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The following boundary value result is obtained: If ¢ is a quasireg-
ular function on a plane domain U with non-polar complement and
¢ satisfies a growth condition analogue to the classical H?-condition
for analytic functions, then there exists a uniformly elliptic diffusion
X: such that for a.a. n € U with respect to its elliptic-harmonic
measure the limit of ¢ along the 7-conditional X,-paths exists a.s.

It is proved that if U is the unit disc then convergence along the
n-conditional X,-paths implies the classical non-tangential conver-
gence. Therefore the result above is a generalization of the classical
Fatou theorem. As an application, using known properties of elliptic-
harmonic measure we obtain that there exists o > 0 (depending on ¢)
such that for every interval / C 0D there is a subset F C J of positive
a-dimensional Hausdorff measure such that the non-tangential limit
of ¢ exists at every point of F.

1. Introduction. The classical Fatou theorem states that if f is an
analytic function on the unit disc D = {z;|z| < 1} in the complex
plane C and there exists p > 0 such that

1 i
(1.1) sr1<111) (E/M:rlf(re 9)|pd0) < 00

then f has radial limits a.e. on T = {z;|z| = 1}, i.e.

(1.2) ll_r.l} f(re'%) exists
for a.a. 6 € [0, 2n) w.r.t. Lebesgue measure. In fact, the limit exists
non-tangentially, for a.a. §. (See for example Garnett [10].)

The purpose of this article is to generalize this result in two direc-
tions:

First, the analytic function f is replaced by a quasiregular function
¢. In this case it is known that the Fatou theorem in the strong form
above stating radial convergence almost everywhere (with respect to
Lebesgue measure) is false (see [16, p. 119]), so we are looking for an
appropriate modification of “almost everywhere”.
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312 BERNT QKSENDAL

Second, the domain D is replaced by any open subset U of C with
non-polar complement, i.e. such that

(1.3) Go(C\U) >0,

where C, denotes logarithmic capacity. Of course, by considering the
second generalization we must find an appropriate replacement for
“radial” or “non-tangential” convergence. This is obtained by consid-
ering convergence along the conditional paths X' of a suitable uni-
formly elliptic diffusion X, (depending on ¢) for a.a. n € 8D w.r.t. the
elliptic-harmonic measure uX = uf; of U for X,. More precisely, the
process X, in U has the property that

(1.4) ;inEX," =1n a.s. P*", for a.a. n € U

wrt. uX andall x e U,

where ( is the life time of X]' and P*" is the probability law of X/
starting at x. And we prove:

THEOREM 3.2 (Stochastic Fatou Theorem). Suppose ¢ € HéR(U)
for some p > 0, i.e. ¢ is a quasiregular function on U satisfying a
growth condition similar to the HP-condition (1.1) (e.g. it suffices to
have Area(¢(U)) < o0). Then for all x € U

(1.5) lim ¢(X;"
exists a.s. P*" for a.a. n € U w.r.t. u*.

In the special case when U = D we show that the a.s. convergence
(1.5) of ¢ at a point n € 8D implies the non-tangential convergence of
¢ at n (Theorem 4.1). Thus Theorem 3.2 is indeed a generalization of
the Fatou theorem. As an application, combining Theorems 3.2 and
4.1 with metric properties of elliptic-harmonic measure we obtain the
following:

COROLLARY 5.2. Suppose ¢ € HéR(D) for some p > 0. Then there
exists a > 0 (depending only on ¢) such that in every interval J C 0D
there is a subset F C J of positive a-dimensional Hausdorff measure
such that the non-tangential limits of ¢ exist at every point of F.

Results like this corollary have been known to experts for some
time, but it seems to be difficult to find them stated explicitly in the
literature.
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The results of this paper are related to those in the paper by Caf-
farelli, Fabes, Mortola & Salsa [5]. There it is proved that a positive
solution u in a Lipschitz domain G in R” of the equation Lu = 0
in G (where L is a uniformly elliptic second order partial differential
operator) has non-tangential limits a.e. on 8G with respect to the el-
liptic harmonic measure corresponding to L. So their result implies
in particular that the same holds for a quasiregular function ¢ on a
Lipschitz domain in the plane (n = 2) provided that the real and imag-
inary parts of ¢ are both positive (or bounded). The purpose of this
paper is to show that for a quasiregular function ¢ the same conclu-
sion can be obtained under much weaker conditions on ¢ if we use
a different approach: The idea is to consider ¢ directly (not its real
and imaginary parts separately) and apply a stochastic method. The
key to this method is the fact (see [17]) that there exists a uniformly
elliptic diffusion X; (depending on ¢) which is mapped into a time
change of (2-dimensional) Brownian motion by ¢. Thereby we also
obtain the generalized stochastic Fatou theorem above, valid without
any conditions on the boundary of the domain.

