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We consider the sectional curvatures for metric (J* = 1)-manifolds,
and study particularly the general expression of the metric and almost-
product structure in normal coordinates for para-Kaehlerian manifolds
of constant para-holomorphic sectional curvature. We also introduce
models of such spaces.

1. Introduction. A metric (J* = 1)-manifold (cfr. [3], [11]) is a
pseudo-Riemannian manifold (A", g) together with a (1,1) tensor
field J such that J* = 1 and whose characteristic polynomial is
(x — D(x 4+ 1)2(x2 + 1)S with r; + r, + 2s = n; also, the tensor fields
g and J are related by one of the following relations:

(1) g(JX,Y)+g(X,JY) = 0 (then g is necessarily pseudo-Riemann-
ian and r; = ry);

(ii) g is Riemannian and g(JX,JY) = g(X,Y).

In the first case it is said that g is an aem (adapted in the electromag-
netic sense metric), because this situation generalizes in a sense that of
Mishra [8] and Hlavaty [4]; in the second one, g is called arm (adapted
Riemannian metric).

In this note we consider, g being an aem, the J-Kaehler manifolds,
that is (J4 = 1)-manifolds such that VJ = 0, where V is the Levi-
Civita connection of g, and study the J-sectional curvature which
generalizes the usual holomorphic-type sectional curvatures. We de-
fine the spaces of constant J-sectional curvature, and prove a lemma
of Schur type. Also, we obtain explicitly the models corresponding to
the situation of an aem g and J2 = 1.

2. Terminology. We shall use the following terminology:

(J* = 1)-manifold: the pair (M",J), where J is a (1,1) tensor
field such that J* = 1 and whose characteristic polynomial is
(x = 1) (x + 1)2(x2+ 1) with r; + 75 + 25 = n.

e-metric (J* = 1)-manifold: a (J* = 1)-manifold (M",J) together
with an aem, that is a pseudo-Riemannian metric g such that g(JX, Y)
+g(X,JY)=0.
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Riemannian (J* = 1)-manifold: a (J4 = 1)-manifold (M",J) with
an arm, i.e., a Riemannian metric g such that g(JX,JY) = g(X,Y).

The remaining cases have already their own names:

almost para-Hermitian manifold (see Libermann ([7]): it is an e-
metric (J4 = 1)-manifold such that J? = 1, or in other terms, s = 0
(see also Legrand [6]).

Riemannian almost-product manifold: a Riemannian (J4 = 1)-man-
ifold with J2 = 1, or equivalently s = 0.

almost-Hermitian manifold: it is the case of J2 = —1 or equivalently
r; = r, = 0. In this case there is no distinction between aem and arm.

3. J-sectional curvature. We consider first that (M, J, g) is an e-
metric (J4 = 1)-manifold. We have g(JX,Y) + g(X,JY) = 0. Then
necessarily r; = r, = r (see [3]). Let V be the Levi-Civita connection
of g. The curvature operator R(X,Y) : (Q TM) — I'(Q TM) is
defined by

R(X,Y)=Vixy1 - [Vx.Vrl

and we use the following convention for the Riemann-Christoffel ten-
sor field
RX,Y,Z,W)=g(RIX,Y)Z W).

We shall denote also by R the value of R at a generic point x € M.
Then, if X, Y € T, M, we put

KX, Y)=R(X, Y, X, Y).
A subspace E of T, M is said to be non-degenerate if g|E is non-
degenerate. If {X,Y} is a basis of a plane FE of T, M, then FE is
non-degenerate if and only if

g(X. X)g(Y,Y) - g(X,Y)* #£0.

For any non-degenerate plane E of T7,M we define the sectional
curvature as

KX Y)
(X, X)g(Y,Y)-g(X, Y)¥
where {X, Y} is any basis of E; K(X, Y) only depends on E.
Since g(JX, Y)+g(X,JY) =0, then g(X,JX)=0. If X, JX € T, M
are linearly independent, they determine a plane of 7 M that we call

the J-section defined by X. The sectional curvature of {X, JX} is only
defined if g(/X,IX)? # g(zX, I3X)?, where

I=41+7%),  h=31-77),

KXY) =~
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are, respectively, the projectors upon the almost-product and the
almost-complex subbundles of 7Af defined by J. In that case we put
H(X)=K(X, JX), H(X)=K(X,JX),

and say that H(X) is the J-sectional curvature determined by X.

