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The major purpose of this paper is to investigate some small time
asymptotic properties of certain diffusion equations of the form

(1) (Kjt-^jp{y,x,t) = 0, \imp(y,x,t)=δx(y),

where Δ is in a class of second order hypoelliptic differential operators
on a connected m -dimensional manifold M, and where Sx(y) is the
Dirac ^-function in the variable y e M supported at the point x e M.

0. Introduction. We assume for the duration of this paper that Δ
is locally of the form Δ = Σa=i si + So where {ga}a=o a r e smooth
vector fields which satisfy the condition that the Lie algebra generated
(over R) by the vector fields {ga}a=\ ^ a s the property that at each
point x € M the evaluation map at x maps this Lie algebra onto the
tangent space TXM. This condition is (more than) enough to imply
that p(y, x, t) is a smooth function of all variables for t > 0, by a
theorem of Hόrmander [13].

A major tool I will use in this investigation will be aspects of differ-
ential geometry as developed by Gromov [11] and in the paper [25]
by Taylor, as well as various references contained therein, and the
transmutation theory developed in the paper of Kannai [17].

The basic thrust of this paper is that, given that certain geometric
conditions hold, "off the diagonal" ρ(y, x, t) behaves (genetically) very
much like the solutions of parabolic diffusion equations. In particular,
we obtain for a certain class of hypoelliptic operators an asymptotic
expansion of the fundamental solution; this implies that a formula
first derived by Varadhan [26] in the case that Δ is an elliptic operator

(2) lim-4tlnp(y,x,t) = r(x,y)2,

holds also in the hypoelliptic case where r(y,x) is the distance func-
tion discussed by Brockett [4], Gromov [11], Strichartz [22] and Tay-
lor [25], and is the "subelliptic metric" discussed by Sanchez-Calle [21]
and Fefferman and Phong [9]. This result has been obtained in the
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special case that Δ is the subelliptic Laplacian on the Heisenberg group
by Gaveau [10] and by Azencott [2], Azencott has also proven certain
inequalities related to equation (2) using large deviation methods. Bis-
mut [3] has discussed this problem, also from a stochastic point of
view, using large deviations and the Malliavin calculus. Menikoff and
Sjostrand [19] have constructed the kernel p(y, x, t) mod smooth func-
tions which vanish to infinite order at t = 0, but this is not enough to
imply formula (2).

My method of proving this result is to follow closely the method
developed by Kannai [17] for obtaining asymptotics of parabolic diffu-
sion equations, using results of differential geometry of Gromov [11]
and Taylor [25] which generalize the aspects of Riemannian geometry
used by Kannai. In particular, I need to study the wave front set and
support of solutions of the wave equation

(3) τ b - Δ Π F = O, W{y,x,O) = δx{y), Wt(y, x,0) = 0.

Because Δ is not an elliptic operator, equation (3) is not of real
principle type, so that the issue of the wave front set is not as simple an
issue as the situation discussed by Kannai [17]. In particular, Kannai's
method has clear application only in the case that the wave front set
has no doubly characteristic points over certain subsets. The state of
the art in the propagation of singularities literature for this equation
seems to be (in the paper of Lascar and Lascar [18]) that we can
guarantee this property when the double characteristics of Δ form a
symplectic submanifold of T*M.

Interestingly, this condition appears also in Bismut [3] as a sufficient
condition for invertibility of the Malliavin covariance matrix, as well
as in the partial differential equations literature.

In order to apply the paper of Kannai and the paper of Taylor to
study this situation, I need to make some assumptions. The first is
that the bicharacteristic flow of Δ is complete and that for every two
points x,y € M there is a bicharacteristic γ: [0,1] —• T*M such that
πγ(0) = x and πγ(l) = y, where π is the canonical projection of
T*M on M see [25] for a discussion of these conditions. This will
guarantee finite speed of propagation but places certain restrictions
on the operators allowed. A second assumption is that Δ is symmetric
with respect to a smooth measure. This also constrains the class of
operators considered. As suggested above, we also assume that the
double characteristics of Δ form a symplectic submanifold; besides the
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implications for the wavefront set, this will have certain geometrical
implications which allow us to apply the results of [25].

Now, let D c TM denote the distribution spanned at each x e M by
the tangent vectors {&Cx)}2=1. LetD 1 c T*M denote the annihilator
of D. We have the conditions:

(4a) D1 is a rank one subbundle of T*M.
(4b) D is a rank n subbundle of TM.
(4c) For each x e M and Oφηxe DL, the form given on Dx x D x

by the linear extension of (&(*),&(*)) ^ (*Mfti> &](*)) is
of rank n = 2#.