2. Conditional uniformly elliptic diffusions. Let (X;(w), 2, P¥)
(where t > 0, w € Q, x € U) be a uniformly elliptic diffusion in
an open set U C R? with generator

(2.1) Af = div(aVvf).

Here a = [a;;] is a symmetric 2 x 2 matrix where each element a;; =
a;j(x) is a bounded measurable function and there exists M < oo such
that

2
(2.2) -;7|5|2 < > aEil; < MIEPP forallxe U, &E€R?
I,j=1

The constant M is called the ellipticity constant of the diffusion.
For example, X; may be obtained as the Hunt process associated to
the Dirichlet form

(2.3) gu,v)= | VulaVvdx, u,veCP)
R2
where dx denotes Lebesgue measure (Fukushima [9]).
Assume that U has a nonpolar complement. Then

(2.4) ty =1 = inf{t > 0; X; ¢ U}
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(the first exit time from U) is finite a.s. P*, and we can define the
harmonic measure u, = u, y for X as follows:

(2.5) pxu(F)=P¥[X,, € F], F col.

It is well known that the Harnack principle holds for such operators
A, i.e. for all x there exists a neighbourhood W > x and C < co such
that

1 du
(2.6) 6 ———d <C forall ye W
Fix xg € U and put
_ dux
(2.7) K(x,n) = (m); xeU nedl
d‘uXo

Let H = L?(U,dx) and let T,: H — H be the transition opera-
tors of X, killed when it exits from U, ie. (T;f)(x) = E*[f(X))]

(& Ex[f(X,) X<zl ¢ > 0, f € H). Fix n € 8U such that

k(x) & Ig(x, 7) > 0 for all x € U and define A = L*(U;k*(x) dx).
Let 7': H — H be given by

T,(kg) .

(2.8) 7/(g) = &

t>0, geH.

Then {7,"} is a symmetric, strongly continuous contraction semigroup
on H (since {T;} is on H), with generator Af = A[kf]/k and corre-
sponding Dirichlet form

—(A(ku), kv)yg = & (ku, kv)

(2.9) EMu,v) = —(Au,v) (

foru,v e (&M ={flk,f € 2(&)}.
This form is regular and

(2.10) Nu,v) = —/A(ku)kv dx =0

if u is constant in a neighbourhood of supp[v], for a.a. n € OU w.r.t.
Hxq-
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The property (2.10) can be proved as follows: For all g € C5°(U),
f € Cy(8U) we have

/a & (&), K, m) dus ()
= /a . f(n) ( /U VeT(x)a(x)V.K(x, n)) i, (1),

/aU Ve' (x)a(x)Vx (/60 S(mK(x,n) dﬂxo(ﬂ)) dx

=—(4f,8)u =0,

since f(x) = Jou £ (n) dux(n) is the 4-harmonic extension of f to
U. So &(g,K(-,n)) = —(4k,g) = 0 a.e. (uy,), as claimed. It also
follows that Ak = 0. Therefore k is Holder continuous ([7], [15]). We
conclude that for a.a. n € OU w.r.t. uy, there exists a Hunt process
(X (@), Q, P*");50,0cq, Whose generator is A. Moreover, from the
property (2.10) of &7 we know that X, is z-continuous and no killing
of X' occurs inside U (see [9]). We let { = {y denote the life time
of X;'. The process X' will be called the conditioning of the process
X, with respect to 5 (or, more precisely, with respect to the 4-kernel
function k(x)).

The next result justifies the name “conditional” for the process X;':
(E*" and E* denotes expectation w.r.t. the measures P*" and P*,
respectively). We refer the reader to [2, Lemma 4] for a proof.

