
Pacific Journal of
Mathematics

JENSEN POLYNOMIALS AND THE TURÁN AND LAGUERRE
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In this paper we will (1) establish a relationship between the Turan
inequalities and the Laguerre inequalities, (2) provide a complete
characterization of functions in the Laguerre-Polya class in terms
of the Turan inequalities involving the Jensen polynomials and (3)
show that certain Hankel determinants of functions in the Laguerre-
Polya class are nonpositive.

Introduction. A real entire function ψ{x) is said to be in the Laguerre-
Pόlya class if ^(JC) can be represented in the form

(1.1) ^(JC) := Cχ
me-aχ2+Pχ Y[(l+x/xk)e~χ/Xk,

k=\

where c, /?, xk are real, a > 0, m is a nonnegative integer and
Σx

k

2 < °° Pόlya a n d Schur [PS] termed an entire function φ(x)
as a function of type I in the Laguerre-Polya class if φ{x) or φ(-x)
can be represented in the form

(1.2) φ{x) := cxmeσx f [ ( l + */**)•
k=\

where σ > 0, c is real, m is a nonnegative integer, xk > 0, and Σ x

k

l <

oo. If φ(x) is in the Laguerre-Pόlya class, we will write φ e 3*-£P or
φ e -5^(11). Also, if φ(x) is a function of type I in -S*-^, we will
write φ(x) e <&-&>(!). Now it is clear that if φ e -2%^(I), then φ e £?-

For the various properties of functions in the Laguerre-Pόlya class
we refer the reader to [PS], [O], [CC] and the references contained
therein. For the reader's convenience, we single out here a few known
facts [PS] concerning functions in the Laguerre-Pόlya class. For a
function

(1.3) *(*):= Eg**
k=0

in the Laguerre-Pόlya class the following statements are valid.
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(i) For each n, the Jensen polynomials

(1.4) Λ ( x ) : = έ ( ϊ ) ^ * = 0,1,2,...,
k=0 ^ '

have only real zeros.
(ii) For each k, the Turan inequalities hold; that is,

(1.5) Tk:^γ2

k-γk^γk^>0f k= 1,2,3,.. . .

(iii) For each p, the Laguerre inequalities hold [S]; that is,

(1.6) (φ{p)(x))2 - ^ - ^ ( J t ^ ^ C x ) > 0,

for all real x and p = 1,2,3,
(iv) If γk > 0 for k = 0,1,2,.. ., then φ(x) e 5

In §2, after reviewing some of the known properties of Jensen poly-
nomials, we shall relate the Turan inequalities for an arbitrary entire
function to the Laguerre inequalities and to Turan-type inequalities
of the Jensen polynomials on the positive real axis (Theorem 2.3).
We then prove that the requirement that the inequalities hold on the
whole real axis forces φ(x) to be in S'-S*. This culminates in a com-
plete characterization of J?-^(II) in Theorem 2.7. The section ends
with a proof of a related problem of Karlin.

In §3, we shall cite two open problems and give several examples
which illustrate the necessity of the hypotheses in our results.

2. The main results. We begin this section with the terminology
and notation we will use in the sequel. If

(2.1)

is a real entire function, so that γk e R, k = 0,1,2,.. ., then the nth
Jensen polynomial associated with f(x) is defined by

(2.2) gn(t) :=

The nth Jensen polynomial associated with f^p\x), p = 0,1,2,...,
will be denoted by

(2.3) &.,(*) : = Σ ( Σ ) W * (*•* = 0,1,2,...).
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The nth Appell polynomial associated with f(x), if γo φ 0, is defined
by

(2.4) Pn(t):=^Σ,(%ktn-k (n = 0,1,2,...)-
' k=0 ^ '

If

anφ0,
k=0

is any polynomial, we define

h*(x):=xnh(χ-1), (xφO).

In particular if γn φ 0, then with the above definition, (2.3) and (2.4)
we have

(g*(t) : = tngn{Γx) (n = 0,l,2,...,tφ0),
(2-5) D

Some of the properties of the polynomials are summarized in the
following proposition (see, for example, Csordas and Varga [CV]).

PROPOSITION 2.1. The following properties hold for the functions de-
fined by (2.l)-(2.5).