If VJ = 0 we say that (M, g, J) is an e-(J* = 1)-Kaehler manifold.
The characterization of these manifolds is given through the following
results, where we put

F(X,Y) = g(X,JY) = —F (Y, X).

3.1. LeMMA. Let (M, g,J) be an e-metric (J* = 1)-manifold. Then:
4g((VxJ)Y,Z)= —2dF(X,Y,Z) +2dF(X,J*Y,J*Z)
+2dF(JX,JY,J*Z) + 2dF (JX,J?*Y,JZ)
-g(N(Y,Z),J°X) + g(N(JY,JZ),JX)
+ g(N(X,JY),J*Z)+ g(N(JZ, X),J?*Y),

where N(X,Y) = 2{[JX,JY]+J2[X, Y]-J[JX, Y]-J[X,JY]} defines
the Nijenhuis tensor of J.

Proof. We have
4g((Vx)Y,Z)=4g(Vx(JY),Z)+4g(VxY,JZ);

26(VxY,Z) = X(g(Y, 2)) + Y(8(Z, X)) - Z(8(X. Y)) + &([X, Y]Z)

+8(1Z, X1, Y) + g(IZ, Y], X);

dF (X, Y,Z)=X(g(Y,JZ)) - Y(g(X,JZ)) + Z(g(X,JY))
- 8(X. Y1,JZ) + g([X. Z].JY) - g([Y. Z]. J X),

and our claim is obtained directly by application of these formu-
lae. O

3.2. COROLLARY. In an e-metric (J* = 1)-manifold (M, J, g), the
condition VJ = 0 is equivalent to the simultaneous verification of the
following conditions:

(a) N =0;

(b) dF = 0.

Proof. If N = 0 and dF = 0, it is obvious by 3.1 that VJ = 0.
If VJ = 0, then dF = 0, because Vg = 0; also, N = 0 as it is
easily checked from the expression of N, having in mind that V is
torsionless. O
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If (M, g,J) is an almost para-Hermitian manifold and VJ = 0, we
then have a hyperbolic Kaehler manifold (Rasevski [10]), also called
para-Kaehler manifold (Libermann [7]). See also Prvanovi¢ [9] and
references therein. We adopt Libermann’s terminology. The preced-
ing result implies that an e-(J4 = 1)-Kaehler manifold is locally the
product of a para-Kaehler manifold and a Kaehler manifold.

3.3. PROPOSITION. On an e-(J* = 1)-Kaehler manifold we have
R(X,Y,Z,JW)+R(X,Y,JZ,W) = 0.

Proof. By applying the operator R(X, Y), we have

R(X,Y)(g(Z,JW))=0=g(R(X,Y)Z,JW) + g(Z, R(X,Y)JW)
=RX,Y,Z,JW) - g(JZ, R(X,Y)W)
=R(X,Y,Z,JW)+R(X,Y,JZ, W). o

3.4. PROPOSITION. Let (M, J, g) be an e-(J* = 1)-Kaehler manifold.
Then, if H(X) = 0 for all X € TM, we have R = 0.

Proof. We consider the following (0, 4) tensor field Q which gener-
alizes that of the Kaehler case (see [5]):

Q(X,Y,Z,W)=R(X,JY,Z, JW)+R(X,JZ,Y,JW)+R(X,JW,Y, JZ).

From 3.3 and the usual symmetries of R we obtain that Q is totally
symmetric. But Q(X, X, X, X) = 3H(X); whence Q = 0. Now, since
VJ =0, it is immediate to prove that

R(X,Y,X,Y)=R(XIY,IX,IY)+ R(LX 1Y, X, 5Y).
Since J2I = I, J2I; = —I3, the same technique of the Kaehler case
(see [5]) leads to
R(IX, 1Y, IX, 1Y) =0,
R(BX, LY, 13X, 3Y)=0.
Thus, R(X,Y, X,Y) =0, whence R = 0. ]
3.5. CorROLLARY. Let (M, J, g) be an e-(J* = 1)-Kaehler manifold.

