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We use three different kinds of statistical mechanical models to
construct link invariants. The vertex models emerge as the most gen-
eral. Our treatment of them is essentially the same as Turaev's. Using
the work of Goldschmidt we are able to define models whose invari-
ants are homology invariants for branched covers. Thus the statistical
mechanical framework embraces both the "classical" and the "new"
link invariants.

0. Introduction. In this paper we shall discuss three types of statis-
tical mechanical models—vertex models, Potts type models, and IRF
models. In all cases we shall see that the models may be defined on
a knot diagram (replacing the lattice of the model), and that a suit-
able variation on the partition function of the system is often a knot
invariant, i.e. depends only on the knot as a three-dimensional entity
and not on the chosen diagram.

The connection between knot theory and statistical mechanics was
first established, indirectly, in [Jl] where it was observed that the
Temperley-Lieb algebra of the Potts and ice-type models (see [Ba]
and [TL]) can be used to define a knot invariant using the theory of
braids and a certain trace on the Temperley-Lieb algebra, discovered
in the course of investigations into type Hi factors (see [J2]). (This
invariant is a Laurent polynomial in y/i which we shall write VL{t),
where L is some oriented link.) But it was Kauffman who first began
to understand this connection in a direct way with his "states model"
for VL, which freed the understanding of VL from the use of braids or
inductive methods (as in [F+]). Kauffman's model seems very special
to Vι, but another approach to such explicit formulae was suggested
by the braid formalism. The author succeeded in "unbraiding" a trace
formula for a series of specializations of the two variable polynomial
of [F+]. The relevant braid group representations were discovered
by Jimbo [Ji], Drinfeld [D], and Wenzl [Wl]. This unbraiding was
reported in a letter to Kauffman and we give the details of it in this
paper. It was immediately generalized by Turaev [Tu] to embrace
the Kauffman polynomial. We present our own version of Turaev's
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312 V. F.R.JONES

formalism, which has the interesting feature that it uses the angles
formed at the crossings of a knot projection.

All the formulae referred to in the preceding paragraph are ana-
logues of the partition function for a statistical mechanical system on
a two-dimensional diagram of the link. Turaev's formulae correspond
to a certain class of models known as "vertex models". We shall see
that for Potts-type and IRF models it is possible to define non-trivial
link invariants as analogues of the partition function. Vertex models
turn out to be the most general, though in a perhaps artificial way.

The formalism is interesting for its generality. Using the work of
Goldschmidt and the author in [GJ] we recover models which calculate
the homology of 2-fold branched covers, and in view of [Go] it seems
likely that all of the information in a Seifert matrix is accessible to our
method. We are also able to situate Kauffman's model quite clearly as
an intermediary between the Potts model and a vertex model (called
"ice-type") via a piece of combinatorics that seems unique to the Potts
model and the ice-type model.

Although the formalism is quite general and not tied to braid pre-
sentations or induction, it is still hampered by the need for a two-
dimensional projection (shadow) of a three-dimensional object. Our
main reason for doing this work was as a step towards a useful and
genuinely three-dimensional understanding of the invariants. So far
we have not succeeded. The situation is the same as that of the poor
prisoners in Plato's allegory of the cave [PI, pp. 253-254].

1. Vertex models. In statistical mechanics a vertex model is defined
on a graph with vertices V = {v} and edges % = {e}. A finite set θ
(or more generally, a measure space) of "states per edge" is given and
a state of the system is a function σ: % —> Θ. Let X be the set of all
states. For each vertex υ there is an energy function Ev: %? —• R such
that Eυ(σ) is determined by the restriction of σ to the set of edges
incident to v (nearest neighbor interaction). The partition function
of the vertex model is the sum Z = Σ σ € ^ e x p ( - ( l / / c Γ ) ( ^ Ev(σ))).
If the system is in interaction with its surroundings a term needs to
be added to Συey Eυ(σ) (see [Hi]). This should be the origin of the
"angle" term in our formalism below. The Boltzmann weights are the
terms wυ(σ) = εxp{-{l/kT)Ev(σ)) so that Z = ΣσeβrY[υeVWv(σ)
The wv(σ) are in general functions of certain variables.