(i)Ifγo^OfP^t) = Pn^(t)(teRf π = 1,2,3,...).
(ii) The sequence {gn(t)}^Lo is generated by exf(xt)\ that is,

(2.6) exf{xt) = JΓ gn(t)^ (x, t e R).
n=0 H'

If 7o Φ 0. the sequence {«!-P«(ί)}^=o ^ generated by extf(x); that is,

χ

(2.7) e*/(x) = ΣPn{t)xn = ΣSn(t)^f {x.t eR).

n

(iii)

(2.8) /ifo(0 = « ^ - i ( 0 + i ^ ( 0 ( ί e R , / i = 1,2,3, . . . ) .

(iv)

(2.9) g n + ι , P ( t ) = gn,p(t) + t g n , p + ι ( t ) ( t e R , n , p = 0 , l , 2 , . . . ) .

(v)//

(2.10) K,p{t) := ̂ ( 0 - ίB_i,p(ί)gB+i.p(0

(if = 1,2,3 p = 0,1,2,...).
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then

(2.11) ΔΛ f l,(0 = ί 2 [ ^

( Λ = 1,2,3,...,p = 0,l,2,...).

Proof. Direct verification yields (i)-(iv) (for (ii) and (iii), see for
example, Rainville [R, p. 133]). To prove (v), we use (2.9) in the form

(2.12) gn>p(t) = gn-ιfP(t)

Substituting (2.9) and (2.12) into (2.10) yields (v). D

The Jensen polynomials associated with an arbitrary entire function
form a "natural" sequence of approximating polynomials. This prop-
erty will be needed below and is established in the following lemma.

LEMMA 2.2. Let

(2.13) * ( * ) :
)t=0

be an arbitrary entire function. For each fixed nonnegative integer p,
let

(2.14)

Then

(2.15)

uniformly

gn,p(z)

n—*oo

on compact

n ί \
: = =]C lk)ak+p

(—) = h^p\z)

subsets ofC.

(P

(n = 0,1

= 0,1,2,.

,2,.

..)

..).

Proof. For a fixed nonnegative integer p and for n > 2, we have

(2.16) gn,

Then, by the Cauchy inequalities for the Taylor coefficients of A(/

we have

(2.17)
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where

(2.18)
\z\=R

Thus, for n > m + 1 and for 0 < \z\ < r < R = 2r, we obtain

(2.19)
k=

<M{R,h{p))
rm+\

Rm(R-r)'

and

(2.20)

k=m+\

ak+p <M(R,h{p))
y.m+\

Rm(R-r)'

Therefore, with R = 2r and for any ε > 0, there is a positive integer
m0 such that rm+ι{Rm(R - r))"1 < ε for all m > m0. Finally, there is
a positive integer N> mo such that for all n > N and \z\ < r

(2.21)
k=2

and hence (2.15) follows from (2.19), (2.20) and (2.21). D

With the aid of the foregoing preliminary results we will now prove

THEOREM 2.3. Suppose
oo

(2.22) /(*) := E B * * y*>0, * = 0,1,2,...,
k=0

is an entire function. Then the following are equivalent.

(2.23) Tk:=γ2

k-γk_xγk+x>0 for k = 1 , 2 , 3 , . . . .

(2.24) An,p(t) : = glP(t) - gn-hp(t)gn+Up(t) > 0,

forallt>0andn = 1 , 2 , 3 , . . . , p = 0 , 1 , 2 , . . . .

(2.25) L p + 1 ( / ( 0 ) := ( / ( p + 1 ) ( 0 ) 2 - / ( p ) ( 0 / ( p + 2 ) ( 0 > 0

/or allt>0 and p = 0,1,2,....

Proo/. (2.23)^(2.24). Assuming (2.23) (with yΛ > 0, fc = 0,1,2,...)
we will establish (2.24) by induction. First, we set t = 1. Then, for
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n = 1, we have by (2.23)

(2.26) glP(l)-goAVS2,p(l)

= y2

P+ι-yPyP+2>o, p = 0,1,2,....

