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Let A\ <^ A2 <— A$ <— - - be an inverse system of Banach-algebra
homomorphisms, and let / be an element of the limit algebra A.
Suppose / is the limit of squares, that is,

f\ <-< fi <-ι h <-« <-« /,

where each fn has a square root in its algebra An. Does this require
that / have a square root in AΊ Our object is to show that the answer
to this as well as some similarly natural questions is 'no'.

1. A topological reformulation. Let Σ be a covering of a topological
space X. We will say that X has the Σ-topology if a set F is closed in
X if and only if F n S is closed for every member S of Σ [2].

In what follows, Σ will be an increasing sequence of compact subsets
QΪX.

Let P be the cartesian product of countably many copies of the
unit circle ί/(l), with the usual compact topology. Let Xp be those
sequences x = (λ\, λι> Λ3,...) for which the numbers (λn)

2 with n > p
are all equal to (λp)

2. This set is closed in P and hence is compact.
Let X be the union of these compact spaces Xn. The Xn form a

covering Σ for X and thus define a Σ-topology for X. This Σ-topology,
and not the topology X inherits from P, will be meant when we say
'the topology of X\

Let x = (λ\, λ2>λ3f...) be a point of P. Define gn(x) to be λn. Then
gn is continuous on P and hence on each Xq and hence on X.

For x = (λ\, Λ.2, Λ.3,...) in X, supposing it to lie in Xn define f(x)
to have the value {λn)

2. On Xn, g2 agrees with / , so / is continuous
on that set. Thus / is continuous on X.

Consider a curve a(t) lying in Xn. If it is continuous relative to the
topology Xn inherits from P, it is continuous as a curve in X.

THEOREM 1. / has no continuous square root on X.

Proof. Suppose g were a continuous square root of/. Then g(x) =
g(y) if x and y agree from some point on, because the obvious curve
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from x to y lies in some Xn. In fact, / is constant on this curve and
g is always one of the square roots of that constant, hence constant.

Suppose some directed set xk lies in some Xn and converges to
a point y there, in the topology Xn inherits from P. Then it con-
verges in X to y. An example is the sequence given by {xk} where
xkh2isk (-l) 's followed by 1,1,1,..., and y = (-1, - 1 , - 1 , . . .)• All
these points lie in X\. Now £(1,1,1,. . .) is surely ± 1 . It will suf-
fice to consider the case where it is + 1 . Then g{Xk) is also 1, and
g(—l,—l,- l , . . . ) is 1 because g is continuous on X\.

Consider a(t) = (ei(, eiι, elt,...). Because it lies in X\, it is a curve
connecting (1,1,1,...) to (—1,-1,-1,...) as t varies from 0 to π.
Now g(a(ή) = ±elt. For t = 0, the sign is +, so it must be also
for t = π. Thus £(—1,-1,-1, . . . ) is - 1 . This contradicts the earlier
finding that this value is +1. Thus there cannot be a continuous square
root of our / , proving the theorem.

2. Generalization to powers greater than the second. Let P be as
above. Let H be those sequences x = (λ\,λ2,λ$,...) for which the
sequence of numbers (λn)

n ultimately assumes some constant value in
17(1). Define f(x) as equal to that limiting value.

Let Hn be the subset of P of those x for which that limiting value
has already been attained with (λn)

n. Note that / has a continuous
nth root gn on Hn.

It is natural to ask, does / have a square root h on PΊ It does not.
We take a(t) = exp(it/n). Let y = α(2π), and let xk look like y for
the first k places and then have Γs. All these xk and the y lie in H\,
so xk converges to y, and g(y) = £(1,1,1,. . .) which we assume to
be 1.

On the other hand, f(a(t)) = exp(/ί), and so £((*)) = ±exp(/ί/2),
and again the sign cannot change. So g(y) = - 1 . Hence / cannot
have a continuous square root. A simple modification shows that it
could not have a mth root for any m > 2. We formulate this.

THEOREM 2. The space H is the union of a nested sequence of com-
pact sets Hn. Let An = C(Hn,C) be the continuous complex valued
functions on Hn. Let A = C(H,Σ,C) be the functions on H which for
each n when restricted to Hn fall into An. There is an f in A whose
restriction to Hn has a continuous nth root in An for every n. But f is
not the nth power of any element of A with n greater than 1.
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3. The algebraic version of these theorems. We evidently have here
an inverse system

Ax +-A2 ^A3<

of Banach algebra homomorphisms. This defines an inverse limit al-
gebra A. This A has an element which is not an nth power of any
element of A for any n greater than 1. However, its image fn in An is
an nth power of an element of An for each n.

In our example, the algebras are commutative, and / is invertible.

By way of contrast, in [1] it is shown that if fn has a right inverse
in each An, then / also has a right inverse in A.

4. The inverse limit of exponentials. This topic is not in the realm of
pure algebra, but of topological algebra. We will show that the inverse
limit of exponentials is not necessarily an exponential.

Let Xn be the set of bounded complex sequences (^1,^2,^3,...) for
which λm is constant modulo Z from n onward, with bound Bn < n.

Suppose there were a continuous g such g(x) that differs from each
gn(x) by an integer at most. Then g(x) = g(y) if x and y agree
from some point on, because the obvious curve from x to y lies in
some Xn. Let α(0) be (0,0,0,. . .) . Then £Λ(α(0)) = 0. Therefore
g((θ)) = 0 + j \ j an integer. This j is constant. It suffices to treat the
case where it is 0. Then £(0,0,0,. . .) = 0 and g(l, 1,1,...) = 1.

Let Xjc have k zeros and then all Γs. These elements x^ are all in
Xu and so is (0,0,0,.. .). The limit of the xk is (0,0,0,.. .). By the
x and y argument, the g(xjc) are all equal to 1. Hence £(0,0,. . .)
should be the limit of these Γs, and so be 1.

This contradiction proves the following theorem, expressed in the
notation of Theorem 2.

THEOREM 3. The space H is the union of a nested sequence of com-
pact sets Hn. Let An = C(HntC) be the continuous complex valued
functions on Hn. Let A = C(H, Σ, C) be the functions on H which for
each n when restricted to Hn fall into An. There is an f in A whose
restriction to Hn has a continuous logarithm in An for every n. But f
is not the exponential of any element of A.

Here we are taking f{x) to be the common value of the numbers
cxp[2πign(x)] where n is large enough so that x e Xn.
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