It follows from (4) that the doubly characteristic set £ = f|2=i {& =

0} = Z)-1 is a symplectic submanifold of T*M (we consider #α as a
function on Γ*M, linear on the fibers). See Lascar and Lascar [18]
and M. Taylor [23] for relevant discussion. Note that conditions (4a)
and (4b) imply that dim(Λf) = 2q + 1, while condition (4c) implies
that the Lie algebra generated by {ga}

n

a=χ spans at step two.
In § 1,1 discuss some geometrical aspects of selfadjoint second order

hypoelliptic operators, in the light of the singular Riemannian geom-
etry discussed in [25]. I recall some properties of the wave equation
(3) associated with a self adjoint hypoelliptic operator Δ. W(y,x, t)
is the Schwartz kernel of the operator cos{tyf^E) discussed in [4] for
the case that Δ is elliptic and in [23] for some hypoelliptic cases. In
particular, I look at the transmutation formula

p{y, x,t)= / — - W{y, x, s) ds
J V4πt

which transforms solutions of (3) into solutions of (1). In §2,1 apply
the propagation of singularities theory developed by Hormander [13]
and Duistermaat and Hormander [8] to the wave equation (3). The
book of Guillemin and Steinberg is also helpful here [12]. The only
thing new about this is that the results of [25] allow me to describe
more accurately than before the simply characteristic wavefront set
of W.

The doubly characteristic wavefront set of solutions of various equa-
tions of the form (3) have been discussed in the literature, for example
by Ivrii [16], Lascar and Lascar [18], and M. Taylor [23]. The state
of the art seems to be the paper of Lascar and Lascar, which consid-
ers our situation of a symplectic doubly characteristic set. It follows
that over a certain region in the support of W, the wavefront set of
W contains no doubly characteristic points. From this we obtain an
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expansion
00

w{y9 χ,t)~ Σ δ{'k)^2 - r(χ> y)2)ck{*> y)
b=(l-m)/2

when (y, x, t) is in a certain open subset of M x M x R, where r(y, x)
is again the singular Riemannian distance function. I then apply the
recipe of Kannai to this formula to obtain (Theorem 2)

e-r(y.xγ/4t

P(y,x,t)
/ 2

v ' k=0

for (y, x) in a certain open dense subset of M x M.
This result may then be combined with the Chapman-Kolmogorov

formula (as discussed by Kannai) to prove the result that for all (x,y)e
MxM:

Jim -At In p(y, x, t) = r(y, x)2.

The discussion of this paper should be compared with Theorem II of
Sanchez-Calle [21].

One should note the paper of Cheeger, Gromov and Taylor [4],
which contains some ideas related to those of Kannai and uses Rie-
mannian geometry quite deeply. Some of the results of that paper
should generalize to the situation discussed here, to the extent that
the Riemannian geometry used has analogs in the singular Rieman-
nian geometry.

It should be clear by this point that this work is very much influ-
enced by the paper of Kannai; it seems to me that the techniques
developed there ought to have many other applications.

1. Geometrical aspects. In this section, I discuss the construction of
self adjoint hypoelliptic operators associated to a singular Riemannian
structure. In this section, I will follow the notation of Taylor [25]. In
particular, G* will denote the nonnegative, degenerate quadratic form
or T*M determined by Δ, G will denote the dual quadratic form on
the distribution D c TM determined by (/*, DL = ker<7* is the an-
nihilator of D in T*M, and r(y, x) denotes the singular Riemannian
metric on M determined by G. This construction does not depend
on having the bundle D being trivial. In this section let μ denote a
smooth measure on M\ i.e., μ restricted to any coordinate chart has
nonzero C°° density with respect to Lebesgue measure there. Let π
denote the canonical projection of T*M onto D* = T*M/ker(G*).
Let G* denote the quadratic form on D* which comes from the G* on
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T*M. Let EC{M) denote the space of compactly supported smooth
sections of D*. EC(M) is a pre-Hilbert space with respect to the inner
product (u,v)' = ] G*(U,v)dμ(x)\ use the symbol H(M) to denote
the associated Hubert space (all square integrable sections). Now, let
d denote the de Rham operator taking smooth functions on M to 1-
forms. Then, πd is a differential operator from compactly supported
smooth functions to EC(M). Let δ: L2{M, dμ) —> H{M) be the max-
imal closed extension of the operator πd; i.e., the operator πd with
domain 2J{δ) = {/ e L2(M): in the distributional sense, πdf is in
H(M)}. Then, the operator Δ = -δ*δ is a self adjoint unbounded
operator on L2(M).

Suppose that {Ua} is a countable open cover for M and that for
each α, D\Ua has an orthonormal trivialization {#£}. Suppose also
that {φa} is a partition of unity subordinate to the cover {Ua}. Then,
the operator Δ, is given on C™ by

a 0=1

Thus, Δ is a self adjoint operator which may be represented in local
terms as a sum of vector fields and squares of vector fields. Moreover,
because of the fact that TM is the smallest integrable distribution
which contains Z>, the span of the Lie algebra of vector fields generated
by {g%} is TVa so that the Hδrmander condition is satisfied, so that
Δ is a hypoelliptic operator.

We have, in addition, that the principal symbol of Δ is just the
function <?*(/?,/?) for (x,p) € T*M, since the symbol of Δ is just
Σ)α Φot Σ2=i Sa ® Sa- We also have that Δ is a non-positive operator,
in the sense that (/ Δ/) < 0 for / e 3f(Δ).