We shall be interested in four-valent graphs only and the vertices
will be divided into two classes, " + " and " - " , so that wυ(σ) =
w±(a,b\x, y) where {a, b, x, y} are the elements of Θ assigned by σ to
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the edges incident to υ, ordered according to some convention. Thus
we make the following formal definition (which is intended for knot
theory, the equations (1.2)—(1.5) are too restrictive for statistical me-
chanics).

DEFINITION 1.1. A vertex model is a finite set θ together with two
functions w±{a,b\x,y)(λ) = w±{a,b\x, y)(λ,h) where a,b,x,y e θ,
λ G (0, π) (and we are deliberately vague about the values of w; they
should at least lie in a commutative ring), a "random variable" / : θ —•
R, f(a) = fa, and a constant h = h/2π such that

(1.2) w±(a, b\x, y)(λ + δ) = w±(a, b\x,

(1.3) £ w+(a, b\x, y)(λ)w-(y, z\b, c){λ)exp(λh(fy - fb))
b.y

= δ(a, c)δ(x, z) exp(λh(fa - fx)),

(1.4) X^ w+(a, b\y, x){λ)w-{z, y\b, c){λ) exp((A - π)h(fb + fy))
b.y

= δ{a, c)δ{x, z) exp((A - π)h(fa + fz)),

(1.5) Σ w+(a> b\x, y)(λ)w+(b, c\r,s){λ + μ)w+(y, z\s, t)(μ)
b,y,s

= Σ w+(x y\r s)(μ)w+(a, b\s, t){λ + μ)w+(b, c\y,
b,y,s

Comments on Definition 1.1. We let V be a vector space with basis
θ and define linear maps R±(λ) e End(F ® V), R±(λ) e End(F ® V)

(1.6) R
b,y

(1.7) R
b.y

(1.8) L(δ)a = exp(δhfa)a.

Also let P e End(F <g> V) be given by P{a ® b) = b ® a. Then note:
R±{λ) = PR±{λ).
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Equation (1.2) shows that w±{a,b\x,y)(λ) may be extended to all
λ G R and that w±(a,b\x9y){0) determines w±(a9b\x9y)(λ). Pro-
vided the image of exp contains no zero divisors, it follows that
w±(a, b\x, y)(λ) = 0 unless fa + fx = fb+ fy Thus our framework is
no more general than Turaev's [Tu]. We may rewrite (1.2) as

(1.2') R±β + #) = (US) ® l)R±(λ)(L(-δ) ® I)" 1

= (I ® L(δ))R±(λ)(l {

so that in particular R±(λ) commutes with L{δ) ® L(δ) and R±(λ) =
(L(λ) ® l)At(0)(l ® L(-λ)). We suppose that (1.2) holds for the rest
of the discussion.

Equation (1.3) is the same as

(1.3') i L i

Thus the values of w~(a,b\x,y)(λ) are determined by those of
w+(a, b\x, y)(λ) and + and - can be interchanged in (1.2).

Equation (1.4) may be recast as follows. For A e End(F® V) let Au

and Ah be (transpose ®iά)(A) and (id® transpose) (̂ 4) respectively.
Then (1.4) is the same as

(1.40 [P(R+(π)y>)[P(R-(π)y>] = id.

Equation (1.5) is the well-known Yang Baxter equation, to be found
often in [Ba]. Using an obvious notation for the operations of ele-
ments of End( V® V) on V® V® V we can rewrite (1.5), with R = R+,
as

(1.50 Rn(λ)R23(λ + μ)Rχ3(μ) = * i3 M*23(Λ + μ)Rn(λ).

Because we are supposing (1.2), this is equivalent to the braid relation
with R = R(0)

(1.5'0 ^12^23^12 = ^23^12^23-

As we noted earlier, the conditions (1.2), (1.3), (1.4) are quite strong
and the physically interesting solutions of (1.5) in [Ba] do not satisfy
them.

Now suppose that we are given a generic planar projection of a
smooth oriented link in R3, so that the only singularities are double
points and at these the intersections are transversal. Then the link L
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FIGURE 1.9

Diagram of an oriented link

may be adequately represented by the planar projection together with
crossing data as shown in Figure 1.9.