If R is a (0,4) tensor field having the usual symmetries of R and also
the one given in 3.3, and if

~ —_—

R(X,JX, X,JX) = H(X)
for all X € TM, then R = R.
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We now define the (0, 4) tensor field R’ on M by

R(XY,ZW)=3{g(X,1Z)g(Y,IW) - g(X,IW)g(Y,IZ)
- g(X,JIZ)g(Y,JIW) + g(X, JIW)g(Y, JIZ)
—2g(X, JIY)g(Z,JIW) + g(X, L Z)g(Y, LW)
—8(X, LW)g(Y, LhZ) + g(X,JLZ)g(Y, J3W)
- 8(X, J3W)g(Y,JIZ)
+28(X, JLY)g(Z, JLW)},

whose properties are given in the following

3.6. PROPOSITION. The field R' has the usual symmetries of the
Riemann-Christoffel tensor and also the symmetry of Proposition 3.3.
The following relations hold:

R(X,Y,XY)
= Heg(X, IX)g(Y,IY) - g(X,IY)* — 3g(X, JIY)?
+8(X, 5X)g(Y, 1Y) — g(X, 3Y)? + 3g(X, JhY)*};
R'(X,JX, X, JX) = g(X,5X)? — g(X,1X)2.

Proof. Immediate.

From this, we deduce the

3.7. PROPOSITION. Let (M, J, g) be an e-(J* = 1)-Kaehler manifold
such that for each x € M, there exists ¢, € R satisfying H(X) = ¢y

Jor every X € Ty M such that g(X, X)g(JX,JX) # 0. Then R = cR/,
where c is the function defined by x — cy. And conversely.

Proof. Since g(X, X)g(JX,JX) = g(X, hX)*—g(X, IX)?, we deduce
from 3.6 that
H(X)=cR'(X,JX X,JX).

Hence (R — cR')(X,JX, X,JX) = 0 for all X such that
g(X, X)g(JX,JX) # 0.

Now, if X verifies g(X, X)g(JX,JX) = 0, then we can choose a se-
quence {X,,} such that X,, — X and

g(Xm, Xm)&(JXm, I Xm) # 0.

In fact, g(X, X)g(JX,JX) is a polynomial in the components of
X whose set of zeros does not contain any open subset. Since
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(R—cR"Y(Xm, JXm, Xm,JXm) = 0 for each index m, we have by conti-
nuity that (R—cR')(X,JX, X, JX) = 0. Then, by 3.5 we have R = cR'.
The converse is obvious. m]

If the e-(J* = 1)-Kaehler manifold (M, J, g) satisfies the conditions
of the above proposition, we say that it is of constant J-sectional cur-
vature c. We have the following result of Schur type.

3.8. THEOREM. Let (M, J, g) be an e-(J* = 1)-Kaehler manifold of
constant J-sectional curvature c. If r,s > 0, or ifr =0, s > 1, or if
r> 1, s =0, then c is a constant function.

Proof. We first choose an orthogonal basis of T, M, {U,,V;, W,
JW;} (i = 1,...,r;j = 1,...,5) such that {U;,V;} is a basis of
lTXM, {Wj,JWj} is a basis of 13TXM, g(U,~, UJ) = —-5,']', g(V,, Vj) =
gWi, W;)=g(UW,JW;) =6, (i,j=1,....,rori,j=1,...,5). If
S is the Ricci tensor field, we have

SXY)= -> RUL X U,Y)+ > RV, X. Vi, Y)

i=1 i=1

N s
+> RW;, X, W;,Y)+ Y R(JW;, X,JW.Y).
i=1 i=1

From this, and applying 3.7, we obtain after a calculation
(1) S(X,Y) = —g—{g(X, Y)+rg(X, 1Y) +sg(X, 5Y)}.

Since R = cR’ and VR’ = 0, we have VxR = X(c)R'. Now, if {e;}
is any orthonormal basis of TxM in the sense that g(e;,e;) = a;d;;
with a; € {—1, 1}, we have by direct application of the second Bianchi
identity

(2) > {X(c)S(aiei, e) — 2e;(c)S(X, a;e;)} = 0.
i
Now,
S S(X, ajei)e; = %(X +rIX + shX),
because of (1). Therefore, from (2):
(r*+s2+r+s—-1)X(c?) - riX(c?) - shX(c?) = 0.
If X =[X, then
(rP+s2+s—-1X(c?) =0;
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If X =[3X, then
(rP+s*+r-1)X(c*)=0.
Then, if r,s >0,0orif s =0, r> 1, orif s > 1, r = 0, we obtain
X =1X(c?) +LX(c?)=0.