Consider the partial differential equation

(1)

In the following sections, I will consider this equation primarily as
a weak partial differential equation on the space of distributions; in
this section, I consider it as an evolution equation on suitable Hubert
spaces following standard methods for the case that Δ is elliptic. Now,
equation (3) is equivalent to the equation

d_\Wλ = ΓO 71 \W

at [wλ IΔ oI \wt
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We consider T = [£ Q] a s a n unbounded operator on the space Ho =
3r([—A]ι/2)®L2(M), which is a Hubert space with respect to the usual
"energy" inner product defined by:

One can show that T is anti-self adjoint on the domain 3f(A) θ
^([-Δ] 1 / 2 ) . Thus, T generates a strongly continuous unitary group
on Ho; call it U(t).

REMARK. Of course, this requires that the spectrum of Δ is bounded
away from zero. Since Δ is nonpositive Δ - 1 is bounded away from
zero and if (d/dt-Δ+ \)V = 0 then (d/dt-A)etV = 0, while multipli-
cation by e* changes the asymptotics of V in an obvious way. Thus,
there is no loss of generality in assuming that the spectrum of Δ is
bounded away from zero.

Now, the various powers Tq of T will be closed operators on the
domain 3f{Tq) = ^([-Δ]^ + 1 )/ 2 ) ®&{[-A]ql2)\ Tq will be self adjoint
if q is even and anti-self adjoint when q is odd.

3f(Tq) can be made into a pre-Hilbert space with respect to the
inner product ( , -)q = ([-Δ]^/2 , [-Δ]^/2 )o. Because Δ is a closed op-
erator and bounded away from zero, it follows that 2J{Tq) is in fact
a Hubert space. The following lemma is well known:

LEMMA 3. U(t)\&(Tq) is a strongly continuous unitary group; its
generator is T\3!{Tq+x).

Now, since 2J{Tq) is a Hubert space, there is a canonical isomor-
phism 2J{Tq) = 3f{Tq)*. However, as is standard, we wish to forget
for the moment this identification and consider 2J{Tq) to be properly
included in 3t{Tq)* via the inclusions

3f{Tq) -> H0(M) = H0(M)* -> 3f{Tqγ.

The following lemma, due to Hόrmander [13], will be sufficient
for our needs, although Rothschild and Stein [20] have proven more
precise results.

LEMMA 4. Suppose that u, w are distributions and that Δ is a hy-
poelliptic operator of the type considered here. Then, for every open
Ω c M of compact closure, there is an ε > 0 such that ifAu = w, and
w e L[O

2

C(Ω) then u e L £ β ' 2 ( Ω ) .
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COROLLARY 5. For every open Ω c M of compact closure, there is
an e> 0 such that for all even q > 0

/ e 9{T*) =• / | Ω e L2

£q/2λ0C(Ω) Θ 4

and

f 6 £2-eί7/2,,oc(Ω) Φ £2-e ί / 2,,oc(Ω) =

where φ is any element ofC™(Ω).

COROLLARY 6. f)g>o£r(Tq) c C°°(M) ® C°°(Af).

Thus, in particular, 2J[Tq) is a space of functions which are more
smooth than L 2 and its dual is a space of distributions which are more
singular than L2.

If we now re-establish the identity between 3f(Tq) and 2f(Tq)* we
see that 3t{Tq)* is a Hubert space and that U(t) extends to a strongly
continuous unitary group on 3t{Tq)*. Moreover, the operator S =
/ [ - Δ ] 1 / 2 [ Q °χ\ is a unitary operator considered as a mapping between

and 9J(Tq~x\

Since S commutes with T and with C/(ί), it follows that S extends
to a unitary map of Ho onto 3f(T)* and more generally of 3f(Tq)*
onto .@r(Γ<?+1)*. One sees that the generator of U(t) on 2J(Tq)* is
ΓISKF*-1)* (since S~ι maps /f0 onto 3f{T)).

The following is a slight modification of a lemma of Kannai [17].

LEMMA 5. If the Cauchy data for equation (3) are in Sf{Tq) (resp.
9f(T*)*) at t = 0, then the integral

poo p-s2/4t
V(t)= / -—W(s)ds

J-oo V4πt

converges as a Bochner integral in Sr(Δ(^Γ+1)/2) (resp. ^(A^1^2)* and
in fact is a C°° function on M x {t e R : t > 0}. Let φ e C°°(R) be
such that φ(t) = Ofort< 1/2, φ(t) = 1 for t > 1. Then, for every real
number a > 0 the function

V(y,t;a)= Γ
J- 4πt

is C°° on M x {t: t > 0} and satisfies the estimate V(y,t,a) =
Ot-+o(e~a2/4t) uniformly on compact subsets ofM.
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Proof. Suppose that the Cauchy data (φ, ψ) eSf{T^) (resp.
Then, since U{t) is unitary, the norm of U(t){*) in 3f(T*) (resp.
3ί(Tq)*) is independent of t, and since U{t) is strongly continuous,
Z/(ί)(f) i s a bounded measurable function of t. Thus, for all t > 0 the
Bochner integral

