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Eidus recently proved the limiting absorption principle for the re-
duced wave equation with two unbounded media, and he used it to
show the limiting amplitude principle for the wave equation. In this
paper we shall show that his limiting absorption principle can be im-
proved so that it holds on the same weighted Sobolev spaces as were
used in the case of the Schridinger equation.

1. Introduction. Let us consider the reduced wave operator
(1.1) Hu = —pu(x)~'A

in RV, where A is the Laplacian in RV and u(x) is a positive function
in RY. The operator H can be regarded as a selfadjoint operator in
the Hilbert space /# of all measurable functions f(x) on RY such that
f(x)v/u(x) is square integrable over RY (see §2). The reduced wave
operator H is obtained from the wave equation

9w

by separation of the time variable ¢.
Through this work it is assumed that the function u(x) on RY with
N > 2 has the form

(1.3) ux)=w  (xe,l=12),

with positive constants u; (4; # u») and disjoint open sets Q;, / = 1, 2,
given by

(1.4) Q, ={xeR¥/xy >op(x')} and
Q, = {x eRY/xy < p(x")},

where x = (x', xy), x' = (x1,Xx2,...,xy—1) and ¢ € C'(RN-1\{0}).
The separating surface S is defined by

(1.5) S={xeR/xy =p(x)}
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and n;(x) = (n;1(x), npp(x),...,nn(x)), I = 1,2, denote the outward
unit normal of the boundary 8Q; of Q; at x € S\{0}.

Eidus [4] proved that the limiting absorption principle and the lim-
iting amplitude principle hold for the reduced wave operator H and
the wave equation (1.2), respectively, under the following conditions
on the surface S:

Assumption 1.1. The separating surface S has a “cone-like” shape
in the following sense: Let n;(x) be as above. Then,
(i) the Nth component n;y(x) of n;(x) satisfies

(1.6) Inv(x)[>er (I=1,2, x € S\{0})

with a positive constant c;
(i1) and we have

(1.7) |x - ni(x)| < c (I=1,2, xeS\{0})

with a positive constant ¢, where x - n;(x) means the inner product
of the vectors x and #n;(x) in RV,

Let us define the resolvent R(z) of the operator H by
(1.8) R(z)=(H -2)"!

for z € C\R. The resolvent R(z) is a bounded linear operator on
the Hilbert space # which is now equivalent to the usual L, space
L,(RY). Let us introduce the weighted L, space L, ﬁ(RN ) by

(19)  Lop®) = {700/ [ (AehPIf e dx < oo

with its norm

1/2
(1.10) 17 = [+ nireoras]

where f is a real number. (In Eidus [4], L, 5(RY) and || || 4 are denoted
as L3 5 and || |25, respectively.) Then Eidus’ result on the limiting
absorption principle is stated as follows:

THEOREM 1.2 (Eidus [4), Theorem 3.2). Let Assumption 1.1 be sat-
isfied. Then there exist the limits

(L) lim R(A+in) = R*1) in B(Lyy(RY), Lo (R))
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for each A > 0, where B(X,Y) is the Banach space of all bounded,
linear operators from X into Y. Furthermore, the limit R*(A) are
Hédlder continuous in A in the topology of B(Ly (RY), Ly _{(RY)).

The limiting absorption principle for partial differential operators
has been studied for about twenty years. Especially many works have
been done for Schrédinger operators

(1.12) T =-A+V(x)

in R¥ to find various sufficient conditions on the potential ¥'(x) that
the limiting absorption principle holds for 7. Among them, we re-
fer to Jager [6], Saito [10], Agmon [1] for the short-range potential,
Ikebe & Saito [S5], Lavine [8] for the long-range potential. Mochizuki
& Uchiyama [9], Devinatz & Rejto [2] for the oscillatory long-range
potential. It is shown by these works that under certain conditions on
V(x) there exist the limits

(113)  lim Rr(A+in) = RE(2) in B(Lys(RY), Ly 5(RY)),
}]—D

where Ry (z) = (T —z)~!, A belongs to the continuous spectrum of 7,
and J is a constant such that

(1.14) 0> 1/2.
The condition (1.14) is in a sense best possible, because, in general,
u = RF(A)f does not belong to L, _g(RY) for g < 1/2.

In this work we shall prove some new estimates (Propositions 3.3,
3.8, 3.10 etc.) for u = R(z)f which, combined with the methods and
results of Eidus [4], enable us to show, under Assumption 1.1, that for
a set K in C\R of the form
(1.15) K={z=A+ineClig< A< A, 0<|q| < no}

with positive constants Ay < 4, and 7 there exists a positive constant
C = C(K) depending only on K such that

(1.16) IR(2)fll2-5 S Cliflls  (z€K.f€LysRY)),

where J is a constant satisfying (1.14) and || ||, —s denotes the norm
of the wieghted Sobolev space H2;(RY) of all functions u such that
all the derivatives up to the second order belong to the weighted L,
space L, _s5(RY) (cf. Eidus [4], Corollary 2.2). It is easy to see from
(1.16) and Theorem 1.1 that the limits

(1.17) s-rlliniloR(l +in)f = R¥*(A)f in H*4(RY)

exist for all f € L, s(R"), where s-lim means the strong limit.
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Let us explain our main idea. When we studied the limiting absorp-
tion principle for various Schrédinger operators, the classical Sommer-
feld radiation condition
(1.18) & — iku = small at infinity
or its modifications played a very important role (e.g., Jager [6], Saito
[10], Ikebe & Saito [5], Mochizuki & Uchiyama [9], Saito [11], [12]).
First, as is well-known, the radiation condition guarantees the unique-
ness of the solution. At the same time it has been known that we
can show the limiting absorption principle through a priori estimates
of the radiation condition. It will be seen in our case that it is use-
ful for getting the estimate (1.16) to introduce a “modified radiation
condition-like” term which contains a surface integral over the sepa-
rating surface S given by (1.5). The limiting absorption principle for
the operator H will be obtained through estimating the above “mod-
ified radiation condition-like” term. However, it seems that we need
further investigation to see whether our radiation condition fully guar-
antees the uniqueness of the solution.