Thus c2, and therefore c, are constants. O

In the conditions of the preceding Theorem, the scalar curvature is
given by the function

p=c{r(r+1)+s(s+ 1)}

Thus, if r =5 = 1, we have p = 4c.

3.9. THEOREM. Let (M, J, g) be an e-(J* = 1)-Kaehler manifold of
constant J-sectional curvature c. Then:
(1) if X, Y € TxM we have

c/4<K(X,Y)<c, ifc>0;
c<KXY)<c/4, ifc<0;

(ii) Let us denote by K the restriction of K to the planes of ITM.
Then:
K (X, Y)=c ifr=1;

K, is unbounded ifr>1, ¢ #0.

Proof. (i) The restriction of g to 37M is Riemannian. Then if we
choose {X, Y} orthonormal, we have:

K(X,Y) = %(1 +3g(X,JY)?) = -2-(1 +3cos?a),

where « is the angle between the plane {X, Y} and the plane {JX,JY},
and the claim is obvious;

(ii) If r = 1 we can choose a basis { X,JX} of /T M;thus K(X,JX) =
H(X) = c. Now assume that ¢ # 0, r > 1. Let (U, Vy) € [ TxM,
(Uy, V3) € T M besuchthat g(U, Uy) = g(Vy, Va) =1, g(Uy, Va) =
g(U,, V) = 0. Here, [; and /, are the projectors on [T M given by
the eigenvalues +1 and —1 of J|/T M. We take first

1
X=U1+V1—U2+§V2,
Y=U1+(l—i)V1+—;-U2+%V2.
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Then g(X, X)=-1,g(,Y)=1,g(X,JY)=—-(14+4), g(X,Y)=0.
Hence K(X,Y) = (c/4)(1 + 3(1 + 1)?).
Now, we take

|
X=U+V+U;—- 3V,

2
2
Y = %Ul FO2—A+ 1)V, — AUy + )%IVZ.
Then g(X, X)=g(Y,Y)=1,g(X,Y)=0, g(X,JY)=A4—1. Hence
K(X,Y) = (c/4)(1 — 3(A—1)?), and this proves our claim. o

3.10. DEerFINITION. We say that two metric (J4 = 1)-manifolds
(M, J, g) and (M',J', g') are J-isometric if there exists an isometry
f: M — M’ such that f,oJ =J o f..

It is clear that in the case of almost Hermitian manifolds this defi-
nition is the usual one for holomorphically isometric manifolds. Also
we can generalize Theorem 7.9 of [5], Vol. II to obtain

3.11. ProPOSITION. Two complete, connected and simply connected
e-(J* = 1)-Kaehler manifolds of constant and equal J-sectional curva-
ture ¢ are J-isometric (we assume that c is a constant function).

Proof. It is enough to apply Proposition 2.5 which furnishes the
expression of R in terms of J and g in the case of spaces of constant
J-sectional curvature. O

4. The models of constant J-sectional curvature. Let (M, J, g) be an
e-(J* = 1)-Kaehler manifold; then it is locally the product of a para-
Kaehler manifold and a Kaehler manifold. Since the latter, in the case
of constant holomorphic sectional curvature, is well known (see [5]),
we are interested in the para-Kaehler case.

Thus, let (M, J, g) be a para-Kaehler space of constant J-sectional
curvature ¢, and assume r > 1. Then c is a constant function. We
have J2=1 and g(X,JY) + g(JX,Y) = 0.

Let xo € M, and {e;, e;..,} be an orthonormal basis of Tx M, i.e.:

glei,ej) =0, gleirr.€jsr) =0ij, glei,ejrr) =0,
Je; =eiy,, Jei =e;
If we put R pcp = R(ey,ep,ec,ep), A,B,C,D €{1,...,2r}, then
c
Rapcp = Z(gACgBD — 84AD&BC — 8AC+r&BD+r

+ 84D+r8BC+r — 284B+r&CD+r)>
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where
E+r if1<E<r,
E-r ifr+1<EZL2r

Prvanovi¢ [9] obtains this expression in a different way.

Now, we apply the structural equations in polar coordinates in order
to obtain g and J in these coordinates (see [1], [12]).