LEMMA 2.1. Let gy, ..., g be bounded Borel functions on U. Then
EXMg (X)) gr(X()] = E¥[81(Xy) -+ 8k (Xe )| Xey = 1]

3. A stochastic Fatou theorem. Let ¢ be a quasiregular function in
U, i.e. ¢ € ACL? (¢ is absolutely continuous on a.e. straight line and

with partial derivatives in L2 ) and

(3.1) |¢'(x)|? < K-Jy4(x) foraa xeU

for some constant K, where ¢' = [0¢;/0x;]; 1 < i, j < 2and J; =
det(¢') is the Jacobian. See [13] for information about quasiregular
functions. In [17] it is proved that there exists a uniformly elliptic
diffusion X; (depending on ¢) such that the process ¢(X;); t < Tis a
time change of Brownian motion in C. More precisely, define

t
(3.2) b= [ ToXods, o= inf(s; pi> 1)
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and let (B,, P?) be a Brownian motion in C. Then

B, = { ¢(Xa,2§ t < B,

U+ B 128
is again a Brownian motion in C. Here ¢* = lim,; ¢(X;), which
exists a.s. on {f; < oo}.

From now on we let X; denote this special process associated to ¢
and as before we let X;' denote its conditioned process, defined for
a.a. n € 8U. We will assume that ¢ satisfies one of the following two
growth conditions (3.4), (3.5):

(3.3)

LeEmMMA 3.1. Let 0 < p < co. The following are equivalent:

(3.4) sup E*[|¢(X;)|P] < oo for each x € U,
o<Ty
the sup being taken over all X,;-stopping times ¢ < 1y.
(3.5) E*[BP*]1 < oo foreach x € U
Conditions (3.4), (3.5) are satisfied if
(3.6) EY[fg{g)] < oo for each y € ¢(U),

where %4 is the first exit time from ¢(U) of Brownian motion in C.
Condition (3.6) holds if

(3.7) Area ¢p(U) < oo.

REMARK. Note that condition (3.4) coincides with the classical H?-
condition (1.1) in the special case when ¢ is analytic and U = D. We
therefore define Hé’ r(U) as the set of quasiregular functions ¢ on U
satisfying (3.4).

Proof of Lemma 3.1. (3.7) = (3.6). This follows from the esti-
mates of Aizenman and Simon [1] of the moments of the exit time for
Brownian motion.

(3.6) = (3.5). Since the process B; in (3.3) is a Brownian motion
and obviously B; € ¢(U) for ¢ < B, it is clear that

(3.8) B: < Ty

and therefore (3.6) = (3.5).
(3.5) = (3.4). First note that by (3.3) we have

(39)  EFlI$(X,)|P] = E4X[|By, |7} < B4 [sup lBtlp} .
1592
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The Burkholder-Gundy inequalities state that
(3.10) EY [sup [B,|P] ~ EY[T?/?],
1<T

for all stopping times 7, where ~ means that the ratio is bounded
and bounded below by constants (only depending on p and y and the
dimension (here 2)). See for example [4]. It was pointed out by B.
Davis that these inequalities also hold for the so-called quasistopping
or Markov times [6, p. 304], which include the random times S, above.
By (3.9) and (3.10) for T = B, we see that (3.5) = (3.4).

Conversely, by Doob’s martingale inequality we have that

(3.11) EY [sup IB,IPJ ~ E”[|Bg,|?]
1< Bo

for all p > 1. To obtain this relation for all p > 0 for Brownian
motion in the plane we proceed as in [8, p. 156-157]:

Let p > 0 and assume for simplicity that y = 1. Then since the
probability that B; hits 0 is 0, we may define a pathwise logarithm
G; = log B; such that Gy = 1 a.s. Then G; is a martingale and so is

H, = %502,

since z — e? is analytic. So by Doob’s martingale inequality we have

E” [SUD IBtl”} =EY [sup |H,|2] ~ EY[|Hp,|"1 = E”[|Bg,|7],
1<p,

1<B,

which proves (3.11) for all p > 0. Thus we have obtained that
(3.12) E*[|¢(X5)|P] ~ E*X)[BE/?] forall p> 0,

and the equivalence of (3.4) and (3.5) follows.

