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This article studies uniqueness, in the class of distributions, of so-
lutions of the Cauchy problem for a class of degenerate hyperbolic
second order equations, when the initial curve contains a doubly char-
acteristic point. The techniques employed are Carleman estimates
and the concatenation method.

1. Introduction. This work is concerned with the uniqueness in the
characteristic Cauchy problem for operators with double characteris-
tics at a point of the initial curve.

We obtain an extension of results in [T2] and [BP]: these authors
study uniqueness across y = 0 for the operator

(Dx - xDy)(Dx + xDy) - cDy\

throughout the article we use the notation Dx = d/dx, Dy = d/dy.
Our work has an overlapping with [N] and [K]. In [N], the study is

made in the context of hyperfunction theory and results are proven
for operators, e.g., of the type: (Dx - xkDy)(Dx + xkDy) - cxk"ιDy,
k a natural number; our method of proof uses only the theory of
distributions. In [K], operators, e.g., like

P{a, b) = [Dx - a(x)Dy][Dx + a(x)Dy] + b(x)Dy,

where a has a zero of order one at zero, are dealt with; in our work,
if, say, b is non-negative then a is allowed to vanish to an arbitrary
odd order k at zero.

Section 2 contains the proof of the Carleman estimates which yield
the uniqueness across y = 0, in the class C2, for the operator P(a,b),
under suitable assumptions. The results of this section are more
general than what we needed in our applications. In the beginning
of §3, we specialize our operator P(a, b) to the case a(x) = -axk,
b(x) = -cxk~ι, k odd, and, by using the concatenations in [GT], we
prove uniqueness, in the class C m , where m depends on c and c avoids
a certain sequence of real numbers. When c takes on such values, it
is possible to prove that there is non-uniqueness, even in the class C°°
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(see [N]). The result in Theorem 3.2 refers to uniqueness when the
initial curve lies midway between the pair of characteristics through
the origin.

Section 3 also contains a result of uniqueness—not covered by
[N]—for operators of the type

(Dx + axkDy)(Dx + bxιDy) - (cxk~ι + dxl~l)Dy

where k, I are odd natural numbers and a, b, c, d are real numbers
satisfying certain conditions (see Theorem 3.3).

In §4, we extend the method used in [BP] and we show how to
obtain uniqueness in the class of distributions from uniqueness in
the class Cm for some ra, in the case of a certain type of operators
among which are all the above mentioned operators. It is interesting
to compare Theorem 4.1 with Theorem 4.4.8 in [H],

The authors hope to prove, in a forthcoming publication, the
uniqueness in the Cauchy problem for operators such as

[Dx + a(x, y)Dy][Dx + b(x, y)Dy] - c{x, y)Dx - d(x, y)Dy - e(x, y)

where both a(x, 0) and b(x, 0) have zeros of orders greater than one
at x = 0. This will be accomplished by means of certain approximate
concatenations since we haven't been able to find exact ones in this
more general set up.

2. Carleman estimates and uniqueness in the class C2 for the operator
P(a,b) = (Dx - a(x)Dy)(Dx + a(x)Dy) + b(x)Dy; a e Cι(R,R),b e
C°(R,R).

PROPOSITION 2.1. Assume that the following condition is satisfied:
(H) There exist M>0 and r > 0 such that

g(x) = M[a(x)]2 + a\x) + b(x) > 0, xe [-r, r]

where a'(x) is the derivative ofa(x).
Then the following estimates hold for all v e C}(X,C), where X c

{(x,y) eR2: \x\ <r} is a nonempty bounded open subset ofR2:
(Tl) IfP*(a, b, t) = exp(ty)P(a, b) exp(-Γμ), then fort>M

Re(P*(a,b,t)v, Dyv) > C IΊ g\υ\2dxdy

x

where (, ) is the usual inner product ofL2(X, C) and where the constant
C > 0 is independent ofυ.
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(T2) For the same constant C > 0 and for t >M,

C ίίg(x)exp(2ty)\v\2dxdy

x

< ff εxp(2ty)[\P(a, b)v Ή/ϋ\ + t\P(a, b)v ΰ\]dxdy.