For doing that, let / be an interval of R containing 0 and 1, U
a neighbourhood of 0 in 7y, M and V a neighbourhood of xy in M
such that exp: U — V is a diffeomorphism and such that the map
®: I x U —» M given by ®(¢, X) = exp(tX) is well defined. If {y4}
is the dual of {e,}, we have coordinates (¢,74) on I x U given by
t(to, X) = to, t(to, X) = y4(X).

By parallel transport of {e,} along the geodesics starting at xy we
obtain a frame {e,} on V with dual {y4}. If we define the 1-forms
94 on I x U by

Eir:{

l9A — ¢*yA _ tA de,
then i(9/8t)94 = 0, and we have the conditions

594
D=0 Zrlox =4"lon,
aZﬁA
e (Ricp o #)tBtCHP.
Thus
929!
7 —(Ripcp o ¢)1B1C9P
— —%{tj(tiﬁj — IO — piHrgitr + tj+rl9i+r)
+ tj+r(tj+rl9i _ tiﬁj‘” + ti+rl9j _ [jﬁi-q—r)
+ 28 (Y — Y,
8229i+r
7 = (Risrpcp 0 )5 1C 9P

— _Z{tj+r(tlz9] _ tjl9! _ tl+rz9]+r + Zj+rz?z+r)
+ lj(lj+r19i - til9j+r + ti+r19j - ljl9i+r)
+ 26T — )
To simplify this, we introduce on I x U new coordinates {a’, b’}
and new 1-forms u‘, v’ by:
i fiy i i i ;OO P L

’ blz———)
V2 V2

vz T TV
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Then
% = %(ajbj,ui +a'biy/ —2alalv),
% = S(@/biv 4 blalvi — 2b'bI ),
By putting (a, b) = a’/b/, etc., this can be written
0% = < (a,b)u+ (b wa - 2av)a)
%;z’i - %((a, by + (@, v)b — 2(b, p)a).
If we put p?> = —4c(a, b), these equations read
o) O =~ a+ 2o avia
R e L )

If we multiply (3) by b and (4) by a, we obtain

©  (b5E) 4w =200+ 200,

©) (a.55) +a) = —ptan) + 202000,
By adding and subtracting (5) and (6), we get

m Zwwram=o

® Db - () + 420 (@) =0,

with the initial conditions
ou ov
9) roy=vo =0, zrlo=da, |,=adb

The solution of the system (7), (8), (9) is obviously

by = & d">4‘p(“’ D) Gin2pt + L((b, da) + (a. dbY)1,

(a,v) = {290 4‘/)(”’ 94) Gin2pt + L((b, da) + (a. dbY)1.
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By substitution in (3), we get
u 5 3p :

57 +pu= — m((b, da) — (a,db))(sin2pt)a

p?

2( 3@ b ((b,da) + (a, db)) ta.

It we call

1=h-3 1b>((b da) + (a, db)) ta,

then this equation reads

?*n 3 .
52 +p°n= “3a.b) (b, da) (a,db))(sin 2pt)a.

We seek a particular solution of the type n = (D/p(a, b))(sin 2pt)a.
Then we get the condition

D = 1((b,da) — (a. db)).

Thus the solution is

1 A
U= m((b, da) + (a,db))ta + — @b sin(pt)
(b, da) — (a,db) .
4p(a, b) sin(2pt)a.
And the initial conditions imply
__{a,b)da — (b,da)a ({b,da) — {a,db))a .
= @by sin pt + 4@ b)p sin 2pt
(b,da) + (a,db)
dt,
2(a, b)
__{a,b)db — (a,db)b . ({(a,db) — (b,da))b .
= @by sin pt + 42, b)p sin 2pt
(b,da) + (a, db)
+ 3@ b) bt.

Now, we define 1-forms o/, B (i =1,..., r) on U by
o =pi(1), BI=vi(1),

and also define a metric on U, g, by

t=-a®p-piod,
and a tensor field J on U by

J=u;®a —v; ® B,
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where {u;, v;} is the dual of {a’, B'}. Then, the map exp: U — V isa
J-isometry as it is easily checked. Thus, we compute & and J. First
we have

of = SIBP iy sin2p —4sin p + 2pbkaidak + 2p — sm2paka,~ db*:

4(a, b)p 4(a, b)p
i _sinp ;o osin2p—4sinp+2p o onp  2p—SIN2p 4o g
B = db' + Xabyp akb'db +——4(a,b)p b*b' da”.