Now assume that ¢ satisfies (3.4). Let U, CC U be an increasing
sequence of open, relatively compact subsets of U such that U =
Uiz, Uk and put 74 = 7§ . Then by (3.2), (3.3) and (3.12) we have,
fork<m

Tm p/2
E*[¢(Xs,) — $(Xz, IP] ~ E#) [( [ s de) ]—»0

as k, m — oo. Thus {¢(X7, )} constitute a Cauchy sequence in L?(P*).
Let ¢* be the limit of this sequence. With the convention that ¢(X;a:)
means ¢* if ¢ > v we have that ¢(X;r.) is a martingale in C, so with
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G; = log¢(X;), H, = exp((p/2) - G;) as above we get by Doob’s mar-
tingale inequality

(3.13) Px[sup |p(X:) — p( Tk)|”>}.p]

T <iI<

= p* [ sup |Ht_H'tk|2 >/1p:|

T <IL<T

<—Ex[|H H,kl]— E"[I¢ - ¢(Xr)|P1— 0

as k — oo, for all A > 0, where c is an absolute constant.
We are now ready to prove the main result of this paper:

THEOREM 3.2. Let U C C be open with Co(C\U) > 0 and let ¢ €
Hé’R(U) Jor some p > 0. Then

lim ¢( X
lim ¢(X;")
exists a.s. P*", for a.a. n € 8U w.r.t. uy,.

Proof. With Uy, 1, as above and A > 0 consider

[P sup 1ot - 601> 2] dutn

Tk <I<T

— E* L(Px"’[-“’up (X - ¢<Xf"k)'>‘]> XJ

T <I<

= E* -(Px [ sup |p(X;) — d(Xz, )| > /lle] ﬁ (by Lemma 2.1)

T <I<T

= P* | sup |p(X) - (Xn>|>1]

| Tk <ILT

— 0 as k — oo by (3.13).

So by bounded convergence

im P*1 | sup [6(X7) - 0K > 4 du(n) =0

k—o0 T <I<T

Hence

pxn [lim sup |¢p(X]) — o(X7)| > A] =0 fora.a.n

k—oo 1 <t<t

Since this holds for all A > 0 we obtain the theorem.
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4. Conditional convergence implies non-tangential convergence. It is
natural to ask if the convergence of ¢ along the conditional paths X;'
implies non-tangential convergence in the case when U is the open unit
disc D. We will prove that this is indeed the case. Thus the situation
is analogous to that for a harmonic function converging along the con-
ditional paths of Brownian motion, in which case the equivalence to
non-tangential convergence was first established by Brelot and Doob.
The proof in our case will adopt basic ideas of the proof of Brossard
in the Brownian motion case. See Durrett [8] for further references
and an exposition of Brossard’s proof. We say that a real function u
on U is called A-harmonic (or X,-harmonic) if

Au=0 InU

in the sense of distribution. This is equivalent to the mean value
property
u(x) = E*[u(Xz, )]

for all stopping times 7y, where W cc U.
The main result of this section can now be stated as follows:

THEOREM 4.1. Let u be an A-harmornic function in the open unit
disc D c C. Suppose
(4.1) ling u( X, (w))
[—
exists for a.a. o € Q w.r.t. P, for some n € 8D, x € D. Then this
limit is the same for a.a. w and it coincides with the non-tangential
limit of u at n.

We split the proof into several lemmas. If 7 is a stopping time for X;
and z € U we say that X,(w) makes a loop around z for0 <t < 7tif z
does not belong to the unbounded component of C\{X;(w);0 < ¢ < 7}.
A similar terminology is used for X;'.

LEMMA 4.2. Let W cC U and let K be a compact subset of W. Then
there exists ¢ > 0 such that
(4.2) P*[Xi(w) makes a loop around z; 0 <t <tw]>e
forall x,z € K.

Proof. We use the notation D,(y) = {x; |[x — y| <r}. Let x,z € K.
Then if r > 0 is small enough the z-component V of ¢~ !(D,(¢(z)))
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is a normal neighbourhood of z and ¢~ !(¢(z)) NV = {z}. See Mar-
tio, Rickman and Viisild [13]. Since K is compact we can choose r
independent of x and z. Since ¢(8V) = d(¢(V)) we have

Br, = Tyv)

and therefore
{#(Xy,); 0L 2< By}
coincides with the path of a Brownian motion

{B; 0t <ty }-

It is well known that B; winds around ¢(z) with positive probability
([8]). It follows that X;, when starting from V', winds around z with
positive probability before exiting from V. Since the probability that
X, hits any neighbourhood of z before exiting from W is positive,
by “the communication property” of uniformly elliptic diffusions, the
lemma follows.

LEMMA 4.3. The same conclusion as in Lemma 4.2 holds for the
conditioned process X].