x

Proof. First we use (Tl) to prove (T2). We have

C'JJg(x)exp(2ty)\v\2dxdy

x
>#< Re(P*(α, b, t)(v exp(ty)),Dy(v exp(ίy)))

= Re{exp(ty)P(a, b)(v), exp(ty)(tv + Dyv))

ίί exp(2ty)[P(a, b)(υ) D/v + tP(a, b)(v) ϋ] dxdy

x

< if exp(2ty)[\P(a, b){v) D/ΰ\ + t\P(a, b)(v) v\]dxdy.

x

We shall now prove (Tl). We first get
r+oo r+oo

/ \v\2dy<C~ι \Dyv\2dy
J—oo J—oo

where the constant C > 0 is independent of υ € £%{X, C).
Then

+oo

and

/»+oo r+oo

Cg{x) \v\2dy<g(x) \Dyυ\2dy
J—oo J—oo

CIIg\v\2dxdy < ff g\Dyv\2dxdy
X X

= ff[Ma2 + a' + b]\Dyυ\2dxdy

x

< ff[2ta2 + a' + b]\Dyv\2dxdy

x
= Re(P*(a,b,t)(v),Dyυ)

since t> M.
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THEOREM 2.1. Assume that the following conditions are satisfied:
(HI) There exist M>0 and r > 0 such that

g(x) = M[a(x)]2 + a'{x) + b(x) > 0, xe [-r, r]

and g is not identically zero on any subinterval of[-r, r].
(H2) X c {(JC, y) G R2: |Λ:| < r} is a nonempty bounded open subset

ofR2 and F is a relatively closed subset of X whose intersection with
χ+ = {(x, y) e X: y > 0} is a compact set K.

Then the following holds
(T) There exists an open neighborhood U ofK such that every func-

tion u e C2(X, C) satisfying

(1) P(a,b)u = 0 inX; (2) suppwcF

also satisfies u = 0 in U.

Proof. The proof uses the estimates proved in the previous section
following the lines of Theorem 2.3 of [Tl].

3. Concatenations and uniqueness in the class Cm for the operator
P(a,b,c,k) = {Dx + axkDy)(Dx + bxkDy)-cxk-ιDy. We are going to
use

LEMMA 3.1. Assume that
(HI) For a,μeC and keN, let

Q(a, k, μ) = x(Dx + axkDy) + μ,

R(a, k) = Dx + axkDy.

Then the following holds for a, b, c e C and (a - b)b Φ 0.
(Tl) Q(a,k,μ)P(af b,c,k) = P(a, b,c',k)Q(a,k,μ-2) if c' = c +

(k+l)(a-b)andμ-2 = k + c/(a - b).
(T2) xP(af -a, c, k) - R(-a, k)Q(a, k,μ-2) = (-c'/2a)R(a, k), if

Proof. For (Tl) see [GT]. A simple computation shows that (T2)
also holds.

LEMMA 3.2. For m>2 and C G C , consider the statement:
S(m,c): every function u e Cm(X,C) satisfying
(1) P(a,b,c,k)u = 0inX witha = -b,
(2) supp uc F

vanishes identically in U (here, X, F and U are as in Theorem 2.1).
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Ifc' = c + (k+ \){a -b)φθandμ-2 = k + c/(a - b) φ 0 then
S(m, c1) implies S(m + 1, c).

Proof. Let u e Cm+\X, C) be such that
(1) P(a,b,c,k)u = 0 in U with a = -b,
(2) suppw c F.
From Q(a,k,μ)P{a,b,ctk)u = P(a,b,c',k)Q(a,k,μ - 2)u it fol-

lows that
P(a,b,c',k)Q(a,k,μ-2)u = 0 in U

and therefore by hypothesis

Q(a,k,μ-2)u = 0 in K

Thus, if a Φ 0,

0 = xP(α, -α, c, A:)w - R(-a, k)Q(a, k,μ- 2)u

= γ-R(a,k)u inU.