In §2 some basic a priori estimates on ¥ = R(z)f, which were
obtained by Eidus [4], will be given. In §3 we shall prove some more a
priori estimates on the “modified radiation condition-like” term and
u = R(z)f. The estimate (1.16) and the limiting absorption principle
will be shown in §4.

2. A priori estimates for u = R(z)f. In this section we shall give
some a priori estimates for « = R(z)f with z € C\R and f € L,(RV),
N > 2. All these estimates except for Lemma 2.4 are proved in Eidus
[4].

Let us now call some usual notation for some function spaces which
will be used in the sequel. Let m and # be a nonnegative integer and
a real number, respectively, and let G be an open set in RY. Then the
weighted Sobolev space H /’Q”(G) is defined by

(2.1) HE(G)={veD'(G)/(1+ [x)28%v € Ly(G), |a| < m},

where 2'(G) is all distributions on G, a = (ay,a,...,ay) is a multi-
index with |a| =a; + a3+ -+ ay and
o dlely
(22) 0% = m
with
(2.3) 9% = (_‘9—>a’ (j=1,2,...,N).
J an
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The space H /’g"(G) is a Hilbert space with its inner product

(2.4) W Wmpe= / (1 + |x])2#(8°v)(@°w) dx

la|<m
and norm
(2.5) V]lm,p.6 = [(V, 0)m,p.61" %
We set
(2.6) HR(G) = L, 4(G),

and the subscript 0 in (, )o g or || [lo,,¢ Will be omitted asin (, )g ¢
or || |ls.c. When G = RV, the subscript G will be also omitted as in
(, )p- Let # be the Hilbert space defined by

@1 = {f(x) on RY/ [ 17()Put)dx < oo}

with its inner product

(28) (£ = [ FEGuG) dx
and norm
29) Il = [, )12

Since u(x) is a positive step function on RV, the Hilbert space # and
L,(RY) are the same as sets.
Let us define the operator H in # by

(2.10) Hu = —u(x)7'A,

(2.11) D(H) = H*RY),

where D(H) means the domain of H and the Sobolev space H%(RV)
is regarded as a subset of /#. It is easy to see that H is a selfadjoint
operator. We denote the resolvent (H — z)~! by R(z).

In order to evaluate some integrals over the separating surface S let
us prepare the following lemma due to Eidus [4].

LEMMA 2.1 (Eidus [4], (2.9)). Suppose that u(x) is a bounded mea-
surable function on RY such that inf u(x) > 0. Let H and R(z) be as
above. Let

(2.12) u=u(,z, f)=R(z)f
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with f € L,(RN) and z = A + in € I1, 1 being a bounded set in C\R.
Then there exists a constant C = C(I1, u) depending only on I1 and
u(x) such that

(2.13) il [ (Vul + ) dx < CQ7, o
Here ( , )q is the inner product of L,(RV).
Proof. Let us first notice that u = R(z)f, z € C\R, satisfies the
equation
(2.14) ~Au — zu(X)u = u(x) f

and u belongs to H2(RY). Multiply both sides of (2.14) by 7, integrate
over RY and take the imaginary part. Then the estimate for the term
|| [ |u|? dx is obtained. If we multiply both sides of (2.14) by |n|@
and take the real part, we get the estimate for the term |7| [ |Vu|? dx.O

Let us now study the surface integrals of u = R(z)f over the sep-
arating surface S. Suppose that v € H>(RV),,.. Then the traces of v
ando;jv (j=1,2,..., N)onS are well-defined as elements of L(S)oc-
These traces on S will be denoted as v and ;v again. As usual, the
inner product ( , )s and norm || ||s of L,(s) are defined by

(2.15) (v,w)s=/vmds and [Jvlls = [(v, v)s]/2
S

LEMMA 2.2 (Eidus [4], (2.14)). Assume (1.6). Let u = R(z)f with
fe€LRY)and z =4+ in € C\R. Then u € L,(S) and there exists a
positive constant C = C(u) depending only on u(x) such that

(2.16) Alllulls < C(US1, ul + 8w ul)o-
Here ( , )o means the inner product of L,(RN).

Proof. Multiply both sides of (2.14) by dy%, integrate over RV and
take the real part. Then

(2.17) —Re | (Au)dnyudx — Re/ zu(x)u(oyu) dx
RV RV

= Re /RN u(x)f(Onu)dx.

By the use of integration by parts, we have

(2.18)  Re /R N(a}u)(aw) dx = —Re /R (9ju)(0n0;m) dx

- —2—1/ o {|9;ul} dx = 0
RV
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for j =1,2,..., N, which implies the first term in the left-hand side
of (2.17) is identically zero. Let us next estimate the second term of
the left-hand side of (2.17):

(2.19) —Re/ zu(x)u(oyt) dx
RN
=/1Re/ u(x)u(oyu) dx
RY

- nIm/ wxyu(dyuydx =1, — I,.
RV

The terms I, and I, are estimated as follows:
@200 Inl=(a2)| [ uerontul)ds]
= 2 A — )] | [ ) dsl

> 27l - w) [ ufds
where we have used (1.6), and

(2.21) \I2| < |ni(Jul, |onul)o < Ci(1f1, [ul)o

with a constant C;, where we have used Lemma 2.1. The right-hand
side of (2.17) is estimated as

Re /R 0x)f (o) dx| < Max(u, 1) (11, 10wt)o

Combining these estimates, we obtain (2.16). o

(2.22)

Using Lemmas 2.1 and 2.2, Eidus proved the following proposition:

PROPOSITION 2.3 (FEidus [4], Lemma 2.1). Let us assume (1.6). Let
feL,RN), y>3/2for N=3,y=3/2for N> 3,

(2.23) O<|nl<l and -1<i<M,
where z = A + in as above and M is some constant. Then
(2.24) Null—p1 < CUSL Jul + [Vulo

for u = R(z)f, where the constant C = C(M, y) does not depend on
f, A, n (but may depend on M, y).