Proof. First note that by induction it follows from (2.8) that

(4.3) E*Mgy (X[ ge(X])]
1
=k EX[g1(Xy,) - - g( Xy )k (Xy,)]
forall0 <t¢ <t <--- < t. Therefore, if W CC U then the law P*7"
of X ,x"’ for ¢t < Ty is absolutely continuous with respect to the law P*
of X; for ¢t < T with Radon-Nikodym derivative

AP k(X.,)
dPx — k(x)

Since k is bounded away from 0 on W we conclude that Lemma
4.3 is a consequence of Lemma 4.2.

For Brownian motion B, starting at the point x it is well known that
the scaled process B; = x + r(B; — x), t > 0, (where r > 0 is fixed) is
again a Brownian motion except for a time change. A uniformly ellip-
tic diffusion is not scaling invariant in the same strong sense. However,
scaling a uniformly elliptic diffusion always gives us another uniformly
elliptic diffusion (with a time change) with the same ellipticity con-
stant. Moreover, the conditioned process X, behaves similarly under

(4.4)




STOCHASTIC FATOU THEOREM 321
scaling:

LEMMA 4.4 (Scaling lemma). Let 0 < r < 1, n € 8D and define
(4.5) ¢(x)=rx+(1—-r)n forxeD

and
Z,=&(X:), Z) = EX; t>0.

Then Z, is a uniformly elliptic diffusion with generator Az which satis-

fies

(4.6) (A f)(E(x)) = A(S 0 &)(x)
= r’[div(a o &'V )IE(X))-
Therefore

4.7) Z; ~ X,., (Where ~ means “identical in law”)

where X, is the uniformly elliptic diffusion with generator

(4.8) Af =div(ao &' - V).
Moreover,
(4.9) Zl =~ X7,

where X" is the process obtained by conditioning X, with respect to the
A-kernel k o 71,

Proof. By definition of Z, we have for f € C}(D)

(Ao = tim ELLCED = TEEM _ 170 13059

-0 t
= div[aV(f 0 &))(x) = divlra - (Vf) o (£))1(x)
=r2divi(ao &™) - VI(E(x)),

which proves (4.6) and (4.7).
Similarly, if Ag denotes the generator of Z] we get

. o &-1). kol
R N )
which shows (4.9).

Before stating the next lemma we need some notation: For n € 0D
and 0 < p < 11let S =S,(n) denote the Stoltz domain associated to 7
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and p, i.e. S,(n) is the interior of the convex hull of the circle |z| = p
and the point 7.

N
N Nl
N

X1

K N

- = n

0 s
‘X,

Ve N,

For p<r< 1 put
K=K, ={z€eS; |z|=r}.

Let L, L2 be the two lines connecting the point —» with the points
nex(1-ni and let N;, N, be the segments of these lines which connect
K to D.

LEMMA 4.5. There exists a constant 6 > 0 depending only on p and
the ellipticity constant M of X, such that

PX1[X] hits K for somet < {]>6 forallx € NyUN,.

Proof. Since the transition semigroup 7}’ on H given by (2.8) is
symmetric, the corresponding resolvent {U, },>¢ trivially satisfies the
duality condition in Theorem VI.1.4 in [3] (relative to the measure
d¢ = k? dx).

Therefore, by Proposition VI. 4.3 in [3] we can write

(4.10) P*1[ X[ hits K for some ¢ < {] =/ G'"(x, y)dA(y),
K

where G7 is the Green function of X, and A > 0 is the unique measure
on K with the property that

A(K) = sup {V(K); v > 0 measure on K ,
/G"(x, y)dv(y) <1 for all x ¢K}.

From (2.8) it follows that

(4.11) G(x, y) = G(xl,c;zf;/)c(y),
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where G is the Green function of X; in D. Therefore

(4.12) P*"[X] hits K for some ¢ < {] = / g—(%—()%c)—l;—mdl(y)

a .
> 1763) -/KG(x, y)dA(y), wherea= 11[}fk.

The two positive functions u(x) = [, G(x, y) diA(y) and k(x) are 4-
harmonic in D\K and they vanish on dD\{#}, so by the Comparison
Theorem (Theorem 1.4) of Caffarelli, Fabes, Mortola and Salsa [5]
combined with the Scaling Lemma 4.4 above and a conformal map
from D onto the half plane there exists a constant C; depending only
on p and the ellipticity constant such that

(4.13) kE ; > C kE z; for all x € N},

where x; is the midpoint of N;; i = 1, 2. Combining (4.10)-(4.13) we
get that, with b = supg k,

(4.14) P*"[ X/ hits K for some ¢ < {] > —‘—l—/ G(x;,y)dA(y)
k(xi) Jx

> 14 /G X0 p) dA(Y)

= gb— - PX1[X]" hits K for some ¢ < {]

for all x € N;.