Next, we assume that

(2.27) Δ M ( l ) > 0 for fc=l , . . . ,n and p = 0.l,

Then by the induction assumption (2.27) and by Proposition 2.1(v)
(cf. (2.11)) we have

(2.28) An,p{\) = ί ί _ 1 > p + 1 ( l ) - a,-i.p(l)&-i.p +2(l) > 0,

p = 0

and

gn-l,p+\(l)

Let p be a fixed, but arbitrary, nonnegative integer. Then by (2.11),

(2.30) Δ«+ 1 > p(l) = βj

and by (2.9),

(2.31) *π.,(l) =

Thus, if we apply (2.31) to (2.30), then after some simplifications,
(2.30) becomes

Hence, it follows from (2.28) and (2.29) that An+ι>p(l) > 0. Since p
was an arbitrary nonnegative integer we conclude that Δ M + i p ( l ) > 0
for n,p = 0,1,2

Now if to > 0, a/c > 0, k = 0,1,2,..., and if α | — α n_iα n + i > 0,
then with % := ί^α^, fc = 0,1,2,..., it follows that

y* — yfc-iyjfc+i = ί o * ( α * - α * - i α * + i ) > O . Λ = 1 , 2 , 3 , —

In light of these considerations, we see that (2.24) holds for all t > 0.
(2.24)=>(2.25). Suppose (2.24) holds. Then by (2.11) and (2.24),

(2.33) 0 < An,p(t) = t2[gϊ-ilP+i(t) ~ gn-l.p(t)8n-i.P+2(t)]
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for all t > 0, n = 1,2,3,..., p = 0,1,2,.... Therefore, by Lemma 2.2
(cf. (2.15)) we see that

< 2 3 4 >

(0 > o,

for all ί > 0 and for all p = 0,1,2,....
Since the implication (2.25)=^(2.23) is immediate, the proof of the

theorem is complete. D

REMARK 2.4. Inequalities (2.23) and (2.24) are called the Turάn
inequalities. A comprehensive treatment of these inequalities and their
applications in the theory of orthogonal polynomials may be found
in Karlin and Szegό [KS] and the references contained therein. The
inequalities (2.25) are frequently termed the Laguerre inequalities (see,
for example, Skovgaard [S] or Patrick [P]). The Laguerre inequalities
play an important role in the theory of the distribution of zeros of
several classes of entire functions. See, for example, the recent proof
of the Pόlya-Wiman conjecture, Craven, Csordas and Smith [CCS],
where these inequalities were used in the following, perhaps more
familiar form,

(2.35) ^ P o g / ( r t ( ί ) ] < 0 .

Thus by (2.35) (and under the equivalent conditions of Theorem 2.3),
f^p\t) is logarithmically concave for t > 0, where f(t) is defined by
(2.22). Therefore, it follows that log(l//(ί)) is convex for t > 0. In
particular, Theorem 2.3 also generalizes a result of Vincze [V], In his
study of the characterization of the Poisson and gamma distributions,
Vincze shows, in particular, that if y^ > 0 and

k
yl-y^nyk-\yk+\ >o> /: = 1,2,3,. . . ,

then

for t > 0, p = 0,1,2, (Note that the open problem of Renyi
and Vincze, discussed in [V], has been recently solved by Miles and
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Williamson [MW].) But because of the factor of "2" in (2.36), this in-
equality does not imply the Laguerre inequalities (2.25). On the other
hand, we were able to extend Vincze's ingenious argument to deduce
(2.25) directly from (2.23). However, this argument is somewhat in-
volved and since it does not yield (2.24) we will omit it here. Finally,
it is evident that Theorem 2.3 remains valid, mutatis mutandis, if
we merely assume that the function f(x) in (2.22) is a real analytic
function with positive Taylor coefficients.

Next we consider the case when (2.23) is replaced by the following
requirements

ί Δ Λ ( ί ) : = Δ Λ o ( ί ) > O forallί^O, n = 0,l,2,. . .
(2.37) I and

{ vl+ι - ϊkϊk+i > 0, γk > 0 for k = 0,1,2,....

Then (2.37) constitutes a very strong set of conditions (see, for ex-
ample, Csordas and Williamson [CW1] and [CW2]). Indeed, if (2.37)
holds, then all the Jensen polynomials associated with f(x) of (2.22)
have only simple real zeros. Therefore, the following theorem is of
particular interest.

THEOREM 2.5. Let

(2.38)
k=0

denote a real entire function and let gn{x)> n = 0,1,2,..., denote
the nth Jensen polynomial associated with φ(x). Then the following
conditions are equivalent for any n>\.

(i) Δπ(ί) > Ofor all real tφOandγ2- yn-\yn+\ > 0.
(ii) Δ*(0 > 0 for all real t.