For the proof see Eidus [4], p. 33-34. As for 0;u on the separating
surface S we have the following estimates:
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LEMMA 2.4. Assume (1.6). Let u = R(z)f with f € Ly(R") and
z € I1, Il being a bounded set in C\R. Then there exists a positive
constant C = C(I1, u) depending only on Il and u(x) such that
(2.25) Vulls < C{llullo + Il.f1lo}

where || ||o is the norm of L,(RY) and

N
(2.26) IVl =" l18;ull3
j=1

Proof. Let Bg = {x € R¥/|x| < R} and Sg = {x € RY/|x| = R} for
R > 0. By the Green formula we have

(2.27) /MB On(|Vul|?) dx

=/ |Vu|?nin(x)dS +/ |Vu|*%, dS,
SﬂBR QInSR

where n;y(x) is the Nth element of the outward normal of 9Q; at x
and Xy = xy/|x|. By using (1.6) we obtain from (2.27)

(2.28) ¢ / V2 dS
SNBr

N
< 22/Q |8N8ju||6ju|dx+/ \VuldS
j=1 1NBr

QNSr

Let R — oo along an appropriate sequence {R,,} so that the second
term of the right-hand side of (2.28) converges to zero. Then we have

(2.29) / Vul2dS < Collullz,g
S

with a constant C,, where || ||, is the norm of H2(R"). The estimate
(2.25) follows from (2.29), the well-known estimate

(2.30) llull2,0 < C3{llAulo + [lullo}
with a constant C3 and the equation (2.14). O

3. More a priori estimates. In this section we shall introduce a
“modified radiation condition-like” term for the solution u of the
equation (2.14), i.e., —Au — zu(x)u = u(x)f, where z € C\R. Some
estimates for it will be proved. These estimates can be regarded as
modifications of the estimates of the usual radiation conditions given
in, e.g., [6], [5], [11], although we treat here only the case that z € C\R.
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By using these estimates, we shall also show some estimates for the
norm ||u||—, with T > 1/2. They will be used in §4 to show the limiting
absorption principle for the operator H.

Let us start with some notation. For z € C\R and x € RY we set

(3.1) k = k(x) = k(x, 2) = [zu(x)]'/?,
(3.2) a=a(x)=a(x,z)=Rek(x, z),
(3.3) b=>b(x)=b(x,z)=Imk(x, z),

where the branch of [zu(x)]'/? is taken so that b(x,z) > 0. With
fixed z the functions k(x), a(x) and b(x) are step functions on RY
which are constant in each Q; and ,. Let us next introduce some
differential expressions of the first order;

(3.4) Gju=0ju+{(N-1)/2r)}xju—ik(x)Xju
(r=|x|,X;=x;/r, j=1,2,...,N),

(3.5) Qu=Vu+ {(N-1)/(2r)}xu — ik(x)Xu
(X = (X1, %,...,XN)),

N 1/2
(3.6) |Du| = [Z |.ozju12} :
j=1

37 Du=9u %= -g% +{(N = 1)/2r)}u — ik(x)u,

(3.8) Qyu=Qu-n= g:— +{(N - 1)/2r)}{(X - n)u — ik(x)(X - n)u,
where 7 is a unit vector in RV,

LEMMA 3.1. Let u € H* (RN ), and set f = u(x)"1(-A = k?)u,
where k = [zu(x)]'/? with z € C\R. Let £ € C1([0, 00)) with &(r) =0
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in a neighborhood of r = 0 and set ¢(x) = &(|x|). Then we have

2 —.Qﬂ.—}
(3.9) 2~ / 3y —|2u| dx+Z/QmBR m{k el as
+/ bo|Du|? dx
Br

9 _op 2 _ gyl
+/BR(’ ar)([@'u| |D,u|?) dx

+cN/ r2 ((p 122 +b¢) |ul? dx
By r or

— Re / ou(x) f @) dx

+2- IZ/MB {——1E+|k|2}(5c-n)|u|2dx

427! / 021D ul? — |Tul? — cxr=2|ul?) dx
Sk

for each R > 0, where 8/0n in the integrand of the surface integral over
0Q,NBr means the directional derivative in the directon of the outward
normal of 8Q,, By is the open ball with center x = 0 and radius R, Sgr
is the sphere with center x = 0 and radius R and

(3.10) en = (N = 1)(N = 3)/4.

Proof. Since k(x) is a constant [zu;]'/? or [zu;]'/? in each region
Q, or Q,, the equation —Au — k2u = u(x)f is rewritten as

N

N-1 .
(3.11) —gaj.@ju-i—{—zr——lk}gru-FVo(X)M:#(X)f
in Q; or Q,, where Zu and D, u are as above, 9; = 9/0x; and Vp(x)
is given by
(3.12) Vo(x) = cyr™?
(cf. Ikebe & Saitd [S], (2.10)). Multiply the both sides of (3.11) by
¢(2,u), integrate on each Br N Q; (/ = 1,2) and take the real part.
Then, using integration by parts or the Green formula and making

the sum of these two integrals, we obtain the relation (3.9) (cf. [5],
Lemma 2.2). o

In order to get our first a priori estimate we are going to introduce
the following weight functions.
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Notation 3.2. (i) Let p(r) be a C? function on [0, co) such that
(3.13) p(r)=0 (0<r<Rg), =1 (r2Ro+1)

with Ry > 0,0 < p(r) <1 and p'(r) > 0.
(ii) For each ¢ > 0 the function g,(r) is defined by

(3.14) o.(r) =exp{—e '(1+7)"¢}  (r>0).