DEFINITION 1.10. Given a vertex model v = (β,w±if,h) and an
oriented link diagram L we define the partition function as

states σ

\

w±(a,b\xfy)(λ)
crossings

ofL

exp (h

(an empty product is equal to 1) where a state σ is a function from
the edges of the planar graph subjacent to L to θ . So a state defines
a configuration around each crossing represented by Fig. 1.11 which
also establishes the convention as to the order in which α, b, x, y
appear as arguments of w±

FIGURE 1.11

We take λ to be the "ingoing" angle measured in radians, in the
sense of Fig. 1.11. Obviously 0 < θ < π.

Finally, fσ is the locally constant function on L defined as being
fσ^ along any edge e, and dθ is the "change of angle" or curvature
1-form on L, defined as the pull-back to L of the angle form on the
circle via the mapping L —• Sι given by a unit tangent vector pointing
in the direction of the orientation of L. This ends Definition 1.10.
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Regular isotopy is the equivalence relation on link diagrams (gener-
ated by planar isotopy and the (oriented) Reidemeister moves of types
II and III (see [BZ]).

THEOREM 1.12. Given a vertex model v and two regularly isotopic
link diagrams L{ and L2, Zv

Lχ = Zv

Li.

Proof. Equation (1.2) implies that each term in ZV

L is unchanged
by changing the angles made at the crossings. It follows fairly easily
that each term in ZV

L is invariant under planar isotopy. Once this is
established, (1.3), (1.4) and (1.5) are clearly sufficient conditions for
ZV

L to be invariant under all type II Reidemeister moves and a special
configuration of type III move. Invariance under the other oriented
type III moves follows by manipulating (1.2') and (1.5"), and a simple
topological argument in one case. We refer to [Tu] for details. D

One is most interested in isotopy of links in R3 which is expressed
by invariance under all the Reidemeister moves, but, as emphasized by
Kauffman, any regular isotopy invariant provided one pays attention
to the Tait number Tait(L) (=number of crossings, counted according
to their sign) and the rotation number rot(L). But all the examples
we shall give behave in a particularly simple way under the type I
Reidemeister moves which we now formalize.

DEFINITION 1.13. A vertex model v = (θ,w,f,fί) has the type I
property if

{ Σa w±(a, b\x, a)(λ)eh(2π-λV° = δ(x,

COROLLARY 1.15. Ifu is a vertex model with the type I property then
ZV

L depends only on L up to isotopy.

(Often a model will not have the type I property but can be changed
into one with it simply by multiplying w+ by a constant factor and
w- by its inverse.)

Let us write tΐ\ and tr2 for the partial traces from End(F ® V) —•
EndF (e.g. if A{a ® x) = ΣA(a>b\x,y)(b ® y), then ΐτx(A)(x) =

Equation (1.14) is equivalent to

(1.14') tri(ϋ±(2π)) - L(-2π), tr2(R±(2π)) = L(2π)
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or

(1.14") tΓ!((L(2π) 0 l)Ab(O)) = id, tr2(Λ±(0)(l ® L(-2π))) = id.

We see that, in the notation of Turaev, Rfj =w(i, l\j, fc)(0) and /// =

e*/, fi = h/2π, when the set θ is the set {1,2,..., ή).

Examples of vertex models.

EXAMPLE 1.16. We begin with the example reported in a letter to
Kauffman. For n = 1,2,..., let Pn be the vertex model defined by
θ = {-/ι, -n + 2, . . . , n - 2, n}9 fa = a and

w+(a,b\x,y)(λ,h)

0 if {α, x} 7̂  {y, b} or a< b,

exp ί I j if a = b = x = yf

1 if α = b, x = y, a φ x,

2 sinh ί IJ exp(λ^(ft - α)) if <z > 6, α = y, b = x,

w-(a, b\x, y)(λ, h) = w+(x, y\a, b)(λ, -h).

Then (1.2)—(1.5) are satisfied. It is easy to show that if σ is given, the
term T = (Π^ exp(h(b -a))) exp(ft fL σ dθ) may be calculated as fol-
lows: replace any crossing with a> b, a = y,b = xby the "smoothed"
picture as in Fig. 1.17 (similarly for negative crossings).