(iii) For each k = 1,2,3,... ,n, and for real t$, if gk(to) = 0, then

&-i(ίo)£*+i(ίo) < 0' and ifγn = 0, then yn-\yn+\ < 0.
(iv) For each k = 1,2,3,... ,n, and for real to, ifg£(to) = 0, then

(v) gn+\{t) has only simple real zeros.

Proof. For each fixed n, we will prove the following implications:
(ii)^(i)=^(iii)<Φ(iv)=^(v)=^(ii). Note that (i)=^>(iii) is trivial. Since
Δ*(ί) = t2nAn(Γι) for t Φ 0, and Δ*(0) = γ2

n - γn-ιγn+u it is clear
that (i)^(ϋ). Similarly, using the fact that g*(t) = tngn{t~x) for t φ
0, and £*(0) = γn, we see that (iii)^(iv). Next, assume that (iv)
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holds. Since γ0 Φ 0 by assumption (cf. (2.38)), and (d/dt)g*+x(t) =
(n + l)g*(t) and since (iv) holds, the sequence g*+i(t)9 gJί(t),..., gξiί)
= 7o, is a Sturm sequence for the interval (-00,00) (see, for example,
Jacobson, [J, pp. 278-283] or Wilf [W, pp. 90-95]). Therefore by
Sturm's theorem [J, p. 283], the number of distinct real zeros of #*+ 1

in (—00,00) is equal to the number of sign changes in the sequence
{(—1)Λ+Iyo> (—l)π7o» > 7o}> minus the number of changes of sign in
the sequence {γo, 7o> »?o} of leading coefficients. Since this number
is n + 1, we see that g*+{(t), and hence gn+\(t), have only simple real
zeros. This proves that (iv)=»(v).

Finally, suppose that (v) holds. Since by definition (cf. (2.2)),
degg*+1 < n + 1 and by (v) g*+χ has (n+l) distinct zeros, deg#*+1 =
n + l. Let

n+\

(2.39) g*+x{t) : = γ0 l[(t - aj) (aι<a2<- <
7=1

Then for all real ί, tφ aj9 j = 1,..., n + 1,

(240) ^
(2.40) Λ 2

7=1

Since the zeros of ^ + 1 ( ί ) are all simple, the Cauchy-Schwarz inequal-
ity yields

Λ+l

Thus, we have by (2.40), for real t Φ aj, j = 1,..., n + 1,

n+\ *

(2.41) (g*'+x {t))2 - g*n+,{t)gt'U (0 = ( 4 W ) 2 Σ
-atj)

2 / " t j 1 \" l<r*'.(i\\2
> 0 ? * t l i 0 ) 2 / ^ l \ _ (*&,(/_))
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Therefore,

< ( 1 - , ^ 1 (gπ+l(0) ~ ^/i+lίO^/i+lίO

and so we see that An(t) > 0 for all ί ^ 0 and n = 1,2, 3, This
completes the proof of the theorem. D

Next we recall that by a classical result of Pόlya and Schur [PS], a
real entire function φ(x) e Sf-S? if and only if the associated Jensen
polynomials gn(x), n = 1,2, 3 , . . . , have only real zeros. Hence, the
following corollary is an immediate consequence of Theorem 2.15.

COROLLARY 2.6. Let φ(x) be the real entire function defined by
(2.38). If the equivalent conditions (i)-(v) of Theorem 2.5 hold for
n = 1,2,3,..., then φ(x) e

To obtain a complete characterization of the functions in J
we must allow the possibility that An(t) equals zero in Theorem 2.5,
or equivalently, that the polynomial gn(t) has multiple zeros. This is
done in the next theorem.

THEOREM 2.7. Let φ(x) = Σ ^ L o ^ V ^ denote a real entire func-
tion and let gn{t), n = 0,1,2,... and An(t), n = 1,2, 3, . . . be defined
by (2.2) and (2.37) respectively. Then φ(x) e - S ^ ( I I ) if and only if
the following conditions hold:

(i) An(t) > 0 for all real t and n = 1,2,3,....
(ii) Ifγ0φ0 and y\ - γ0γ2 > 0, then (a) gn+i{to) = 0 whenever

An(to) = 0,t0ϊ 0, and(b) γn+ϊ = 0 whenever γl~yn_xγn+x = 0.
(iii) Ifγ0 φ 0 and y\ - γ0γ2 = 0, then <p(x) = γoe*x'κ.
(iv) Ifγo = O, then φ(x) = xrψ(x) with ψ(0) Φ 0 where ψ satisfies

(i), (ii) and (iii) for the appropriately redefined γn, gn and An.