Y(t) =
oo p-s2/4t W{s)

ds

converges in 2>{Tq) = ^(Δ^+ 1 )/ 2) φ^(Δ 9/ 2) uniformly with respect
to t (resp. in 3s{Tq)* = 2){A^+{)I2)* ®3f{Ml2)*). Likewise, we have

dtk
dtk j

W{s)

-i:
oo Qlk e-s2/4t W{s)

-ίw(s)

ds

ds

is in &(T<i) (resp. ^(Γ*)*) for all t > 0 (since the latter integral
converges uniformly). At this point we can make use of the inclusions
3r(T«+2) -> 3r(T«) -+ L2 ^ 3i{T«Y -> ^(Γ^ 2 )* for all q together
with the fact that S2 = - [ ^ ] is a unitary map of 2HJΊ+2) onto
3f(Ti) to show that [d^{lyds] is 2A:-times differentiable if we regard

it to be a function, say, of s into 2s(Tq+2ky. Then, we can integrate
by parts to obtain

oo e-s2/4t Qlk W(s)

- /

= T2k

oo p-s2/4t

Thus, y(ί) is in

= T2kY{t)e3!{Tq) (resp. 2>(Tq)*).

x{t:t> 0}) θ C°°(M x{ί:t>0})

since it is in f\k>()2!{T2k-q) (resp. f]k>q/2^(T2k-q)), so that the first
claim of the lemma follows since V(t) is the first component of Y(t).
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The claims for V(t,y;a) may be established just as in Kannai's
proof. Indeed, if we define

oo p-s2/4t W{s)
•Φ(s-\<*\) < / „ . . . d s

then by Lemma 4 we have, for Ω a sufficiently small subset of M and
$)\ e &(T2g)*, that for k sufficiently large that

W(0)w r ι v i

< C2e-^4t

 d

 w •

REMARK. Since U(t) is a unitary group and strongly continuous on
each 9HJ*) and each &(T*)*9 the family of operators

A(t)=

is in fact a (self adjoint) strongly continuous semigroup on each Hubert

space 3!{Tq) and 3{T*)*.

LEMMA 6. The support ofW(y, x, s) is contained in the set {(y, x, s):
s2 - r(y, x)2 > 0}.

Proof. A standard energy integral argument does the trick. Let
/ , , / 2 e Cf?(M), let « e C ° ° ( M x R ) satisfy

^ - Δ ) K = 0, u(y,0)=My), us(y,0) =

We show that the support of u is contained in the set

V= U {(y,s):s2-r(y,x)2>0}.

Indeed, suppose (yo,so) φ V. Let C be an open set of the form
{(z, s): (s - so- ε)2 - r(z, yo)2 > 0, —e < s < so + ε}. One may see
that, for ε > 0 sufficiently small, CnV = 0, and that 2?oΓisuρp(/}) = 0,
where 5 5 = C Π M x {5}. If So is sufficiently small, we may assume
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that D is trivial on each Bs, and is spanned by {&J*=1, and that μ is
represented by a smooth nonzero m-form. Then

= 2 [[G*(du, dus) + ussus] dμ

dBs

= 2 / (-Au + uss)usdμ- / [G*(dM, Jw) + (us)
2] i ( — ) dμ

JBs JdBs \drJ

+ 2 y](SaU)Ut i{ga)dμ

where d/dr is the coordinate vector field associated to the spherical
coordinates, {r, x2,..., xm}, of Lemma 7 of [25]. With respect to this
coordinate system

so that

/ Σ(gaU)uti(ga)dμ = ί urut i (-jA dμ
JdBs JdBs \drJ

by Corollary 6 of [25]. Thus, u\C = 0 since w(y,0)|50 = 0. The
case for s$ arbitrary is an iteration of the above. That the quoted
results of [25] are valid in this context follows from results of the
next section. The result for W follows from the fact that u(y, s) =
/ W{y, x, s)f(x) dμ(x) and W{y, x, s) = W(x, y, s). π

COROLLARY 7. Δ is essentially self adjoint on Cg°(Af).

Proof. It follows from the proof of the previous lemma that the
function u(y,s) has compact support for all s by the completeness
of the bicharacteristic flow of Δ, and hence that Cg°(Af) Θ Cff(M)
is invariant under U(s) for all s. Thus, by Lemma 2.1 of Chernoff
[6], (iT)n is essentially self adjoint for all n > 0, hence (iT)2 = [J jj]
is. D
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2. Propagation of singularities. We are interested in studying the
asymptotics of the fundamental solution of a hypoelliptic diffusion
equation, i.e., that solution with initial condition V(0) = δx (= the δ-
function supported at x e M). The content of Kannai's paper is that
these asymptotics are the "transmuted" version of the singularities
of the solution of the wave equation with Cauchy data W(0) = δx,
Wt(0) = 0. But the propagation of singularities theory contained in
Duistermaat and Hormander [8] may be applied to this wave equation.

