi-conditional Wiener integrals. The Cameron-
Martin Translation Theorem [2, 7] states that if xo(t) = /Q h(s) ds for
all t e [0, T] with h e L2[0, Γ], and if ^ is the transformation of
C[0, T] into itself defined by

Tx (χ)=χ + χ0 for x e C[0, Γ],

then for any Wiener integrable function F on C[0, T] and any Wiener
measurable set Γ

(5.1) ί F{y)mw(dy)= f F{x+ xo)J(xo,x)mw(dx)
JT JT-\T)

where

(5.2) J(xo,x) = e x p l ~ j \h(t))2dt\expl- f J \

{ 2 y o J { Jo J

and JQ h{t) dx{t) is a stochastic integral with mean zero, and variance

(H(T))2 dt. In particular, if Γ = C[0, Γ], then (5.1) becomes:

(5.3) E[F(y)] = E[F(x + xo)J(xo, x)].



SIMPLE FORMULA FOR CONDITIONAL WIENER INTEGRALS 391

Yeh [10] gives a conditional version of (5.3) which states that under
the same conditions as above,

(5.4) E(F(y)\y(T) = ξ) = E(F(x + xo)J(xo, x)\x(T) = ξ- xo(T))

}(T)
exp< — IT

The following is the multi-conditional version of (5.3). Its proof
is very simple and straightforward because our "inversion formula",
Theorem 3, is so simple and easy to apply.

THEOREM 4. Let xo(t) = &h(s)ds for all t e [0, T] with h e
L2[0, T]. If F is any Wiener integrable function on C[0, T], then for
any partition τ = {ίi,... ,tn} of[0, T],

E(F(y)\y(tj)=ζj; 7 = 1 # 1 )

= E(F(x + xo)J{xo, x)\x(tj) = ξj - xo{tj), j = 1,.... n)

-xo(tj-x))2 ,

JLA t ( o o o o-o-i /
where J(XO, X) is given by (5.2).

Proof. By use of Theorem 3 we see that

(5.5) E(F(y)\y(tj) = ξJ$ j = 1,..., «) = E[F(y - [y] + [ξ])].

Now applying (5.3) and noting that [x + Xo](t) = [x](t) + [xo](t) we
have

(5.6) E[F(y - [y] + [<f])] = E[F(x + x0- [x] - [x0] + -

Next we rewrite J(XO, X) in the form

(5.7) J(xox,)=exp|-4/{h{t))2dt\

exp | - y h(t) d(x(t) - [ +

\(t)d([ξ](t)-[xo](t))
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But

(5.8) fh{t)d[x]{t)
Jo

j=X

Similarly,

(5.9) ίT

Jo

On the other hand,

17
^-v Xo(tj) — Xp(tj-\) X{tj) —

Since

. = 1

is a set of independent identically distributed standard normal random
variables, we have that

(5.10)

ii
Now using the expression (5.8), one can easily see that /0Γh(t) d[x](t)
is independent of the process {x(t) - [x](t): 0 < t < T}. Thus,

- [xo](t))

+ xo-[x]-[xo]

• exp I - f\ {t) d(x(t) -
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and exp{- fj h(t) d[x](t)} are independent. Hence, using (5.7), (5.9),
and (5.10), it follows that

E[F(x + x0-[x]-[x0]+[ξ\)J(xo,x)]

[ fT

• exp{- h{t)d{x{t)-
Jo

Therefore, by using (2.5)

^ ^ ( x + X0 - [x] - [X0] + [Ξ])J(XO, X)]

= E ίF(x + xo) exp | - J h(t) dx{t) \ \x{tj) = ξj - xo(tj),

j = \ , . . . , n

exA-X-f\h{t))2dt\

JT r,._f (xO(tj) - Xo(tj^))2

This, together with (5.6) and (5.5), completes the proof.
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