Since d φ 0,

0 = Q(a, k,μ- 2)u = xR(a, k)u + (μ- 2)u in U

and so (μ - 2)w = 0 in U; since // - 2 ^ 0, we get u = 0 in [/. The
lemma is proved.

THEOREM 3.1. Assume that the following condition is satisfied:
(H) X is a nonempty bounded open subset of R2 and F is a relatively

closed subset ofX whose intersection with X+ = {(x, y) e X: y > 0} is
a compact set K.

Then the following holds
(T) There exist m > 2, depending on c, and an open neighborhood

UofK such that every function u e Cm(X,C) satisfying:

(1) P(a,-a,c,k)u = 0 in X; (2) suppucF

also satisfies u = 0 in U, when one of the following holds:
(i)0φa,ceR;ka + c = 0

(ii) a, c e R; k odd and ka + c < 0
(iii) 0 > α , c e R ; k odd and for all j = 0,1,2,... cφ-2aj{k+\)9

cφ-2a[k + j(k+1)1

Proof. The first two cases are consequences of Theorem 2.1; in
these cases, m = 2. In the third case, if c is non-positive, we are in
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the preceding case and m = 2. If c > 0, let 7*0 be the smallest natu-
ral number such that C\ = c + 2a(k + l)jo < 0. As in the preceding
case, S(2, c\) holds. We apply Lemma 3.2 70 times and conclude that
S(2 + jo, c) holds; in this case, m = 2 + j 0 . The proof is complete.

THEOREM 3.2. Assume that the following condition is satisfied:
(H) X is a nonempty bounded open subset of R2 and F is a relatively

closed subset ofX whose intersection with

is a compact set K.
Then the following holds:
(T) There exist m > 2 depending on c, and an open neighborhood

U ofK such that every function u e Cm(X, C) satisfying

(1) P(a, b, c, k)u = 0 in X\ (2) supp u c F

also satisfies u = 0 in U, when one of the following holds:
(i) a,b,ce R; a φ b\ k((a - b)/2) + c = 0

(ii) a,b,ceR;k odd and k{(a - b)/2) + c<0
(iii) a,b,c e R; a- b < 0; k odd and for all j = 0,1,2,... c Φ

- a)(k +\\cφ{b- a)[k + j(k + 1)].

THEOREM 3.3. LetP = (Dx+p(x)Dy)(Dx+q(x)Dy)-s(x)Dy, where
py q and s are smooth functions vanishing at x = 0. Assume that the
following condition is satisfied:

(H) There exist M > 0 and r > 0 such that

ί W = Λ,(£Wzl(f0)2_£2 > 0, xe[-r,r].

Then the following holds:
(T) IfX c {(x, y) G R2: |x| < r} is a nonempty bounded open subset

ofR2 and F is a relatively closed subset ofX whose intersection with

Xp,q = {(x, y)eX:2y> Pι(x) + qx{x)\

p[(x) = p(x),pχ(0) = 0,q[(x) = q(x),qi(0) = 0}

is a compact set K then: "there exists an open neighborhood U of K
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such that every function u e C2(X\C) satisfying:

(1) Pu = 0 inX; (2) suppwci7

also satisfies u = 0 in U".

In particular, if p(x) = axk, q(x) = bxι, s(x) = cxk~ι + dxι~ι,
where k and / are odd with k < /, then the conditions a Φ 0, ka+2c < 0
imply uniqueness in the class C2 across

y~~ 2 f c + l + 2 / + Γ
Theorems 3.2 and 3.3 follow, after a change of variables, from The-

orem 3.1.

4. Uniqueness in the class of distributions for the operator P =
D2

x-A(x)D2

y-B(x)D}y-C{x)Dx-D(x)Dy -E{x) where A, B9 C, Z>,
E are smooth functions of the variable x. In this section we have three
results: the first one, Theorem 4.1, shows how to obtain uniqueness in
the class of distributions from uniqueness in the class Cm, for some
m > 2. The other two (given without proof) are applications of it to
the operator P(a, b, c, k) of the preceding section.