In particular, let f(y, x, t) denote a distribution on M x M x i?, and
consider the operator d2/dt2 —A(y) as acting on the y and t variables
of such distributions. Then (d2/dt2 - Δ) has a principal symbol h =
pf - G*(ξ,ξ) on T*(M x M x R)9 where pt is the dual coordinate to
t e R and ξ denotes an element of T*M (regarded as an element of
the leftmost factor of T*(M x M x R) = T*M x T*M x T*R).

We then have [15] that the wave front set of W(t,y,x)9 which
we will denote by Λ, is contained in the characteristic subset {p2 -
G*(ξy,ξy) = 0} and is invariant under the flow generated by the
Hamiltonian vector field η(h) associated with h. But, this flow is
closely related to the singular Riemannian geodesic flow; in fact η(h) =
2pt(d/dt) - η(G*(ξy,ξy)), where η(G*(ξ,ζ)) is the Hamiltonian vector
field associated with G*(ξ,ζ).

Now, the characteristic subset is the union of two pieces C\ and Cι
where C\ is the set of cotangent vectors of the form

{(ξt.ξy.ξx): Pt(ξt) Φ 0 and pt(ξt)
2 - G*(ζy,ζy) = 0}

and Cι is the set of cotangent vectors of the form {(O,ξy,ξx): ξy e
kerG*}. Cι is the set of double characteristics, and on this set η(h)
vanishes since h vanishes to second order.

Conversely, η(h) does not vanish on C\, and for s G R each sub-
manifold T*(M xM x {s}) Π C\ in T*(M x M x R) n C\ is a cross
section for the flow generated by η. Thus, AπC\ is determined by
Λ|5=o ΓΊ C\. On the other hand, assuming condition (4) of the in-
troduction, we have that C2 = DL x T*M x T*R is a symplectic
submanifold of T*(M x M x R). This may be seen from the fact
that by Darboux's Theorem for nondegenerate contact structures [1],
at each x e M there are local coordinates xι,...,x2n, y such that
Ta = d/dxa + ΣbAabXb(d/dy)> for α = 1,...,2/i, is a local frame
for D, where A^ is the antisymmetric nondegenerate form which is
nonzero only on the 2 x 2 diagonal blocks, with each block [ _? Q 3 w * t h

respect to these coordinates, the principal part of Δ is a strictly positive
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quadratic form (position dependent) on the Γa. Note that this positive
form is not, in general, locally diagonalizable so that Δ is not neces-
sarily locally equivalent to the subelliptic Laplacean on a Heisenberg
group. Then the Hamiltonian matrix FA associated with the Hessian
on C2 of the principal symbol of Δ satisfies kerFΔ Π Ranged = 0, so
that C2 is symplectic. In this case we have the following special case
of the result of Lascar and Lascar [18], which also follows from Ivrii
[16].

THEOREM. The wave front set ofW satisfies WF(W) n {y Φ x} Π
C2 = 0. Thus, we may compute the wave front set away from y = x
simply by propagation of singularities.

Now, let KQ denote the mapping of MxM^MxMxR given
by κo{x,y) = (x,y,0). Since the pullback κlW{y,x, t) = δx(y) and
since η(h) is transversal to JCQ, it follows that

f lQU = {(x,x,0,-ζ,ξ,ζt): ξ e T^M-D±

fζt = ±yjG*(ξ,ξ)dt}.

Then, since

we have that the wave front set of W in C\ is:

xeM,ζ°xe T M,ξf = Λ(0)du

where we regard T*(MxMxR) as identified with (T*M) x (T*M) x
(T*R). Note that pt is a first integral of h. In particular, this implies
that with the exception of the set y = x the singular support of W is

I(exp* [ ^ y ] >x.t) ' ξ°x 6 Γ ; M | - {(x,x,ty.x eMj e R},

where expx is the singular Riemannian exponential map discussed in
[25].

To apply §4 of [25] we need to understand the limit behavior of
bicharacteristics.
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Thus, let {fjc ĵ jjio c T*M be a sequence of cotangent vectors such
that both Gx(ξx

n\ξx

n)) = 1 for all n and ξx

n) goes to infinity as n goes
to infinity, i.e., only a finite number of the ζx

n^ are in any compact
subset of TXM. Then, the bicharacteristic curve

finis) = ([y{n\s),ξW(s)], [X,ξ{

χ

n)], [t = S,ξt(s)])

= exp(sη{h))((x, -ζ{

x

n)), {x,ξx

n))> (0,6)), for pt(ξt) = ±1,

is contained in WF(W). Also, since WF(W) is conic, the ray

Bn{s) = {{(y{n\s),&^^

is also in WF{W). Recall now from [25] that we may (by choosing a
subsequence, if necessary) assume that the geodesies y^n\s) converge
uniformly on compact intervals to a generalized geodesic yoo(s). The
corresponding sequence of βn(s) does not converge, by the complete-
ness of η(h), since ξ("\0) = -ξx

n^ goes off to infinity. However, the ray
Bn{s) has limit points for each s as n goes to infinity. Indeed, we may
parametrize the rays by points in the cosphere bundle for some Rie-
mannian metric tensor; since y^(s) converges, it follows that Bn(s)
is contained in a (conically) compact subset. Since WF(W) is closed,
it follows that these limit points are in WF(W), hence, so is the ray
through these limit points.