ProrosITION 3.3. Let us assume Assumption 1.1. Let u = R(z)f
with z = A+ in € C\R and f € Ly(RN). Here z = A+ in moves in a
bounded set K of C\R such that

(3.15) >4 >0 (z=i+ineKk)

with a positive number Ay. Then there exists a constant C = C(K)
depending only on K such that

(3.16) 2*‘/ z{pzag}lguﬁdx
v O
+Z/ pla; - { g% -ﬁ} das
<C {(Ge|f|, |Vul + |ul)o,E,

+/ (1+ le)‘zae(IVuIZHulz)dx}
Eg,

holds for each 0 < €, where
(3.17) Eg, = {x/|x| > Ro},
the functions p and o, are as in Notation 3.2 with r = |x|.
Proof. Set ¢(x) = p(|x|)%0:(]x]) in (3.9). We are going to evaluate
each term of (3.9). Noting that

0o 1
(318) £ - = a7 - (1417 - 290, 2 ~20p'0,

and

2
(3.19) \Dul? - |Dul? = |Vul? - '%’r‘- >0,
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we have for R > R,
(3.20) / {‘f %9 } {1 Gul® - 1D,ul?} dx
Bz

>_2 / pp o {|Vul® - u]?} dx > ~2 / pp'o,|Vul? dx.
BR BR

Therefore it follows from (3.9) that

(3.21) 2~ / |9u|2dx+2/ q)Im{ Zz }dS
Q[ﬁBR

< Re/ o-u-f (@udx+2| ppo|Vul?dx
By

+2- IZ/QOB {———1—)’1+|k|2}(5c-n)|u|2ds

—cN/ ~2 <¢ 219 +b¢> lu|? dx

Bg r or

+2-! / 021D, ul? — | DU — enr2|ul?) dx
Sr

Since u = R(z)f € H?(RY), the fifth term of the right-hand side of
(3.21) will converge to zero when R — oo along a suitable sequence
{Rm}. Thus we obtain from (3.21)

_ Op 2 - Ou _
1 b 2 . it
(3.22) 2 /RN o |Du| dx+l§=l/m[¢ Im{k o u} ds

sRe/ w-u-f-(@,u)dx+2/ pp o |Vu|? dx
RN RN
2
+2-1§:/ ¢{g——rl—)—b—+|k|2}(5c-n)|u|2dS
= Jog,

+cN/ r2 (2 _12® +b(o> |u)? dx,
RY ¥ or

where we should note that the surface integrals over 9€; in (3.22) is
absolutely convergent, because #, Vu € L,(S) by Lemmas 2.2 and 2.4.

Let us denote by J the third term of the right-hand side of (3.22)
and let us estimate the surface integral J. It follows from (1.7) in
Assumption 1.1 that

(3.23) | gc1/¢(1+|x|)—1|u|2ds (zeK),
S
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where the constant C; = C;(K) depends only on the bounded set X
(and the constant ¢, in (1.7)). Set

(3.24) v(x) =@ ?(1 +r)"2u = pa}?(1 + r)"2u= yu
Since v satisfies the equation

(3.25) —Av —k*v = yuf - 2(Vy) - (Vu) - (Ay)u=F
it follows that Lemma 2.2 that

(326 WI<C [ S < Co(F) lyu+ ox(w)o

with a constant C; = C3(K). By a straightforward computation we get
(327) [8*p(x)| < Caoe((x]) /2(1 + fx])~/2 -l
(I'xl Z RO’ Ial = O: 11 2):

with 0%y (x) = 0 for |x| < Ry (la| = 0,1,2), where C; is a posi-
tive constant depending only on R, though the constant R, is fixed
throughout this work. Since it follows from (3.27) that

(3.28) |F|-yu+ on(vu)| < Cage{lf]- (IVul + [u])
+(L+ XD T2(Vul® + Ju)y,
with a constant Cy = C4(K), we have

(3.29) I Gs {(Ualfl» [Vl + |ul)o, £,

+/ (1+|x]) 20, (|Vul* + |u|2)dx}
Ex,
with Cs = Cs(K).

The other three terms in the right-hand side of (3.22) can be easily
evaluated. Thus we get (3.16). O

COROLLARY 3.4. Let p, 0, K and ¢ = p*a, be as above. Then there
exists a positive constant C = C(K) such that

Op 12 2 + Ou _
(3.30) /E —a—r—IVu—zkxu| dx+22/aQ ¢-Im{k~—671—-u} das
Ry =1 !
< c{ @1 1vul + oz,

+ / (1 +|x])"20e(|Vul* + |u|2)dx}
Ro
holds for u = R(z)f with f € L,(RY), ¢ >0and z € K.
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Proof. The estimate (3.30) directly follows from (3.16) by noting
that
(3.31) |2ul* - |Vu — ikxu|?
_N-1/3uP?\ _(N-1blu] LWV 1)?|uf? o
- 2r or r 4r2 '

ReEMARK 3.5. (i) It should be noted that the constants C in (3.16)
and C in (3.30) do not depend on ¢ in the function g,.

(i) The estimate (3.16) or (3.30) can be regarded as a (weaker)
generalization of the estimate

(332) [ (14 )P Vo - iksoPdx < Clgl + vl s)
RN

with 6 > 1/2 for solutions v of the Schrodinger equation
(-A+Q(x)- kv =g

with a short-range or long-range potential (cf. e.g., Ikebe & Saito [5],
Lemma 1.7).

The estimate obtained above will be used to prove an a priori esti-
mate of the H! ;(RV)-norm of u = R(z)f. First we need the following
lemma.

LEMMA 3.6. Let S be the separting surface as above. Then there
exists Ry > 0 such that
(3.33) F(x)dS

SNEg
[ (1 + |V¢|2)1/2ZN_27‘ }
= F(tw, ¢p(tw dw  dr
Jo AL Feo et o)

holds for any R > R, and any integrable function F(x) over S N Eg,

where Eg = {x € RY/|x| > R}, sN=2 is the unit sphere in RVN~!, w €

SN2t = (r, w) is defined by r = (> +9(tw)?)!/? and Vo = (Vo)(tw).

Proof. By use of the relation
(3.34) ds = (1+|Ve|>)'/2dx'
=(14+|Ve)2t"2dtdew (X' = tw)
it follows that

(3.35) Fds
SﬂER

=/ dw/ F(tw, p(tw))(1 + |V |2) /2N -2 41,
SN2 (+o(1w)?) >R
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For fixed w € SV2 let us consider the relation
(3.36) r= (> + p(tw)?)'/2.

Then

(3.37) % = <t + p(tw) - i’f’—g;—“ﬁ) (2 + p(tw)?)~/2.