Note that condition (ii)(b) is essentially the case to = oo in condition
(ii)(a). We shall begin our proof of this theorem with two lemmas.

LEMMA 2.8. With φ(x), An and gn as in the theorem, assume that
An{t) > Ofor all real t and n = 1,2, 3,. . . . IfAn(t0) = 0, t0 φ 0, then
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Proof. Set u = ί̂ "1. Then we have

(2.42) ΔJί(κ) = 0 = (g*n(u))2 - gU(u)

and u must be a multiple zero of Δ* since Δ* > 0. Therefore, using
(2.5) and Proposition 2.1(i),

(2.43) 0 = Δ * » = (n - \)[g*n{u)g*n_x{u) - g*n+x{u)g*n_2{u)l

If g*(u) Φ 0, we can use (2.42) to deduce that the right hand side of
(2.43) equals

and thus <§
r

w+i(/o)ΔΛI_1(/o) = 0. On the other hand, if g*(u) = 0, then
(2.43) implies either #*+1(w) = 0 or, if g*+1(w) φ 0, then g*_2(u) = 0
and g*_x(u) = 0 (cf. (2.42)) so that Δ*_t(w) = 0. Again we have

gn+l(tO)An-l(tθ) = 0. •

LEMMA 2.9. Under the hypotheses of Theorem 2.7, assume that An (t)
> 0 for all real t and n = 1,2,3,..., and that y\ - y§?2 φ 0. If for
some n, Δn(t0) = 0, t0 Φ 0 and gn+ι(to) = ®> then gn+\ has at least two
nonreal zeros.

Proof. By Lemma 2.8, we have An_ι(t0) = 0. By hypothesis,

= (V\ - )W2)*o ^ 0 Ή w e ^ e t ^ ^ e ^ e l a r 8 e s t integer less than n
with Δfc(ίo) ^ 0, then Lemma 2.8, together with a simple induction
gives gk+ι(t0) = • = £Λ(ίo) = 0. Writingu = ί"1, we have s*^ (u) =
(Λ + l)^(t t) = 0 and gtlχ{u) = n(n + l)g*n_{(u) = 0. Since
^*+1(w) ^ 0, an elementary geometric argument shows that £* + 1 , and
hence gπ +i, have nonreal zeros. D

Proof of Theorem 2.7. We first consider necessity. Assume that
<ρ{x) G - S ^ ( I I ) . Then, for any fixed /, we have exφ(xt) e ^ - ^ ( Π ) ,
so that (i) is just the Turan inequalities for the coefficients in the se-
ries in (2.6). Condition (ii) holds by Lemma 2.8 and 2.9. Condition
(iii) was proved in [CC, Proposition 4.5]. When φ(x) = xrψ(x) with
ψ(0) φ 0, then ψ{x) = ΣXo akx

k/k\ with ak = yk+rl{k+r) (k+1)
and

n-2

ga(x) = n(n-l) -(n-r+l)xrΣ
k=0
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Since ψ(x) € oS?-^(II), the above argument shows that (i)-(iϋ) must
hold for ψ(x).

Conversely, assume conditions (i)-(iv) hold. By (iv), we may as-
sume γo = φ(0) Φ 0. Fix n > 0. As noted previously, Pόlya and Schur
[PS] have shown that it will suffice to show that gn (or equivalently,
g*) has only real zeros. Consider the sequence of polynomials

(2.44) *S. ft*—Sί

If A*k(t) > 0 for all t,k<n, then this sequence is a Sturm sequence for
g* as in the proof of Theorem 2.5. And, as in that proof, the number
of real zeros of g* is n. Again by Theorem 2.5, this holds whenever
we have strict inequality in (i) for / Φ 0 and γ\ - y^-i^+i > 0,
fc=l,...,/i-l. Next suppose that Δ*(ί) > 0 for all real t. By (iii),
we are done if γ\ - yo?2 = 0> so we may assume γ\ - γoγi > 0 a n d
thus the hypotheses of (ii) hold. Now let u be such that Δ£(w) = 0
for some k < n, where k is minimal for u. Note that there are only
finitely many such points u since Δ^ = 0 implies ^ + 1 = 0 by (ϋ)(a),
which in turn implies γo = 0, contrary to assumption. From (ii) and
Δ*(w) = 0, we obtain gj>(u) = *£+1(κ) = 0, so that Δ*+1(w) = 0. (If
u = 0, then A*k(u) = y£ - 7k-\ϊk+\ = 0 a n ( * (ϋ)(b) is used.)