Suppose that these limit points are simply characteristic. It follows
that there is a sequence λn > 0, λn -> 0, such that

((y{n\s),λnξ(n\s)),(x^nξx

n)),(t,λnξt(s)))

converges to a point in the simply characteristic wave front set. On the
other hand, η(h) is a complete vector field by assumption and G*(ξ, ξ)
is a first integral, which on the characteristic variety is zero only on
C2, so it follows that (G*(ξ,ξ)~ι/2η(h)) is a complete vector field on
the subset Cx c T*(M x M x R). Thus, exp(s(G*(ξ,ξ))~ι/2η(h)) is
a diffeomorphism for each s > 0, and Λ n Q is invariant under this
diffeomorphism. This leads us to a contradiction, A n Ci|ί=o is a n

embedded submanifold of C\ while Λ n Ci| ί=5, which is the image of
this set under exp(s(G*(ζ, ξ)~ι/2η(h))), contains the limit of the points

((yn(s),λHξW(s)), (X,λnξ
{

χ

n)), (ί = S.λHξt)).

However,

does not converge to a point of Λ n C\ |,=o A Π C\ \t=s is an immersed
but not an embedded submanifold. But, the diffeomorphic image of
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an embedded submanifold is embedded, so we have proven:

LEMMA 7. The limit points of the ray Bn(s) over the generalized
geodesic yoo{s) are in the doubly characteristic wavefront set ofW.

Since, as we have already discussed, the results of Lascar and Lascar
[18], and Ivrii [16] give us that the doubly characteristic wavefront set
of W is only at y = x we have

COROLLARY. Any generalized geodesic jΌoOs) satisfies y<χ>{s) = xfor
all s. In particular, there are no minimizing generalized geodesies in
the case that C2 is symplectic.

We may therefore apply Corollary 4 of [25], with the effect that if

U= l(y,x,t)eM xM xR: y eU{x),

0<\t\< μx

where £(0) in this case denotes exp"1 y, where μx is a particular func-
tion on the unit sphere in T*M (introduced in [25]) and U(x) is
the dense open subset of M (discussed in [25]) on which the sin-
gular Riemannian distance from x to y is a C°° function of y, then
sing. suρp.( W) nϋ = {(y, x, t): r(x, y)2 - t2 = 0} Π U.

Even more, let zι,...,zm be the singular Riemannian geodesic
spherical coordinates introduced in the proof of Lemma 7 of [25],
centered at x (so that zι(y) = r(yt x) in particular). Let p\,..., pm

be the dual coordinates to z 1,..., zm. A consequence of Lemma 7 of
[25] is the following.

LEMMA 8. Let π denote the canonical projection ofT*(M xM xR)
onMxMxR. Then,

AnT*U = {(y,x,t,ξy,ζx,ξt):r(y,x)2-t2 = O,ζx = ξx(O),

ζt = Pt(O)dt,ξy = sign(t)\pt(0)\dyr(y,x)},

where dy denotes the differential with respect to the y variables.

Proof. By Corollary 6 of [25], on U,

for some smooth functions aij(y).
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Let s -»(y(s),x, t(s),ξy(s),ξx,ξt) denote the integral curve of η(h)
with initial conditions y(0) = x, ί(0) = 0, ξy(0) = -ξx. By the proof
of Lemma 7 of [25] we have that (d/ds)t(s) = p,(0), (d/ds)zι(y(s)) =
2sign(j)|Pί(0)| and (d/ds)zi(y(s)) = 0 for i > 2. On the other hand,

(d/ds)zι(y(s)) = {zι

fh} (Poisson Bracket)

so that Pi(^(^)) is independent of s > 0 (resp. 5 < 0). Also,

7=2

Thus, ί y(j) = -sigii(j)|pf(0)|«/,,r(}>,;t), modD-1-. Now, note that η{h)
is tangent to the submanifold of T* 0 given by p, = 0 for i > 2, so that
if we start at some point of this submanifold and move along one of
the flow lines of η(h) for a sufficiently small distance, we will remain
in this submanifold. Therefore, if we start at (y(s), x, t(s)) € U with a
cotangent vector ξy(s) = -siga(s)\pt(0)\dyr(y,x), s = t(s)/pt(0), we
get that

expl-sη(h)](y(s),x,t{s),ξy(s),ξx,ξt) = (x,x,0,-ξx,ξx,ξt),

where ξx — —expχl(y(s)). Indeed, on the submanifold pi = 0 for
i > 2, we have η(h) = pt(d/dt) - pι(d/dr). We have also

Pι(ξy(s)) = -βign(ί)|Λ(0)| = -sign (J^j |Λ(0) |

so that on this submanifold, for / > 0, η(h) = pt(0)(d/dt + d/dzι)
and for / < 0, η(h) = pt(0){d/dt - d/dzι). Although (x,x,0) is not
in U, (x,x,0) is in the closure of 0, and η(h) is smooth on all of
T*(M xMxR), so that we may see that, if t = ^(0)5 > 0,

exp[-sη(h)](y(s), x, t(s),ξy{s), ξx, ξt)