Since the outward normals 7;(x) of 9€; are expressed as

B op Op oy
_ ni2y=1/2 { ¥¥ Y¥ —
I’l[(X) i(l‘i‘lvfo(x)’ ) (axl’axZ """" aXN_l’ 1)

(x =(x',xy) €8),

(3.38)

the inner product n;(x) - x (x € §) in RY has the form

!/

(339 mx)ox =1+ 7o {22 g}
with ' = |x'|. By setting X’ = tw in (3.39) and using (1.6) and (1.7)
in Assumption 1.1, we obtain
(3.40) ?% =t"lp(tw) + Ot (t — 00),
where the term O(¢~!) is uniform for w € S¥~2. Here we should note
that the boundedness of |[Vg(x')| on R¥Y-1\{0} follows from (1.6)
since the Nth component 7,y (x) of the outward normal #;(x) has the
form £(1 + |Ve(x")])~1/2. It follows from (3.40) that
(3.41) % ={t+ 17" p(tw)’ + p(tw) - O(t™YHP + p(tw)*} '/

= {1+t 2p(tw)* + t71p(tw) - O HH1 + 2 p(tw)?)} 1/

= {1+ 2p(tw)*}'? + 7 p(tw){1 + 1 2p(tw)*}~"/? - O™ 1)

= {1+t 2p(tw)*}/? + 0(t7})
as t — oo. Therefore there exists a positive number R; (> R;) such

that dr/dt > 0 for all r > R,. Therefore the inverse function ¢ = ¢(r) =
t(r, w) is well-defined and is a C! function. Thus we have (3.33). O

In the following proposition we shall study some integrals which are
closely related to the left-hand side of (3.30).

PROPOSITION 3.7. Let us assume Assumption 1.1. Let u = R(z)f
with z € C\R and f € L,(RM).
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(i) Then we have

2
- ou _
(3.42) §/m Im {k-%-u} ds
- [ BUVUP + kPlu?) d
RN
‘ -/ w(x)-Im(k - £ -7)dx,
RV

where k = [zu)'/2, b = Imk and n in the surface integral over 0
means the outward unit normal of 6Q;.
(i1) We have

ou
3.43 /v — ikxu|*>dS +2 / {k~—-i¢'}dS
( ) |Vu — ikXu| Z SO, p
- / (IVul? + [K[2ul?) dS — 2 / b(Vul? + e Pluf?) dx

—2/ )-Im{k - f -u}dx,

forr> 0, where S, = {x € Ry/|x| =r}, E, = {x € RY/|x| > r} and
n in the surface integral over 8Q; N E, means the outward unit normal
ofBQ,.

Proof. Multiply the equation —Au — k2u = uf by ku and integrate
on E,. Then we have
2

— ou — ou
3.44) — / k-—-ﬁdS+/k-—-iZdS
(344) E oQnE  on s, or

+ / |Vl dx — / K|kl dx = / Ru(x) fadx.
E, E, E

The relation (3.42) is obtained by taking the imaginary part of (3.44)
and letting r — 0 along a suitable sequence {r,,}. The second relation
(3.43) follows from (3.44) and

(3.45) / Vi — ikxul? dS
Sr

=/ (|Vu|2+|k|2|u|2)ds—2/ Im{E-Q“--ﬁ} ds. o
S, S, or

Let us now evaluate the norm ||u||_s . .
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ProPOSITION 3.8. Suppose that Assumption 1.1 is satisfied. Let R,
be as in Lemma 3.6. Let a.(r) be as in Notation 3.2. Let u = R(z)f
with z € K and f € L,(RN), where K is as in Proposition 3.3. Then
there exists a positive constant C = C(K) such that

(3.46) /E (1 + |x])"F o, (|Vul* + |ul?) dx
< C(1+R)y2r1-8) {(lfl, [Vul + |ul)o

+/ (1 +|x))"20:(|Vul)?® + |u]?) dx}
Ex,

holds for all R > R, + | and all pairs (7, ¢) satisfying
(3.47) 0<e<2t—1,

where (, )o means the inner product of Lo(RV).

Proof. The proof will be divided into several steps.
(I) Set

(3.48) M(r)=M(r,z,f)=/S(|Vu|2+lk}21u|2)dS.

Let p(r) be as in Notation 3.2 with R; replaced by R; and let R >
R, + 1. Then we have

(3.49) / (1 + D)o, ((Vul? + [k[2[ul?) dx
Ex
= / (L+r) o, (r) (r) dr
R
<+ R0 [ P14 ) 40, (e (1) ar
R
< (14 R)-@r-1-2) / p(MA(1 + 1)~ g, (r)at () dr
R
<(1+ R)‘(ZT‘I“”/ —E’—{pzas}ﬂ(r)dr,
R, 8r
where we should note that 21— 1—-¢ >0, p(r)=1forr > Ry + 1 and
(350)  TAp(r o)} 2 p(rA(L +r) () 2 0

for r > R;.
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(IT) It follows from (3.43) that
(3.51) / 6—¢M(r)dr
R,

=/ o [/ |Vu — ikxu|*dS
R, Br S,
o
+2 / { —-zz} ds
Z AQNE, on
+2/ bVl + [k|2|u?) dx
E,

+ Z/E ,u(x)-Im{E-f—ﬂ}dx] dr,

where we set ¢ = p20g,. Let us first look at the term

® d¢p — Ou _
3.52 J=/ —[/ Im{k-——-u}dSJ ar.
(3:52) = Ik o Usane on

It follows from Lemma 3.6 that the term J; is expressed in the form

(3.53) J, = /R f%‘rfi [ /  Fy(s) ds] ar,

whence we get
oo — Ou _
(3.54) J = / o(r)F)(r)dr = ¢-Im {k " u} ds.
R, o} n

Here we should note that ¢(r) = p(r)?a:(r) = 0 for r < R;. Thus,
together with Corollary 3.4, we obtain

[ ]
(3.55) / % [/ Vi — ikzul? dS
R, 6r
ou
42 / { —-ﬁ}ds] dr
Z AQNE, on
=/ —q)IVu—ikfcui2 dx
Eg,
ou
+2 / Im{ ﬂ} das
Z Q,nER,¢ on
C {(Us|f|» IVl + [u])o,Eg,

+ / (1 + )20, (|Vuf2 + |u|2)dx}

1

with a constant C; = C(K).
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(III) It is seen from Lemma 2.1 that we have
(3.56) [ bvui + el dx < €111

with a constant C; = C,(K), where we should note that 2ab = u(x)n
and |a] > \/4o. Therefore we obtain

(3.57) /:%‘;’M b(|Vu|2+|k|2|u|2)dx+/Eﬂ-Im{E.f-a}ds dt
R AT

with C3 = C3(K), where we have used the fact that ¢(r) — 1 asr — oo.
The estimate (3.46) follows from (3.49), (3.51), (3.55) and (3.57). O

The estimate (3.46) can be improved in the following way.