FIGURE 1.17

In the resulting diagram Z/, σ is constant along connected compo-
nents and T = exp(Λ Σa=-naτGί(La)) where L'a is the subdiagram of
L1 consisting of those connected components for which σ = a.

The vertex models Pn can be multiplied by a factor so that they
have the type I property. Let P^n.h) denote the partition function
of this normalized model. One may show

(a) that P^Πyh) is a Laurent polynomial in ehl2 divisible by
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(b) that if L+, L_ and L o are link diagrams identical
except in the neighborhood of one crossing, where they are as in Fig.
1.18, then

exp ((/i + 1) | ) PL+(n, h) - exp ( - ί l ± ϋ * ) PL_(n, h)

Thus as n varies, the PL(n,h) define a family of specializations of
the two-variable invariant of [F+], sufficient to determine it (and thus
prove its existence).

FIGURE 1.18

EXAMPLE 1.19. Turaev's examples in [Tu] defining the Kauffman
polynomial satisfy our equations with the obvious choice of w±, / ,
q = ehl\

EXAMPLE 1.20. The quantum group formalism of [Ji], [Dr] sug-
gests that there is a vertex model invariant associated with any finite
dimensional representation of any complex simple Lie algebra. In-
deed, Example 1.18 corresponds to sln in its n dimensional identity
representation and Example 1.19 embraces the Bn, Cn and Dn series
in their fundamental representations. In support of this conjecture
we give another example, corresponding to the TV-dimensional irre-
ducible representation of slz The matrix R(0) can be deduced from
[Dr] and [Ji2]. These examples have apparently also been discovered
using braids by Akutsu and Wadati [AW] and Wenzl [W2] although it
is difficult to be absolutely sure, as only the first three cases are given
in [AW] and only an existence result occurs in [W2] (which also gives
many other invariants in support of the conjecture). Our models are
as follows. For each N = 2, 3,4,..., let X2n be the vertex model with

^ . N- 1 N-l Λ N-3 N- 1
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fa = a and w(a, b\x, y)(λ, h) defined by

w+(a, b\x, y){λ,h)

exp {§ [ax + by + k-^ + ί(a - b)]} TN

χk{h)
where k = a-biΐa + x = b + y and a > b,

0 otherwise

and w-{a, b\x, y)(λ, h) = w+(x, y\a, b)(λ, —h), where

(empty products are one).
I would like to thank M. Rosso for some help with W-. One sees im-

mediately that (20) and (22) of [Tu] are satisfied, with μa = exp(Aα),
va — -exp(/zα/2) and a1 — -a, so that (17) of [Tu], which is a ver-
sion of our (1.4), is satisfied. This also proves that the invariants of
this example are, up to powers of eh, invariants of unoriented links.
Equation (1.2) is obvious and equation (1.3) follows from direction
computation. Equation (1.5) follows from [Dr] and [Ji2].

Using the notation of [An], the identity Σ,β

a^{Q~β)a{z)aq
al{q)a =

zβ is easily proven by induction (or follows from the proof of (3.3.12)
of [An] as pointed out to the author by Andrews). It shows that w±
may be multiplied by powers of eh so that the normalized vertex model
has the type I property. The resulting link invariant is a Laurent
polynomial in ehl2. The case TV = 2 is the same as the case n — \
of Example 1.18, namely, the polynomial VL. W. Baxter has written
a program for calculating these invariants using braids. The method
is effective for N < 5 for braids on three strings and for TV < 4 for
braids on five strings.

EXAMPLE 1.21. This example was discovered by A. Lipson [Li]. It
has the feature that the Boltzmann weights are Λ,-independent. We
show how to deduce these weights from invariant theory, as pointed
out by R. Howe.

If E is n -dimensional Euclidean space with inner product ( ,), there
is a privileged element e of End(E®E) which is orthogonal projection
onto the one-dimensional subspace spanned by Σ vi®vi> where {VJ} is
an orthonormal basis. It follows immediately that βj^^i = (l/^ 2)^i ?