By the Scaling Lemma 4.4 the last hitting probability in (4.14)
is bounded below by a positive constant only depending on p and
the ellipticity constant M. Moreover, if we use the interpretation of
k(z)/k(x) as the Radon-Nikodym derivative du,/du, of the two exit
distributions of X, starting from z and x, we see that it follows from

the Scaling Lemma 4.4 that
a _ iank
b= supgk =20

where C, only depends on p and M. That completes the proof of
Lemma 4.5.

LEMMA 4.6. There exists ¢ > 0 only depending on p, x and M such
that
P X" makes a loop around z; 0<t<{]>¢

forall z€S,.
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Proof. Put L = L(z) = {w; X, makes a loop around z;0 <t < (}.

By the strong Markov property of X;' we have
PonL)= [ YUK, € dy),
KUN,UN;

where W = D\V, V is the closed set bounded by K = K(r), N;, N>
and the arc of 8D between ne~(1-") and ne(!~")* with r = 2(1 — |z|).
Since P*"[X; € KU N; U N,] = 1 we get from Lemma 4.5
P*M[L] > 6 - PX[X], € Ny UN,]
+ inf PYI[LY(1 — P*[XY, € Ny U Np)).
ye

By Lemma 4.3 and Scaling Lemma 4.4 we have

inf PY1[L] > e.
YEK

Since ¢ and J only depend on p and M, Lemma 4.6 follows.

The proof of Theorem 4.1 is now completed by following the main
idea of Brossard, as described in [8, p. 114-115]:

First we note that it suffices to prove the following:

(4.15)  Suppose z, € Sy(n) foralln=1,2,... and u(z,) —
a € [—oo, 00] as n — oo. Then u(X]') —» a as ¢t — { a.s. P,

Put
G, = L(z,) = {w; X, makes a loop around z,; 0 <¢ < {}

and

o0
G= ﬂ (U Gk) = {w; w belongs to infinitely many G,’s}.

n=1 \k=n
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By the 0-1 law we have that P*"(G) is either O or 1. Since by Lemma
4.6 -
P*1(G) = lim P*" ( U Gk) > e,

n—o00
k=n

we conclude that P*7(G) = 1.
Hence X;""(w) winds around infinitely many z,’s for a.a. w. For
each such w with the additional property that

lim u(X} (@)

exists, we get by the mean value property of u applied to the region
inside each loop around z, that

; n - § _
gl_r}g u( X/ (@) = lim u(z,) = a.
Hence (4.15) holds and the proof is complete.

5. Applications. Combining Theorem 3.2 and 4.1 we get

THEOREM 5.1. Suppose ¢ € HSR(D) for some p > 0. For x € D
let u = uy be the elliptic-harmonic measure of the uniformly elliptic
diffusion X, associated with ¢. Then

lim ¢(z)

z—n

exists non-tangentially for a.a. n € 8D with respect to u.

Finally we point out how Theorem 5.1 can be combined with known
properties of elliptic-harmonic measures to obtain new results about
the boundary behaviour of quasiregular functions, even if we restrict
ourselves to results involving only non-stochastic concepts. For a > 0
let A, denote the a-dimensional Hausdorff measure.

COROLLARY 5.2 (Non-stochastic Fatou theorem). Suppose ¢ €
HgR(D) Jor some p > 0. Then there exists a > 0 (depending only
on @) such that in every non-empty, open interval J C 0D there is a
subset F C J with A,(F) > 0 such that ¢ has non-tangential boundary
limits at every point of F.

Proof. As before we let X; be the uniformly elliptic diffusion asso-
ciated with ¢ and we let u be its elliptic-harmonic measure. Then by
the doubling property of u [5], it follows that

(5.1) u(J) >0
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for every non-empty open interval J in 8D. On the other hand, it
follows from Lemma 3.4 in [12] that there exists « > 0 (depending on
the ellipticity constant) such that

(5.2) 1 << A,

By Theorem 5.1 the non-tangential limit of ¢ exists a.e. 4 on J,
hence by (5.1) and (5.2) on a subset F of J with A,(F) > 0. That
completes the proof.

Acknowledgments. I am grateful to Olli Martio for his useful com-
ments.
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