CoROLLARY 3.9. Let K, R, be as above. Then there exist positive
constants C = C(K) and R, = Ry(K) such that

(3.58) /E (1 + [x])~Z 0 ((Vul? + ul?) dx

< C(1+R)~G1=9) {(Ifl, |Vl + |ul)o

+ / (1 + )20 (| Vuf? + [u) dx}
BRI,RZ
(R>R + 1, u=R(2)f, f € L,(RY), z€K)

holds for T and ¢ satisfying 0 < ¢ < 21— 1 and ¢ < 1. Here we set
(3.59) Bg,.r, ={x € RV/R, <|x| < Ry}

and o; is as in Notation 3.2.

Proof. 1t follows from (3.46) that
(3.60) / (1 + [x])~ 20 (|Vul? + |ul?) dx
Ex

< C(1+ Ry~ {(Ifl, [Vul + uf)o

+/ (1+lx|)“2ag(|Vu|2+lulz)dx}
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for R>R;+1and u = R(z)f with z € K and f € L,(R"), where
C = C(K). Take Ry = Ry(K) (= Ry + 1) so that
1

-_— ’

(3.61) C(1 + Ry)~-#

where we should note that 1 — ¢ > 0. Setting 7 =1 and R = R, in
(3.60), we get

(3.62) /E (1 + |x)"20.(|Vul® + |ul?) dx

<11Vl + o+ [ (1 1) 2ou(1VP + uf?) de
Ry .Ry

The estimate (3.58) directly follows from (3.62) and (3.46) with C =

2C. ]

By the use of Proposition 2.3 the second term in the right-hand side
of (3.58) can be eliminated.

ProrosITION 3.10. Let Assumption 1.1 be satisfied. Let o.(r), 1,
R, R, and ¢ be as above. Let K be a bounded set in C\R such that
Rez > Ay for z € K with a positive constant Ay. Then there exists a
positive constant C = C(K) such that

(3.63) /E (1 + %) 20, (|Vul® + [uf?) dx

< C(1+ R)™C=1=a(| £, [Vul* + |uf*)o
(R>R,+1, u=R(z)f feL,R"), zekK)

Proof. By the use of Proposition 2.3 the integral over Bg g, in (3.58)
1s estimated as

(3.64) / (1 + |x)~20.(|Vul? + |u]?) dx

< (14 Ry / (1 + 1)~ ()Yl + |uf?) dx

1R

< (14 R)P72C(If1, [Vl + lul)o,

where the constants y and C are as given in Proposition 2.3. The
estimate (3.63) is obtained from (3.58) and (3.64) by noting that R; =
R;(K) depend only on K. a

4. The limiting absorption principle. The results obtained in the
preceding section will be used to show the limiting absorption principle
for the operator H.
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THEOREM 4.1. Suppose that Assumptions 1.1 are satisfied. Let K be
a bounded set of C\R such that we have for z =4+ ine€ K
(4.1) A>4>0
with a positive number Ay. Let & be a real number such that
(4.2) §>1/2.
Then there exists a positive constant C = C(K, ) such that
(4.3) IR(2)fNl2,—s < ClIflls
h})lds forany f € L, 5(RY) and any z € K, where R(z) is the resolvent
of H.

Proof. (I) Let us first show that
(4.4) IR(2)flli-s <Clflls (€K, f€LysRY)).
We can assume with no loss of generality that
(4.5) 1/2<6 <1
Let us assume (4.4) is false. Then there exist sequences {z,,} C K and
{fim} C Ly 5(RY) such that
(4.6) IR(Gzm)fml1—s =1 and |fulls <l/m  (m=12,...)
We shall set

(4.7) Um = R(zm)fm-

Since the sequence {z,,} is contained in a bounded subset K of C,
there exists a subsequence of {z,,} which converges to an element
zy of C. For the sake of avoiding complication of notations we shall
express the subsequence by {z,,} again. Since u,, satisfies the equation

(4.8) ~Attyy = Zm (X )t = (X) S,

it follows from the Rellich Lemma and the interior estimate that there
exists a subsequence of {u,,} which converges to ug in H!(R"),c. The
subsequence will be denoted by {u,,} again.

Sett=0,e=(20-1)/2, u=upy, and f = f,,, in (3.63). Here we
should note that the conditions 27— 1 > ¢ > 0 and ¢ < 1 are satisfied.
Then we have

(4.9) / (14 1x]) "2 0, (1Tt + [tm]?) dx
Eg

< C(L+R)™ DR foul [Vitm| + )0~ (m=1,2,...)
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for any R > R; + 1, where R, is given in Lemma 3.6. Note that
(4.10) O<exp{—-¢'(1+R)?}<a.(r)<1 (r>Ry,e>0),

and the term (| fn|, |Vm|+|tm|) is uniformly bounded forn =1, 2, ...
by (4.6) and the Schwarz inequality. Thus it follows from (4.9) and
(4.10) that

(4.11) lumll1,—s8, < Cr(1+R)™F~V2  (m=1,2,...)

with a constant C;, where || ||; _s£, is the norm of H! (Eg) with
Er = {x € RY/|x| > R}. Thus the (sub)sequence {u,,} not only
converges to ug in H'!(RV ), but also has a uniformly small H! ;(ER)-
norm when R — oo. Therefore we have shown that the sequence {u,, }
converges to ug in H! ;(RY). Especially we have

(4.12) llolly,-s = 1.