2 ) ^ i n End(£®E®E) where e\ = e\2, 2̂ = 2̂3 i n the
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notation of (1.5'). By the calculations of [Jo4], if we put R±(λ) =
(t±ι + l)e — 1 where 4cosh2(/z/2) = n2, t — eh, then the coefficients
of the matrix R give Boltzmann weights satisfying (1.3) and (1.5).
Explicitly we define the model with Θ = {1,2,... ,n}, fa = 0 and

w+(a,b\x,y)(λ,h)

0 if a £ {x, y} or x φ {a, b},

exp(—Λ/4) if a = y, x = b, aψb,

exp(λ/4) if a — x, y — b, aφb,

2 cosh(Λ/4) if a = x = y = b,

w-{a, b\x, y)(λ, h) = w+(a, b\x, y)(λ, -h).

By inspection the assignment of the Boltzmann weights at a crossing
is independent of the directions of the arrows. Thus (1.4) is the same
as (1.3). The type I property is also satisfied after normalization. This
example obviously calculates VL(eh).

EXAMPLE 1.22. Another unoriented example with no angle depen-
dence due to Lipson is defined in [Li], [LM]. It is trivial on knots
and determined in general by linking numbers of sublinks with their
complements.

We see that even vertex models with no angle dependence can give
highly non-trivial information. It would be nice to know if such mod-
els are also sufficient to determine the invariants of Examples 1.18,
1.19 and 1.20.

We add the final comment that (1.2)—(1.5) do not mix {a, b} and
{x, y} so one should be able to define invariants that treat the different
components of a link differently.

2. Spin models, the Potts model, IRF models. We use the termi-
nology "spin model" to denote a statistical mechanical model, such
as the Potts model, defined on a graph with vertices {v} and edges
{e}. The vertices may be in a (finite) set θ of "spins" and a state is
a function σ: {v} —> θ . The model is defined by an energy function
E: θ x θ —• R so that the energy of an edge joining vertices V\ and v2 is
E{σ{v\), σ(v2)) = E(a, b). As before write w(a, b) = cxp(-βE(a, b)).
The partition function is then

Although it is possible to develop a more precise theory for oriented
links, all our examples will be unoriented, so we now outline a theory,
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analogous to that of §1, which allows us to construct invariants of
unoriented links as partition functions of spin models.

DEFINITION 2.1. A spin modelS = {θ, w±} will be a set of n "spins"
θ and functions w±(a, b)9 a,b e θ such that (for all a,b,c e θ )

(2.2) w±(a,b) = w±(b,a),

(2.3) w+(a,b)w-(a,b) = 1,

(2.4) ^ W-{a,x)w+{x, c) = nδ(a,c),
xeθ

(2.5) ^2 w+(a> x)w+(b, x)w-(c, x) = y/nw+(a, b)w-(b, c)w-(c, a).
xeθ

(Equation (2.5) is known as the "star-triangle relation" and occurs
essentially in [On].)

DEFINITION 2.6. Let S = (θ, w±) be a spin model and L be an un-
oriented link diagram. We define the partition function ZS

L as follows.
First we shade the regions of L black and white so that adjacent

regions have different colours and the unbounded region is white as
in Figure 2.7:

ψ
FIGURE 2.7

We then form the planar graph WL, with signed edges, with V ver-
tices which are the black regions of L and whose edges are the crossings
of L. One may distinguish two types of crossings of L, equivalently,
edges of 8χ, according to a convention established by Fig. 2.9.

A state σ will be a function from the vertices of ^ to θ , and given
a state σ and an edge e between vertices vx and v2 with sign + or - ,
we will write w±(a, b) for w±(σ(υ\), σfa)). Then we set

states edges

where as usual an empty product is one. This ends Definition 2.6.
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THEOREM 2.8. If S is a spin model and L\ and L2 are unoriented
connected link diagrams then ZS

L = Z£ if L\ and L2 are regularly
isotopic.

Proof. Clearly Zs does not change under planar isotopy. Invariance
under type II Reidemeister moves is guaranteed by (2.3) and (2.4)
corresponding to the type II moves

Note that in the second case the number of shaded regions changes
which necessitates a normalization of the form (l/y/n)v. The number
of shaded regions may be assumed to change by two in this move since
the L\ and L2 are connected.

There are two kinds of type III moves to be considered as shown in
Fig. 2.9.