An induction using (ii) gives us g£(u) = #£+1(w) = = g*(u) = 0,
with g£_ι(u) Φ 0 (by the minimality of k). Since (d/dx)gj(x) =
jgj-ι(x) for each 7, we have a sequence of polynomials

(2.45) gξ(x),..., ^_j(x), g*k(x)/(x - w),..., ^ ( x ) / ( x - u)n-k+x,

which are all nonzero at x = w. It follows that (2.45) forms a Sturm
sequence for ^ ( x ) / ( x - u)n~k+ι for any interval containing w and
excluding other multiple zeros of g*: indeed, for x near w, but xφu,
g](x) = 0 implies that g*_x(x)/(x - w)z and g]+x(x)/(x - w)/+2 have
opposite signs since (x - w);(x - w)/+2 > 0 and gj_ι(x)gj+ι(x) < 0 by
(i). Eliminating each of the multiple zeros of g* in this way gives a
Sturm sequence, where the leading coefficient of all the polynomials
is still γo as in (2.44). It follows that the resulting quotient of g* has
only real zeros, and hence so does g*. π

We next consider an open problem of Karlin [K, pp. 389-390]. Let

(2.46) <P(x):
k=0
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be a real entire function and let H^φW; x), p = 0,1,2,..., denote
the 3 x 3 Hankel determinant associated with ^\

(2.47) H3(φ^; x) := det

We will prove below that if φ(x) € S?*& and γk > 0, k = 0 , 1 , 2 , . . . .
then H3(φ(pϊ; x) < 0 for all x > 0. To this end we will need the
following lemma.

LEMMA 2.10. (i) Iff(x) := eσxq{x), where σeRand q{x) € R[x],
then

(2.48) H3(f; x) = e3σxH3(q; x), xeR.

(ii) Let q(x) e Sf-S0 and suppose that q(x) has nonnegative Taylor
coefficients. Let

(2.49) G(q x) := q2{x)q'"{x) - 3q(x)q'(x)q"(x)

+ 2(q'(x)γ, XGR.

Then

(2.50) G(q;x)>0 forx>0.

Proof. Part (i) follows directly from a computation. To prove (ii),
we induct on the degree of q(x). Clearly (2.50) holds if deg^( c) = 1.
Set

(2.51) Q(x):=(x + a)q(x),

where a > 0, and assume that (2.50) holds. Then a calculation shows
that

(2.52) G(Q x) = (x + aγG{q;x) + 2(q(x)γ.

Since a > 0 and q(x) > 0, it follows from the induction assumption
that G(Q; x)>0 for all x > 0. D

In the proof of our next theorem we will use the following general-
ization of the Turan and Laguerre inequalities (cf. (2.23) and (2.25))
due to Jensen [Je]. For a detailed proof of the following theorem see
[CV].
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THEOREM 2.11. With (2.46), set

(2.53) Ln(φ(x)) :=

(xeR, n = 0,1,2,...).

Then φ(x) e &-& if and only if

(2.54) Ln(φ(x))>0 (x e R, n = 0, 1,2,...).

THEOREM 2.12. Lei q{x) e R[x] w/ίA positive leading coefficient and
suppose that the zeros ofq(x) are all nonpositive. Then

(2.55) H3(q;x)<0 forallx>0.

Proof. We will prove the theorem by induction on the degree of
q(x). Clearly, if deg# < 1, then (2.55) holds, since in this case
H3(q;x) ΞΞO. NOW set

(2.56) Q(x):=(x + a)q(x)f

where a > 0 and q(x) has only real nonpositive zeros. Next, we assume
that H3(q;x) < 0 for all x > 0. For x e R, set

(2.57) I(Q x) := -Q(χ)QW(x) + 4Q'(x)Q'"(x) - 3«2"(x))2.

Then, using (2.53), a computation shows that

(2.58) I(Q;x) = -12L2(Q(x)).

Since q, Q e i?-^5, we conclude, by Theorem 2.11, that

(2.59) I{q;x)<0 and I(Q,x)<0 for all x e R.