THEOREM 4.1. Assume that the following conditions are satisfied:
(HI) X is a nonempty bounded open subset ofR2 andF is a relatively

closed subset ofX whose intersection with X+ = {(x, y) e X: y > 0} is
a compact set K.

(H2) There exist a natural number m>2 and an open neighborhood
V ofK such that every v e Cm(X, C) satisfying:

(1) Pυ = 0inX,
(2) supp υ c F

vanishes identically on V.
Then the following holds
(T) There exists an open neighborhood UofK such that every dis-

tribution ueD'(U) satisfying:
(1) Pu = 0inX,
(2) supp u c F

vanishes identically on U.

Proof We shall follow closely the article [BP].

Preliminaries. Let u e D'(X) be such that
(1) Pu = 0 in X,
(2) suppw c F.
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Pick r > 0 such that

K3r = {(x,y)eR2: d((x,y),K) < 3r} c X

The closure of the set

(K3r\Kr)n{(x,y)eR2:y = O}

is compact and disjoint from F, and therefore its distance to F is
strictly positive.

Now choose p < 0 with the following properties:
(i) 0 < | ι | < r,

(ii) Kr Π F Π Xp = K3r Π F Π Xp, where

By using a partition of unity, it is possible to express u e D'(X)
as u = u\ + U2 with suppwi c K2r n F and suppw2 c ^ Π F . (It
suffices to take g e C£°(X, R) with g = 0 in ΛΓ̂ r and ̂  = 1 in an open
neighborhood of AΓr and then take U\ = gu and w2 = (1 - #)w.) We
have

(iii) (supp ui) Π Kir Γ\XP = 0.
(Indeed, by using (ii), we get

φ = κr n xp n supp W2 = Â r π x p n i7 n supp w2

= A:3Γ nXpΠF n supp w2 = # 3 r n i ^ n supp w2.)

Notice A/ = 0 in X implies Pux = -Pu2 in X and supp Pu\ c supp U\ n
suppw2. Also, by (iii)

(iv) Xp n supp/^i = 0.
Extend Wi to a distribution on i?2 by setting it equal to zero outside
K3r. By (iv), Pu\ = 0 in Xp. By L. Schwartz's theorem on the struc-
ture of distributions with compact support, there exist a non-negative
integer n and continuous functions f^ such that supp f^ c K3r and

in the sense of distributions.

In order to simplify our notation we pick b e R such that

K4rcQ = {(x,y)eR2:x>b, y>b}.

For each continuous function f:R2^C with supp/ c Q, we define

= Γf(t,y)dt,
Jb

= Γ f(χ,t)dt.
Jb
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It is clear that [Dx

ιf]{x, y) = 0 if x < b and that [Dy

ιf](x, y) = 0 if
y <b. It is also obvious that Dx, Dy, D~ι and D~ι "commute" (e.g.,
if/ is C\ we have DxD~lf = D~ιDxf = f = Z),/)-1/ = D-χDyf).
We define, for * = 1,2,..., D~n = [Dx

ι]n and D~n = [Dy

ι]n. Also,
Z)^/ = D®f = /. With these notations, we may write

(y)ux=DSD^f

where / =T,j+k<nDtnD$-»fjk. We have

supp/ c {(x, y) G i?2: Λ: > δ + r, >; > Z> + r}.

Regularization of ux in the variable y. Let ψ e C™(R,R) with
$l™ψ{t)dt = 1 and ^(ί) = 0 for |f| > 1/2. For each ε > 0, we
set ψε{t) = ^"Vi^"1^)? t E R and t>e = Wi *' ^ ε where *' denotes
convolution in variable y only.

The fact that the coefficients of P are independent of y implies
Pυε = Pu\ *' ψε for ε > 0. If 0 < ε < \p\ < r then supp^g C K4r c Q.
Also

V ε = Uχ *' ^ ε = {DSDff) *' ^ = Z>ί [/ *' D»ψa] = Λ?^

where the function g = f^D^ψε is continuous, has partial derivatives
of any order in the variable y and satisfies suppg c Q.