Let m — oo and R = R; + 1 in (4.9). Then, since {u,,} is proved
to converge to g in H! ;(RY), in the left-hand side of (4.9) we have

@13)  Jim [ (1 )0 Vit + )

- / (14 %) P 0,([Vaol? + |uo]?) dx.
ERg,+i

On the other hand, by (4.6) and the Schwarz inequality, the right-hand
side of (4.9) converges to zero as m — oo. Therefore we arrive at

(414) u0=0 on ER1+1J

which implies, by noticing that %, is a solution of the elliptic equation
—Au—zou(x)u = 0 and by the use of the unique continuation theorem,
that g is identically zero on RY, This contradicts (4.12). Thus we
have proved (4.4).

(II) It is easily seen that (4.3) follows from (4.4) and the fact that
u is a solution of the equation —Au — k?u = u(x)f. o

REMARK 4.2 As we have seen, Proposition 3.10 plays a crucial role
in the above proof of Theorem 4.1, and Proposition 3.10 is an im-
provement of Corollary 3.9 by Proposition 2.3. It might be interest-
ing to discuss what we can get if we use only Corollary 3.9 without
using Proposition 2.3. Let us suppose that (4.6) holds with {z,,} € K,
{fm} C Ly 5(RY) and {um} = {R(zm)fm}. We can assume, with no
loss of generality, that the sequence {z,,} converges to a positive num-
ber A, (if the limit is a nonreal number, a contradiction follows much



THE REDUCED WAVE EQUATION WITH TWO UNBOUNDED MEDIA 205

more easily). It follows from the estimate (3.58) in Corollary 3.9 that
there exists a subsequence of {u,,}, which will be denoted by {u,,}
again, such that

(4.15) s-lim up, =uy in H! (RY)
m-—00

for any 7 > 1/2. As has been shown, ug is a solution of the homoge-
neous equation —Au — A u(x)u = 0.

Let ¢ satisfy 0 < e < 1 andset 7= (1 +¢€)/2, u =uUm, f = fm and
R = R, = Max{R, + 1, R,} and (3.58). Then we have

(4.16) / (1 + |x|) "D (|Veem|* + |um|?) dx
Ei.
< {(lfml: Ivuulz + Iumlz)o

+/ (1 + |x)"20:(|Viem|* + |um|2)dx}
Bg,r,

with a constant C’ which is independent of ¢ in (0,1). Let m — oo in
(4.16). Then we get

(4.17) /E (1 + [x]) =90, ([Vaol? + [uo]2) dx

<C [ (14 ) ol Tuof? + [uof?) dx
RyRy

By noting that

(4.18) 0e(r) 2 ge(R.) 2 0e(Ry) =exp{—e '(1+Ry)™'}  (r>R.)
and

(4.19) 0:(Ry)™' ae(r) <1 (R <r<Ry),

it follows form (4.17) that

(4.20) / (1 + 1x) =+ (Vo) + [up|2) dx

Eg.
<C [ (1 ) Tu0l + o) dx
R Ry
for any ¢ in (0,1), whence we get, by letting ¢ to zero,

4.21) / (1 + %))~ (| Vato 2 + uo]?) dx < oo,
Ex.

i.e., we have ug € Hll/Z(RN).
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If ug is a solution of the homogeneous Schrodinger equation
(4.22) —Au+Vu—-Aiu=0 (A1 >0)

with, e.g., a short-range or long-range potential V'(x), then, by the the-
orems on the asymptotic behavior of a solution of the equation (4.22)
(e.g., Kato [7], Eastham & Kalf [3]), the estimate (4.21) is sufficient to
guarantee that ug is identically zero. However, it seems to be an open
problem whether the above theorems on the asymptotic behavior of
the solution can be extended to our case.

Now that the estimate (4.3) has been shown, we can make use of
Theorem 1.2 to show that the limiting absorption principle for the
operator H holds between L, s(RY) and L, _s(RV).

THEOREM 4.3. Suppose that Assumptions 1.1 are satisfied. Let R(z)
be the resolvent of the selfadjoint operator H and let 6 > 1/2. Then for
each A > 0 there exist the operators R*(A) in B(L, 5(RY), L, _s(RN))
such that we have

(4.23) s_nlirinok(/l +in)f =RY(A)f in H?4RY)

for all f € L,s(RN). Furthermore, R(A) is an H?;(RN)-valued,
strongly continuous function on (0, co) for each f € L, 5(RY).

Proof- 1t is sufficient to assume that 1/2 < § < 1. Let us show
the existence of the limit (4.23) only when n — +0. The case where
n — —0 can be treated in the same way. Let us denote by R*(A) the
operator in B(L, (RY), L, _,(R")) whose existence has been proved
by Theorem 1.2. Thus we have

(4.24) s-nlirEOR(/l +in)f =RT(A)f in L, _(RV)

for all £ € L, (RV).

Let us first prove (4.23) for f € L, ;(RV). Let {5} be an arbitrary
positive sequence such that n, — +0 and let u,, = R(z,)f with
Zm = A+ in,. Then, proceeding as in the proof of Theorem 4.1, we
can find a subsequence {u,,} of {u,} which converges strongly to an
element g in H?4(RV) with the estimate

(4.25) luoll2.-s < ClIfls

with a positive constant C which remains bounded when A moves in
a compact set in (0, 0o). On the other hand it follows from (4.24) that
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the sequence {u,,} itself converges to R*(A)f in L, _{(RY). Therefore
we have ug = Rt(A)f,

(4.26) s-jli_)m Um, = R*(A)f in H24RY),
and
(4.27) IR*(A) fll2.—s < Cllflls-

Since the sequence {#,,} was taken arbitrarily, we can conclude that
(4.23) is true for f = L, (RY). It follows from (4.27) and the dense-
ness of L, | (RY) in L, 5(R") that R*(4) can be uniquely extended to
a bounded linear operator from L; s(R") into H2;(RY). The exten-
sion will be denoted by R*(4) again. Then, by use of the denseness
of Ly ((RN) in L, 5(RV) and the estimates (4.3) and (4.27), it is easy
to see that (4.23) is true for f € L, s(RY). Noting that u = R*(4)f
satisfies the estimate (3.63) as well as (4.27), we can almost repeat the
above arguments to show the continuity of R*()f in H24(R") with
respect to A for any f € Ly(RY). a

REFERENCES

[1] S. Agmon, Spectral properties of Schrddinger operators and scattering theory,
Ann. Scoula Nor. Sup. Pisa, (4) 2 (1975), 151-218.