FIGURE 2.9

Invariance under the first kind is assured by (2.5). Invariance under
the second kind is given by the following:

(2.10) wΛa> x)w-(b, x)w-{c, x)
xeθ

= y/nw+(a, b)w-(b, c)w+(c, a).

Now consider an ft-dimensional vector space V with basis θ and on
V ® V define the operators X and Δ by X(a ®b) = Σx w+(a, b)x®b
and Δ(a <8>b) = W-(a, b)a ® b. Then (2.5) is the same as

(2.5') XAX = V
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and by (2.2)-(2.4), (2.10) is the same as

(2.10') XAX~ι = - L r ' X Δ . D

Perhaps surprisingly, all spin models have the type I property of
(1.14) in the following sense. (Note that type I Reidemeister moves
are positive or negative according to the following convention:

PROPOSITION 2.11. Let (S, θ ) be a spin model Then there is a con-
stant A, called the modulus ofS such that ifU is obtained from L by
adding a loop via a ±1 type I Reidemeister move then ZL, = AτlZL.

Proof. Putting b = c in (2.5) and using (2.3) we have Σxeβ w+(a>x)
= y/ήw-(bf b) for all a, b. If we set

A = w-(b, b) = (1/Λ/Λ)

xeθ

then a careful analysis of the shading possibilities proves the re-
sult. D

Thus if L is an oriented link with associated unoriented link L, and
S is a spin system of modulus A, we may define the quantity

(2.12) Z\ = AΊ

PROPOSITION 2.13. Z^ is an invariant of oriented links.

Proof. Just note that both possible orientations give the sign +1 to
the crossing involved in a positive type I Reidemeister move. D

Note that the reasoning of Theorem 2.8 shows that we would have
obtained a link invariant ZS

L for the spin model S by agreeing to colour
the unbounded region black. The next result shows that nothing new
happens. Note that the result is not entirely trivial as the two graphs
corresponding to the different colourings may look very different.
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PROPOSITION 2.14 {Duality). IfS is a spin model and L is an ori-
ented link projection, then ZS

L — ZS

L.

Proof. The sequence of Reidemeister moves of Fig. 2.15 converts
L into V such that the white-unbounded colouring of Lr is the same
as the black-unbounded colouring of L. D

link
—

link

FIGURE 2.15

Note that equations (2.2)-(2.5) impose many restrictions
w±(a, b). The following is quite useful.

on

PROPOSITION 2.16. For each z let kz be the number of ordered pairs
(a} b) for which w+{a, b) = z. Then kz is a multiple ofn {and X)z kz =
n2).

Proof. By (2.13') the matrices Δ and 1/y/nX are conjugate, but Δ
is diagonal with eigenvalues W-(a, b) and X is of the form π <g> id on
V ® V so that the multiplicities of all of its eigenvalues are multiples
of n. D

EXAMPLES. With Proposition 2.16 it is easy to find all solutions
(2.2)-(2.5) when n = 2 or 3. We leave it to the reader to check that
one obtains the invariants VL(i), VL(eiπ/3) and nothing more. When
n = 4 one also obtains the invariant of (1.22) and some others of no
great significance. We shall be especially interested in the following
two examples for both of which the set Θ can be given the structure
of a group so that w+(a,b) depends only on ab~ι.

EXAMPLE 2.17 (The Potts model). In statistical mechanics the Potts
model is the spin model for which the Boltzmann weights depend only
on whether the two atoms are in the same state or not. Correct choice
of the parameters leads, for each n, to the following choice of w± (by
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(2.3) it suffices to give w+):

J l ifa = b,

{ -Γι otherwise,

where 2 + t + t~ι = n. It is easy to check that these Boltzmann weights
satisfy (2.2)-(2.6). One may also check directly that the invariant of
unoriented links is an unoriented version of VL(t).