= limexp [-5^(0) (JL + A-^j (y(s),x,t(s),ξy(s),ξx,ξt)

= (x,x,0,-ξχ,ξχ,ξt),

by equation (2) and the definition of the singular Riemannian expo-
nential map, since (y(s -s),x, t(s -s))eϋ for s <s. The t < 0 case
follows in the same way. α
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We are now in a position to be able to say a lot about the singular-
ities of W. In fact, for (y, x, t) e U9 the Hadamard construction [7,
pp. 740-744] of the fundamental solution of the wave equation goes
through for "hypoelliptic wave equations". We have

oo

THEOREM 1.

W(y,x,t)- Σ δl~k)(t2-r(x,y)2)Ck(x,y) for (y,x,t) e U.
k=((\-m)/2)

Proof. Just as in the Riemannian case Λ n T* U is the co-normal
bundle of the manifold sing. suρρ.(PF) n U. One can, in the usual
way, identify (d2/dt2-A) with an operator on generalized ^-densities;
if the identification is via the map / G 2!{M x M x R) goes into
/ ® yj\dt\ ®dμ, where dμ is the smooth measure introduced in Sec-
tion 1, then the subprincipal symbol of (d2/dt2 - Δ) is zero. In this
situation, the symbol of W ® \/\dt\ ®dμ may be identified with a sec-
tion, σ, of the ^-density bundle (tensored with the Maslov bundle) on
Λ [14]. Because the subprincipal symbol of (d2/dt2 - Δ) is zero, and
the principal symbol is just the function A, it follows [15] that σ is
invariant with respect to the flow generated by the vector field η(h).
Thus, just as in the Riemannian case, these conditions plus the fact
that W\ί=Q = δx(y) determine σ completely. This is because the η(h)
flow lines in Λ admit a global C°° cross section; see Guillemin and
Sternberg [12, p. 371]. Also, σ is homogeneous under the action of
the multiplicative group of the group of positive real numbers on the
fibers of T*(M x M x i?), because the generator of the multiplicative
group action forms a two dimensional Lie algebra with η{h) which
exponentiates to a local Lie group of local diffeomorphisms; see [12].

Now, note that Λ is diffeomorphic to the disjoint union of two
copies of Rn, one copy for each choice of sign in the initial condition
ξt{0) = ±y/G*(ξ{O),ξ(O))dt. Denote the two components by Λ+ and
Λ~. As Duistermaat and Hόrmander [8] point out, there are solutions
ψ+ and ψ~ of (d2/dt2-A)υ = 0, ̂ (0, y) = δx(y) such that Wave Front
(ψ+) = Λ+ and Wave Front (ψ~) = Λ". Guillemin and Sternberg [12,
Chapter VI, Section 8] point out that ψ+ (resp. ψ~) has Cauchy initial
data y/+(O,j;) =δx(y),

resp. ψ-(0,y) = δx(y), ( §
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Actually, Guillemin and Sternberg are concerned only with Δ el-
liptic on a compact manifold but, with our self adjoint Δ, spectral
resolutions allow us the same freedom. Thus, our solution W is equal
\{ψ+ + Ψ~) Let Ύ:MxMxR-+MxMxR denote the diffeo-
morphism Ύ(y, x, t) = (y, x, -ί), so that T o T = id. Note that T is a
symmetry of (d2/dt2 - Δ) and that the pullback satisfies T*Λ+ = A".
Thus, W is the unique solution of the hypoelliptic wave equation with
initial data W(0, y) = δx{y) such that Ύ*W=W.

Now, it follows from Chapter VI, Section 4 of [12], together with
Lemma 8, that the distribution

t>0,
t<0,

is a basis over the ring C°°(U) for the subspace of distributions in
I~ι/4+k(U, Λ+|ϋ) (see [12,14]), with symbols which are homogeneous
of degree k at oo, mod C°°. Likewise,

-_j(t2- r(y, x)2 - iθγm-ι+kV2, t > 0,
uk-\ ( ί2 _ r ( y > χ)2 + iOγm-ι+k)/2> t < 0 )

is a basis for Γ^4+k(U,A~\U). Thus, {u^,Wj^} is a basis for the
"homogeneous" subspace of I~ι/4+k(U,A\U). Now, T*M^ = u^, so
that δ-(m-1+kV2(t2 - r(y, x)2) = ^(u+ + «") is abasis for the subspace
of I~χl4+k(tJ,A\U) which is homogeneous and also invariant under
T*.