Now another computation yields that

(2.60) H3(Q;x) = H3(q;x)a3 + 3xH3(q;x)a2

+ (3x2H3(q;x) + q(x)I(q;x))a

+ x3H3(q;x) +xq(x)I(q;x) - 4G(q;x).

Now by Lemma 2.10 (cf. (2.50)), -G(q;x) < 0 for x > 0 and by
(2.59), I(q\x) < 0 for x > 0. Thus, using the induction assumption
and the fact that a > 0, we conclude that H3(Q\x) < 0 for x > 0. D

We note that the use of Jensen's inequality (2.54) in the proof above
could have been avoided by doing yet another induction to show that

L2((x + a)q(x)) = (x + a)2L2(q(x)) + ((q'(x))2 - q{x)q"{x))

is always nonnegative.
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THEOREM 2.13. Let

ω

(2.61) φ(x) := ] P ΎΓ\χk > ϊk>0> 0 < ω < oo,
k=\ '

be a function in the Laguerre-Pόlya class. Then

(2.62) H3(φW\ x) < 0 forallx>0, p = 0,1,2,...,

); JC) is defined by (2.47). In particular,

yP

(2.63) det < 0
l7p+2

'. Since φ{x) e &-&, and γk > 0, φ(x) can be expressed in the
form

ω

(2.64) p(jc) = reσ*f[(l +x/xn), 0<ω<oo,
1

where c > 0, σ > 0, xn > 0 and Σ^X/ϊ"1 < °° First, we consider the
case when p = 0. If ω = N < oo, set

(2.65)

Then by Lemma 2.10 (cf. (2.48)) and Theorem 2.12

(2.66) H3(φN; x)<0 for all x > 0.

If ω = oo, we know that <PN(X) —> ψ{x) as Λ̂  —• oo, uniformly on
compact subsets of C. Thus, it follows that H^{φ^\ x) —• H^(φ; x)
as N -> oo, for JC > 0. Consequently, (2.62) holds with /? = 0. Since
Sf-96 is closed under differentiation [PS] and since γk > 0, it follows
that for any p = 0,1,2,.. ., φW(x) can also be expressed in the form
(2.64), and thus (2.62) holds for p = 0,1,2,.. . . Since the assertion
(2.63) follows from (2.62) by setting x = 0, the proof of the theorem
is complete. D

COROLLARY 2.14. Let

ω

(2.67) φ(x) := ^ T\χk> Vk ̂  °> 0 < ω < oo,
k=\ '
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be a function in the Laguerre-Pόlya class. Let

(2.68) Tk := yk — 7k-\7k+\* k= 1,2,3,

Then the following extended Turάn inequalities hold:

(2.69) Ek:=Tl-Tk-XTk+l>Q9 k = 2,3,4,....

Proof. A computation shows that

7k 7k+\ 7k+2
(2.70) det γk+x γk+2 7k+i

Jk+2

Since (-γk+2) < 0> (2.69) follows from Theorem 2.13 (cf. (2.63)). •

REMARKS 2.15. (a) The inequality (2.69) provides a new, easily
tested necessary condition for an entire function, with nonnegative
Taylor coefficients, to have only real zeros.

(b) Let

(2.71) 7k

be an entire function and let g%tP(x) denote the nth Appell polynomial
(cf. (2.3) and (2.5)) associated with φ{p\x), p = 0,1,2,.. . . Then a
computation shows that

Ap(t) := det

= det

0.,(0 ί.p(0 2.p
Sΐ,p(t) 8i,p{t) g*3,p(t)

7P 7P+\ 7p+2
7p+i

. 7p+2 7/7+3 7/7+4.

Hence, if φ(x) e &-&>, γk > 0, then Ap{t) < 0 for all t e R and for
/? = 0,1,2,. . . .

3. Examples and open problems. The purpose of this section is to
provide some examples which show that in a sense our results are best
possible. In addition, we will cite here two open problems.

EXAMPLE 3.1. In reference to Theorem 2.3, consider

(3.1)
9 1 w lκ

/,(x):=^-x-^ = i + 2x + ^ ^ .
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Thus, the Turan inequalities (2.23) all hold. But then, using the nota-
tion in (2.25), we find that

(3.2) L

Since Lx{fx{-\β)) = 1 - 3e~ι < 0, we see that, if (2.23) is valid,
then, in general, the Laguerre inequalities (2.25) need not hold for all
real t.