EXAMPLE 2.18 (Metaplectic invariants) [GJ]. If the set θ is a group
G, we may impose the condition that w+(a, b) depend only on ab~ι,
say w+(a,b) = f{ab~x). Then (2.2), (2.4) and (2.5) become

(a) f(g) = f(g~ι),
(b) ^ χ ι

{2Λ9) * (c) f{χy)f{χ)-χf{y)-χ

If G = ΊJ/ΠΊJ we see that the Boltzmann weights of Example 2.17 sat-
isfy (2.19). Another example, with G = Z/nZ, n odd, which coincides
with Example 2.17 when n = 3 but differs for n > 3, was discovered
in [GJ]. The function f(a) is a Gaussian: f(a) = K eπia2ln where
K~2 = Σaez/nze2πia2/n' τ h e k n o t invariant was shown in [GJ] to be
determined by a Seifert matrix and to be essentially given by the rank
of the homology of the twofold branched cover of S3, branched over
the knot, with mod n coefficients.

A lot of "classical" knot invariants were obtained in [GJ]. It seems
likely that they may all be accessible to the partition function method
using slightly more elaborate spin models. Thus the formalism is able
to embrace both the "classical" (Seifert matrix) and "new" (VL,PL,

Kauffman polynomial) invariants as well.
I would like to thank D. Goldschmidt and T. Ziman for many stim-

ulating discussions about spin models.
The spin models present many approachable problems. In general

they seem more susceptible to brute force calculations than other mod-
els because the whole data is just an n x n matrix. It would be quite
feasible to determine all models for n = 5,6. It would also be nice
to discover a machine, analogous to the quantum group machine, for
creating solutions to (2.2)-(2.5).

IRF Models. IRF (interaction round a face) models are similar to
spin models in that a state is defined by a function σ: vertices of a
lattice —• θ . They differ in that the energy of a state is the sum of
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the energies of each face, the energy of a given face being determined
by the configuration of states on the vertices of its boundary. Thus if
the lattice is a square lattice in two dimensions one is given a func-
tion w(a, b, c, d), a, b,c,d e Θ, and the partition function for a finite
rectangular sublattice will be Σ s t a t e s Πfaces^( α ^> c ^) w here a, Z>, c,
d are taken in some fixed order around each face. IRF models as such
do not generalize conveniently to an arbitrary graph, but if L is an
oriented link projection, its underlying graph is 4-valent so all faces
of the planar dual are quadrilaterals and we may proceed in a manner
analogous to spin models.

DEFINITION 2.19. An IRF model / = {Θ, w} will be a set on n
"spins" Θ and functions w±(a,b,c,d) with a,b,c,d e Θ such that
(for all a, b, c, d,e,fe Θ)

(2.20)
xeθ

(2.21) ] Γ w+(a, b, x, d)w-(x, b, e, d) = δa,e,

(2.22) ^2 w+{d, a, b, x)w-(b, e, d, x) = δae,
X

(2.23) Σ w+(a> b> x> f)w+(P> c, d, x)w+{x, d, e, f)
X

= Σ w+(b, c, x, a)w+(a, x, ey f)w+(x, c, d, e).

Although we shall not construct any IRF models not derived from
spin models, we define the link invariants associated with them.

DEFINITION 2.24. Let / = {θ, w±} be an IRF model and L an
oriented link projection. We define the partition function as

where %* is the planar dual of the graph subjacent to L, with signed
faces which are + or — according to the sign of the unique crossing
of L which they contain. A state σ is a function from the vertices
of βf to Θ. For a given face in the product we choose w±(a, b, c, d)
according to the sign of the face and the configuration of spins at its
four corners, ordered according to Fig. 2.25.

This ends Definition 2.24.
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FIGURE 2.25

FIGURE 2.26

An example of the passage from L to β
The proof of the next result is trivial.

is given in Fig. 2.26.

THEOREM 2.27. If I is an IRF model and L\ and L2 ίsotopic link
models then ZJ

L[ = Z1

LΊ.

IRF models have also been considered from the braid point of view
by Akutsu and Wadati [AW2]. Note that we could have dropped (2.20)
if we had only been interested in regular isotopy.