[2] A. Devinatz and P. Rejto, 4 limiting absorption principle for Schrédinger op-
erators with oscillating potentials. 1, 11, J. Diff. Equations, 49 (1983), 29-84,
85-104.

[3] M. S. P. Eastham and H. Kalf, Schréodinger-Type Operators With Continuous
Spectra, Pitman, London, 1982.

[41 D. Eidus, The limiting absorption and amplitude principles for the diffraction
problem with two unbounded media, Comm. Math. Phys., 107 (1986), 29-38.

{5] T. Ikebe and Y. Saitd, Limiting absorption method and absolute continuity for
the Schrodinger operator, J. Kyoto Univ., 7 (1972), 513-542.

[61 W.Jiger, Ein gewéhnlicher Differentialoperator zweiter Ordnung fiir Funktionen
mit Werten in einem Hilbertraum, Math. Z., 113 (1970), 68-98.

[71 T. Kato, Growth properties of solutions of the reduced wave equation with a
variable coefficient, Comm. Pure Appl. Math., 12 (1959), 403-425.

[8] R. Lavine, Absolute continuity of positive spectrum for Schrodinger operators
with long-range potentials, J. Funct. Anal., 12 (1973), 30-54.

[91 K. Mochizuki and J. Uchiyama, Radiation conditions and spectral theory for
2-body Schrédinger operators with “oscillatory” long-range potentials, 1. J. Math.
Kyoto Univ., 18 (1978), 377-408.

[10] Y. Saito, The principle of limiting absorption for second-order differential equa-
tions with operator-valued coefficients, Publ. Res. Inst. Math. Sci. Kyoto Univ.,
7 (1972/72), 581-619.

, Spectral representations for Schrodinger operators with long-range po-

tentials, Lecture Notes in Mathematics 727, Springer, Berlin-Heidelberg-New

York, 1979.

[11]



208 YOSHIMI SAITO

[12] , Schrddinger operators with nonspherical radiation condition, Pacific J.

Math., 126 (1987), 331-359.

Received August 24, 1987 and in revised form March 18, 1988. Partially supported
by NSF EPSCoR grant number RII-8610669.

UNIVERSITY OF ALABAMA AT BIRMINGHAM
BIRMINGHAM, AL 35294



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

V.S. VARADARAJAN R. FINN ROBION KIRBY

(Managing Editor) Stanford University University of California
University of California Stanford, CA 94305 Berkeley, CA 94720
Los Angeles, CA 90024 HERMANN FLASCHKA C. C. MOORE
HERBERT CLEMENS University of Arizona University of California
University of Utah Tucson, AZ 85721 Berkeley, CA 94720
Salt. Lake Clty’ UT 84112 VAUGHAN F. R. JONES HAROLD STARK
THOMAS ENRIGHT University of California University of California, San Diego
University of California, San Diego Berkeley, CA 94720 La Jolla, CA 92093

La Jolla, CA 92093

STEVEN KERCKHOFF

Stanford University
Stanford, CA 94305

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

(1906-1982)

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA

MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO

NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY

UNIVERSITY OF OREGON

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY

UNIVERSITY OF HAWAII

UNIVERSITY OF TOKYO

UNIVERSITY OF UTAH

WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON



Pacific Journal of Mathematics
Vol. 136, No. 1 November, 1989

Robert Archbold and Frederic W. Shultz, Characterization of C*-algebras

with continuous trace by properties of their pure states ................... 1
Shu Ping Chen and Roberto Triggiani, Proof of extensions of two

conjectures on structural damping for elastic systems ................... 15
Philip Throop Church and James Timourian, A nonlinear elliptic

operator and its singular values ............. . ... i i 57
A. Gervasio Colares and Katsuei Kenmotsu, Isometric deformation of

surfaces in R preserving the mean curvature function .................. 71
Fei Xu, A remark on spinor norms of local integral rotations. I .............. 81
Pedro Martinez Gadea and Angel Maria Montesinos-Amilibia, Spaces of

constant para-holomorphic sectional curvature ......................... 85
Guangxin Zeng, Homogeneous Stellensitze in semialgebraic geometry . .... 103
Thomas Eric Hall, The isomorphism problem for orthodox semigroups ... .. 123
Mike Hoffman, Noncoincidence index, free group actions, and the fixed

point property for manifolds ........ ... ... i 129
Terry Atherton Loring, The noncommutative topology of one-dimensional

SPACES vt ettt et e e e e e e e e e 145

Haskell Paul Rosenthal and Alan Evan Wessel, The Kref n-Mil’man
property and a martingale coordinatization of certain nondentable
COMVEX SELS . vt vttt ettt e et ai e e aaeens

Yoshimi Saito, A remark on the limiting absorption princi
wave equation with two unbounded media ..........



http://dx.doi.org/10.2140/pjm.1989.136.1
http://dx.doi.org/10.2140/pjm.1989.136.1
http://dx.doi.org/10.2140/pjm.1989.136.15
http://dx.doi.org/10.2140/pjm.1989.136.15
http://dx.doi.org/10.2140/pjm.1989.136.57
http://dx.doi.org/10.2140/pjm.1989.136.57
http://dx.doi.org/10.2140/pjm.1989.136.71
http://dx.doi.org/10.2140/pjm.1989.136.71
http://dx.doi.org/10.2140/pjm.1989.136.81
http://dx.doi.org/10.2140/pjm.1989.136.85
http://dx.doi.org/10.2140/pjm.1989.136.85
http://dx.doi.org/10.2140/pjm.1989.136.103
http://dx.doi.org/10.2140/pjm.1989.136.123
http://dx.doi.org/10.2140/pjm.1989.136.129
http://dx.doi.org/10.2140/pjm.1989.136.129
http://dx.doi.org/10.2140/pjm.1989.136.145
http://dx.doi.org/10.2140/pjm.1989.136.145
http://dx.doi.org/10.2140/pjm.1989.136.159
http://dx.doi.org/10.2140/pjm.1989.136.159
http://dx.doi.org/10.2140/pjm.1989.136.159

	
	
	