Moreover, the symbol of δ~^m~ι^2(t2 — r(x,y)2) is nonzero on
Λn T*U so that there is a smooth function C(m-η/2(x, y) of x and y
such that <5-(m-1'/2(ί2 - r(x,y)2)C{m_ι)/2(x,y) has the same symbol
as W. Note that \t\ = r(x, y) on Λ and that W{y, x, t) = W(y, x, -t)
implies that W depends only on \t\; thus C(W_i)/2(x, y) need have
no t dependence. C(m-i)/2(χ> y) m a v be computed as the solution
of a linear first order partial differential equation, a "transport equa-
tion", on Λ n T* U, just as in the Riemannian situation discussed
by Kannai [17]. Thus, since both W and δ^m-^2(t2 - r{x,y)2)
belong to I~χl4(U,A\U) (in the notation of Hδrmander), it follows
that W - <y-(«-D/2(/2 _ r(x,y)2)C(m-l)/2(x,y) e PI4φ,A\U).
But, <5-(™+i)/2(f2 _ r(x,y)2) € PI4φ,A\U), and has a symbol
which is nonzero, of the same homogeneity as the symbol of
W-S-ίm-ιV2(t2-r(x, y)2)Cim-l)/2(x> y) and invariant under T. Thus,
there is a smooth function C(m+i)/2(x> y), which may be computed as
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the solution of a transport equation, such that

, y)

) G /^(tf, Λ| tf).

In this way, the functions Ck(x, y) may be computed (recursively:
Q+i depends on Q ) in such a way that

W _ £ ^("^)(ί2 - Γ(JC, }>)2)Q(x, y) G IN+m-ll\U, A\U).
k=(l-m)/2

But, iV may be chosen so that the elements of this space are of an
arbitrary specified degree of smoothness. D

We now apply the previous results to the consideration of the hy-
poelliptic diffusion equation (d/dt-A)p(y, x, t) = 0, lim,_>o p(y, x, t) =
δx{y).

We have:

THEOREM 2. Suppose (y,x,s) eϋ for some s Φ 0. Then

p{t'y'x)

where each Vj(y, x) is a smooth function on M x M.

Proof We have that the support supp( W) C {(y, x, t): r(y, x) < ί2},
just as in the Riemannian case. The proof is then exactly as that for
the Riemannian case (i.e., parabolic diffusion equations) as discussed
in §3 of Kannai's paper [17], with his Lemma 2.1 replaced by Lemma
5; the only difference is that here the set U(x) = {y: (y, x,t)eϋ for
some t} does not contain a neighborhood of x in M. D

REMARKS. (1) Note that hypoellipticity implies that the non-smooth
behavior of p is located at t = 0, x = y. But (x,x,s) is not in
U for any s, since by considerations of [25], r(x, y) is not smooth
at x = y. (2) Note the somewhat surprising fact that for both the
situation we discuss in Theorem 2 and the case that Δ is elliptic (for
each appropriately chosen (x, y)) p(t,x, y) ~ ct~rnl1e~κlt for suitable
C, K > 0. This is in marked contrast with the situation on the diagonal
x = y (see [19], for example).

We have the following corollary.
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COROLLARY 8. lim,_>0 -4ί In p{yy χy t) = r(y, x)2.

Proof. The proof is easy if (y, x,s) e U for some s Φ 0, since by

the previous theorem,

J 7=0

Hypoellipticity implies that p is C°° for t > 0, and r(y,x)2 is C°° as
long as (y,x,ί)e& for some s Φ 0, so that for ί > 0,

.x.ί) = (4πO"m/2exp [~ί:%—| v(x. M)

where v(x,y9t) is a C°° function of all variables, which is nonzero
for t > 0, which may be extended to a C°° function of / G R and
which satisfies υ(y,x, t) ~ Y^LQVj(x9 y)V at t = 0. The sought after
limit then follows uniformly for (y, x) contained in compact subsets
of {(y9x): (y,x,s) G fj for some s} M x M. As Kannai points out,
the inequality

lim inf-4ί In/>(>>, JC,/) > r(y,x)2

follows from the fact that supp W(y, x, s) {(y, x, s): s2- r(y, x)2 > 0}
and the transmutation formula (this inequality was first proved by
Azencott [2] using large deviation methods). This formula is proved
by using Lemma 5 to show that p{y, x, t) = O(e^x'y^2~ε^At) uniformly
for (y, x) in compact subsets of M x M. One can also demonstrate
the inequality

lim sup -4t In p(y, x, t) < r(y, x)2

t-+o

uniformly on compacta in M x M. The proof is exactly that of The-
orem 4.9 of Kannai, with a little care taken, Corollary 7 of [25] guar-
antees the existence of open neighborhoods of any point on which
Theorem 1 holds, and here r(x, y) is equal to Kannai's e{x9y). D

Note added in proof. Results independently obtained which are re-
lated to the results of this paper are the following. The author grate-
fully acknowledges discussions with and/or manuscripts from the fol-
lowing authors.

R. Leandre, Minoration en temps petit de la densite d'une diffusion
degeneree, J. Funct. Anal, 74 (1987), 399-414.
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R. Melrose, Propagation for the wave group of a positive subelliptic
second order differential operator, in 'Hyperbolic Equations and Related
Topics' ed. S. Mizohata, Academic Press (1986).

S. Watanabe, Analysis of Wiener functionals {Malliavin calculus) and
its applications to heat kernels, Ann. Prob., 15 (1988), 1.
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