Therefore, by substitution

.2
g=- {S“;z”(daf ®db' +db’' ® da')

4p2 —sin’2p ;4 . k o pipk g i k
—W(aa db' ® db* + b'b"da’' ® da”)
4p2+sin22p—8sinzp inky ni k k i
* 8(a, b)p? A A A o b -

Note that even in the case of p? < 0, the above result is a real tensor
field, and it is C* also in the points where p = 0.
As for the dual base, we have
wo PO, Sn2p-2p ;0
I " sinpda/ ' 2(a,b)sin2p  ~ 8b!
sin psin2p + 2psin p — 2p sin 2pbjali
2(a, b)sin psin2p dal’
v = _p__i Sin2p—2p - 2p a2
sinp8b/ ~ 2{(a,b)sin2p da!
sin psin2p + 2psin p — 2psin2pajb,_c’z_
2(a, b)sin psin2p ob!”

Therefore, we have by substitution
0 e

(2p —sin2p)* k(_a_ k_ 0 o i
+ 4(a,b)psin2pa b Oa' ®da obk ®db

4p* —sin’2p (. k_ pipk 9 k
+W(aa —&7®db - b'b @dea .

The expression of & and j give the space form in normal coordinates
for the para-Kaehler manifolds of constant J-sectional curvature and
r> 1. If r = 1, we have automatically N =0, dF =0, VJ = 0, (cfr.
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3.1) and the space is of constant J-sectional curvature c, but ¢ may not
be a constant. However if ¢ were a constant, the above formulae for
normal coordinates are also valid. Thus, we will say in the following
that an almost para-Hermitian manifold with r = 1 is a para-Kaehler
manifold of constant J-sectional curvature if the above function c is
constant.

Now, let B be the vector space R? with the product (a, b)(a’, ') =
(aa’, bb'); then B is a commutative algebra. If we define the conjugate
w of an element w = (a,b) € B by W = (b, a), then an element w € B
is real if w = W, and is invertible if ww # 0. We put B, = {(a,b) €
Bla > 0,b > 0}; then B, is a Lie group. Let

Byt' ={z=(z*) € B"*!|{z,Z) > 0},
where

r
(z.2) =) z°7°
a=0

We denote by gl(B;r + 1) the algebra of (r + 1) x (r + 1)-matrices
with elements in B. Then gl{(B;r+1) =gl(R;r +1) xgl(R;r +1). We
have the Lie group

UB;r+1)={Z egl(B;r+1)|(Zz,ZZ) = (z,Z) for all z € B"*!}.

Let P,(B) be the quotient of B{)“ under the equivalence given by
(z*) = (q92z%), q € B,. Then, if n: Bf*! — P.(B) is the natural pro-
jection, we can identify m(z) with the unique element w = gz such
that (w,w) = 1, (w,w) = (w,w), where ¢ = (a,b) € B;. Indeed, if
z =(z% = ((u*, v%)), we have

(w, W) = (ab(u,v),ab(u,v)), (w,w)=(a*(u,u),b*v,v)),
(W, w) = (b*(v,v), a*(u, ).
Then

(U, U)l/4 b <u’ u)1/4
(u, u)V/*¥(u, v)1/2’ - (v, V)4 (u, v)1/2’

a =

Thus
P.(B) ~{(u,v) e R"*! x R"*!(u, u) = (v,v), (u,v) =1}

Since Z(qz) = qZ(z) forall Z € U(B;r + 1), z € By*', g € B, it
is clear that the action of U(B;r + 1) pass to the quotient P (B).
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4.1. PROPOSITION. P,(B) is diffeomorphic to TS"; therefore it is
connected and if r > 1 it is simply connected. The group U(B;r + 1)
acts transitively on P,(B).

Proof. We consider the map ¢: P,(B) — TS’ given by ¢(u,v) =
(Jlu + v||~"(u + v),u — v). Since (u,u) = (u,v), we have that
(lu + v||~"(u + v),u — v) = 0, then u — v can be considered as a
vector tangent to S” at the point ||u + v||~!(u + v). It is immediate to
prove that ¢ is a diffeomorphism. Now, let (¥,v) € P,(B); if {e,} is
the canonical basis of R"+! and {9°} its dual, let y* (i=1,...,r) bea
linearly independent set of 1-forms such that y!(u) = 0. If y* = y. 92,
and v = v%,, we define P € GlI(r + 1;R) by putting 9°(Pe,) = v°,
¥ (Pe,) = yi. Then