Substitution ofvε = D£g in Pυε = 0 on Xp+ε/2-

D2

xx[DZg] = AD2

xy[Dϊg] + BD}y[D-g]

+ CDx[Dϊg] + DDy[D2g]

First Case, n = 1,2,3,....

= D»+ι[ADyg] -

j=2
J

= D?+ϊ[ADyg] " D*[A'Dyg] -

j=2

= D»+ι[ADyg + AλD-χ[A'Dyg]
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BD1

y[Dn

χg]D-[BD1

yg\ -
7=1

BxDx\B'D2

yg\

( n(
7=1 V J

x

= Dn

x

+{[Cg + CxDx

x[C'g] + ••• + Cn+iD-'

DDy[D2g] = Dn

x[DDyg] -
7=1

= D^ι[Dx

ι[DDyg] + D^lD'Dyg] + •••+ DnDx

n-ι[D^Dyg]],

ED«x[g] = Z)»
7=1

We get Zλ^+2^ = Zλ?+1/z or £>x^ = Λ. Therefore, vε = D^~xh where
h has the same properties of g.

Second case, n = 0.

£>x

2g - ΛZMDyS] + BDJg + CDxg + DDyg + Eg

= Dx[ADyg - D-^A'Dyg] + D~ι[BD}g]

+ Cg- D-'lC'g] + Dx

ι[DDyg] + D-^Eg}].

We get D2g = Dxh or Dxg = h. Therefore, vε = Dx

xh where h has
the same properties of g.

Third case, —n = +1, +2,
We shall use the following "Leibniz Formula":

D-"[FG] = FDX"[G\ -
7=1

n + ι

yg]] + Dx

n+ι[ADyg].

7=1
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By applying Leibniz formula to A'D~n+l[Dyg], AfD^n+2[Dyg],...,
ArD~ι[Dyg] and to the other terms of the equation Pvε = 0 we arrive
at D~n+2g = D~n+ιh or Dxg = h. Therefore, vε = D~n-χh where h
has the same properties as g.

Epilogue. The analysis above furnishes the inductive step in proving
that for each integer n there exists gn, continuous, with s u p p ^ c Q
and

υε = D£gn in Xp+e/2

g being smooth in y.

We reach the conclusion that vε restricted to X is in C°°(Xp+ε/2, C).
Now assumption (H2) implies that vε = 0 in Xp+ε/2 Therefore

U\ = 0 in Xp since vε converges to U\ in Xp when ε decreases to zero.
Now (iii) implies that U\ = u in AΓ3r Γ\XP. We may take U = K2rC\Xp.
The proof is complete.

COROLLARY 4.1. Assume that the following condition is satisfied:
(H) X is a nonempty bounded open subset ofR2 and F is a relatively

closed subset ofX whose intersection with X+ = {(x, y) e X: y > 0} is
a compact set K.

Then the following holds
(T) There exists an open neighborhood UofK such that every dis-

tribution ueD'(U) satisfying
(1) P(a,-a,c,k) = [{Dx + axkDy){Dx - axkDy) - cxk~lDy]u = 0

inX,
(2) supp uc F

also satisfies u = 0 in U, when one of the following holds:
(i) 0 Φ a, c e R; ka + c = 0,

(ii) a, c e R, k odd and ka + c <0,
(iii) 0 > α , c G R ; f c odd and for all j = 0,1,2,... cφ -2aj(k + 1),

COROLLARY 4.2. Assume that the following condition is satisfied:
(H) X is a nonempty bounded open subset of R2 and F is a relatively

closed subset ofX whose intersection with

is a compact set K.
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Then the following holds:
(T) There exists an open neighborhood U of K such that every dis-

tribution ueD'(U) satisfying

(1) P(a,b,c,k)u = 0 in X; (2) suppwcF

also satisfies u = 0 in U, when one of the following holds:
(i) a, b, c G R; a φ b\ k((a - b)/2) + c = 0

(ii) a,b,ceR;k odd and k((a - b)/2) + c < 0
(iii) a,b,c eR; a- b < 0; k odd and for all j = 0,1,2,... c Φ

- a)(k + I), cφ(b-a)[k + j(k+I)].
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