In addition, we note that if

(3.3) f2(x) :=x + ex = l+2x +
k=2 ' k=0 '

then y\ - γγγ3 = - 1 < 0, and y\ - γk^γk+ι > 0 for all k > 1, k φ 2,
so that exactly one of the inequalities (2.23) fails. In this case, with
the notation in (2.25), L2{f2{t)) = -eι < 0 for all real t.

EXAMPLE 3.2. In reference to Corollary 2.6 and Theorem 2.7, we
now show that if

(3.4) | |
k=0

is a real entire function and if

(3.5) ΔΛ(ί) = {gn{t)Y - gn-{(t)gn+ι(t) > 0,

for all real t and n = 1,2,3, . . . ,

where gn{t) is the «th Jensen polynomial associated with f?>(x), then
h(x) need not belong to the Laguerre-Pόlya class. Indeed, with γo :=
1? Ϊ2 •= Ϊ3 "= 0, 74 := - 1 , γ/c := 0, k = 5 ,6 ,7 , . . . , we have that
f3(x) = 1 - x4/4\, gn(t) = 1, 0 < n < 3 and gn{t) = 1 - {n

4)t4 for
^ = 4,5,6, Then a calculation shows that (3.5) is satisfied since

Δ ( ' ) : = ( * ~ ^ ~ 2 V [ ( κ - 3)(Λ - 2)(/i - l)nt4 + 72] > 0

for all ί > 0, n = 1,2, 3, . . . , but f3(x) = 1 - x4/4! is not a function
in the Laguerre-Pόlya class.

EXAMPLE 3.3. In reference to Theorem 2.13, consider the Hankel
determinant H$(φ\ x) (see (2.47) for the notation), where φ{x) :=
(x + l)(x + 2)(x + 3). Thus, φ(x)e &-&(!), but a calculation shows
that

(3.6) H3(φ; x) = -36(x + 2)(x2 + 4x + 5).
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Consequently, H^(φ\ x) > 0 for x < - 2 , and H3(φ; x) < 0 for x > - 2 ;
that is, in general, H$(φ; x) cannot have an invariant sign as x ranges
over the real axis. (This example also shows that there is a misprint
in [K, p. 389, inequality (12.5) and p. 390, line 3].)

The results of Theorem 2.13 and Example 3.3 suggest the following
open problem.

Open Problem 3.4 (Karlin [K]). Let φ(x) e £?-&>(!) and suppose
φ(x) has nonnegative Taylor coefficients. Let Hn{φ^\ x) denote the
n x n Hankel determinant

\ x) :=

where p = 0,1,2, Then the conjecture is that

(3.7) (-l)πίπ-1>/2/fΛ(^^>; x)>0 for jc>0, p = 0 , 1 , 2 , 3 , . . . ,

and for n = 4 ,5 ,6, . . . .

Open Problem 3.5. In reference to Corollary 2.14 consider the func-
tion φ{x) in 3*-& defined by (2.67). Then the Turan expressions (cf.
(2.68))

(3.8) 3Γ*:=yϊ-y*+iy*-i , k= 1,2,3,. . . ,

are all nonnegative. But then elementary considerations show that the
function

OO rr,

(3.9) f(x) :=

where Tk is defined by (3.8) is also an entire function. The open
problem then is to characterize those functions φ{x) in £?-&> for which
the associated functions f(x) (cf. (3.9)) are also in &-SP (see also the
example below).

EXAMPLE 3.6. Let

(3.10) φ{(x):=(x2+lθx+l)ex,

so that φx(x) is in - S ^ ( I ) . Then a calculation shows that Tk = 78 +
18A: + 2k2 and that the associated entire function

OO rp

(3.11) fx{x) := Σ ^Γχh = ( 9 8 + 2 4 x + 2*2)ex

Therefore, we see that f\(x) is not in &-&.
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On the other hand, if

(3.12) φ2(x) := (x2 + 2x+ \/2)ex

then Tk = 2k2 + 2k - 1, and the associated function is

p

f2(x) := Σ ^Γχk = (2χ2 + 8 j c + 3)*X

k=0

is clearly in - S ^ ( I ) .
Other choices of φ(x) for which f(x), defined by (3.9), is again

in .2^-^(1) are (x + l)n for any positive integer n and the function
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