Pu = u®Pe, = u*0°(Pe,)ey + 0 (Pe,)e; = uvey + u*yle; = ep;
! Pey = 9%(" Pep)e, = 0°(Pey)e, = v%e, = v.
Therefore (P, {P~!)(u,v) = (ep, €p) and since (P, ‘P~1) € U(B;r +1),
it is clear that U(B;r + 1) acts transitively on P,(B). 0
We consider on B6+1 the covariant tensor field (0 # ¢ € R):

.2
g-c(u,v)

{dua ® dv® + dv* ® du”

! uvP(dv® @ duf + du ® dva)} .
(u,v)

Then g is invariant by U(B;r+1) as it is easily proved. If i: P,(B) —
Bg“ is the inclusion, we have by direct computation that (i-n)*g = §.
Hence, the tensor field g = i*g, which is a pseudo-Riemannian met-
ric on P,(B), is also invariant by U(B;r + 1). We have for P,(B) the
charts (9%, UT), where

Ul ={(u,v)} € P,(B)ju* > 0,v* > 0},
U, ={(u,v)} € P(B)|u* <0,v* <0},

and
ud > u vo ik v’)

a P —_— — —_—
% (u,v) = (F""’u_a""’ua’va""’va""'va

.If we call (xt, y9) to the coordinates of any one of these charts, say
x! = u'/ud, y' = vi/v0, then by direct computation or well by an
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argument similar to the one used in [5, vol. II, p. 160], we have that

2 I i I I
(10) g—m<dx ®dy' +dy' ®dx

1 S . . .
e ylyd ! J J i
1+(x,y)xy (dy' ®@dx’ +dx’ @ dy )).

Also, we have on B{)“ the almost-product structure given by

N 0 0

J = % ® du® — (‘—)?-)— ® dU
and it defines an almost-product structure on P,(B), J, by the relation
n, oJ = J o m,, which in the same chart is given by

5 ) ,.

Then

4.2. THEOREM. P,(B) admits a para-Kaehler structure of constant
J-sectional curvature ¢ # 0 given by (10) and (11). Then P,(B) is
connected and complete, and if r > 1, it is also simply connected.

Proof. The 2-form F(X,Y) = g(X,JY) is given by

2

F=—un®t (dyi Adx! — x'dy’ A yidxi) .

1
c(1+(x,»)) I+ (x,y)
Then dF = 0. Since evidently N = 0, we have that P,(B) is a
para-Kaehler manifold. Since VJ = 0, we have Va/axl(a/c?yj )= 0.
Also
98 o63y_20 X
&\ ax’ oyl ) coxi1+{x,y)
Hence
(T i) = st (o) = e
E\ Vol gy ayk ) T axi® \axT ayk ) T caxiaxi 1+ (x, )
_ 2 {‘sikyj +5jky 2xkyiy }

el A+ y)?  (1+{x )3

Therefore

. 9 _ 1 0 i 0
oox axk — T 1+ (x, y) Y ox oxk )
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And if 0 is the point of P,(B) with coordinates x’ = y’ = 0, we

have 5 5 5
(Va/aij(')/ax,—a—)-c—k-)o = — (5}@51—. + 5[1'5.)—(-]:)0.

Therefore
o 0 0 0 8 0
R Ty Ty Ty T 7 = J "S- L a.
(Bx’ oyJ’ Oxk Byl)o g(Va/ay Vojox dxk 5)’1)0

_ 5 o 0 s o 0
= —0k;8 axt’ oyl O—ijg ax_k’5y70

2
= —E(5k15i1 + Oxi0ij),

g 90 o8 0 1
R’ (W 37" Bk’ a_y’)o = 2 (=0udjk = dudjx — 20:j0u)

2
= —c—z(5kj5i1 + 0110;j)-

Hence R = cR’ at 0. Since R and R’ are invariant by U(B;r + 1)
we conclude that the J-sectional curvature is ¢, and that (P.(B), g) 1s
complete. u]

As for the problem of finding a complete, connected and simply
connected para-Kaehler manifold of constant J-sectional curvature in
the case r = 1, it is enough to extend the above structure on P;(B) up
to the universal covering of P;(B) = S! x R, which is R2.

We shall study the spaces P,(B) as symmetric spaces in a forthcom-
ing paper.
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