3. Braids and transfer matrices. The role of braid group represen-
tations in knot theory is closely analogous to that of transfer matrices
in statistical mechanics. Any oriented link can be represented as a
closed braid, which can thus be thought of as a particularly ordered
way to represent a link. To each of the partition function invariants
presented above there is a braid group representation such that the
trace of the braid is equal to the partition function. (In the case of
vertex models with non-trivial angle dependence the trace must be
suitably weighted.) In statistical mechanics the system is typically on
a lattice, so is already well ordered. The technique of transfer matrices
associates to each row of the lattice a (large) matrix, the trace of some
power of which is the partition function for a (finite) square lattice
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with periodic boundary conditions. The row-to-row transfer matrix
can often be written as a product of matrices corresponding to the
atoms in that row, the matrix entries being the Boltzmann weights.
These transfer matrices associated to the atoms correspond to the ma-
trices representing the usual generators of the braid group.

The plat closure of a braid (see [Bi]) can sometimes be used. This
corresponds to using different boundary conditions (non-periodic) on
the square lattice (see [Jo3]).

We now outline the braid group representations in the three cases. It
will be apparent how to construct the transfer matrices corresponding
to atoms in the statistical mechanics concept. They can be found in
[Ba]. In all cases the Yang Baxter equation or star triangle equation
is a sufficient condition which ensures commuting row-to-row transfer
matrices for different values of the "spectral parameter". We have
been unable to use the spectral parameter in the spin and IRF cases.
For the vertex models it becomes our "angle".

3.1. Vertex models. With notation as in § 1, and V as usual, a vector
space with basis Θ, we represent the braid group B^ on 0 ^ V using
the R(0) matrix which acts on V <g> V by

R(0)(a <g> x) = Σ wΛa> b\x, y)y ® b.
b.y

FIGURE 3.2
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We define Rt on ® * V by

® vk))

Then R~ι is obtained by applying the same prescription to R~ι(0).
Thus we get a representation of Bk by sending σz to Λ/. We define
the linear functional φ on End(0^ V) by 0(^4) = trace(Zλ4) where
D = L(2π) Θ L(2π) ® ® L(2π). If α is a braid in 5^ with closure
a then we may arrange the braid picture of a to look as in Fig. 3.2.

The angle ε may be made arbitrarily small so that the only angle
contribution to the partition function is "around the back" of the
braid. We see that in the limit, ε —> 0, we have φ(a) = Z ά (see
5.2 of [Tu]). This is in fact how the partition function approach to PL
was discovered, in an attempt to reverse the procedure just outlined.

3.3. Spin models. Given the Boltzmann weights w±(a,b) and a
vector space V with basis θ we consider three ways to form elements
of End(F ® V), already used in Theorem 2.11. Let

Δ(α ® b) = w-(a, b)a 0 b,

X\{a®b) = —=

Obviously, X\ and Xι commute and (2.5) implies Δ ^ Δ = X\AX\
and ΔZ2Δ = X2ΔX2. Moreover Δ" 1, X~ι and X^x exist by (2.3) and
(2.4). Thus we may define a representation of B2k on ®f=1 V by
sending σ2i-\ to Δ/, which is Δ on the /th tensor factor, tensored with
the identity on the others, and σ2i to Xι where

Xi{u\ ®u2® M3) = U\ ® X(u2) 0 W3 where

/-1 k

W i G 0 K w 2 ^ K u3e 0 F and X i = Z ® i d .
7=1 y=A:+i

We leave it to the reader to contemplate Fig. 3.4 and see that, for a
braid a e B2k, the trace of the matrix representing a on ®^F is the
same (up to normalization) as the partition function invariant of ά.
Notice how the matrix Δ, using W-, corresponds to horizontal bonds,
whereas X, corresponding to vertical ones, uses w+. Note also that
duality occurs in the braid picture as invariance of the trace under a
shift "half a step" to the right.
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FIGURE 3.4

3.5. IRF models. Given the Boltzmann weights w±(a, b, c, d) of an
IRF model and V with basis Θ, we define an operator R on V ® V ® F

U(6 ® α ® </) = ] P w+(a, b, c, d)b ®c®d.

Then by (2.21) R~ι exists and is given by the same formula with w+
replacedbyw-. If we define i?i andi? 2 on V®V®V®Vby R{ = i?®id
and R2 by idΘi? then (2.23) is the same as R{R2Ri = R2R\R2- So we
may define representations of 2?̂  on ®k+ι V in what should by now be
an obvious manner, shifting R to the right by one for each succeeding
generator. We leave it to the reader to contemplate Fig. 3.4, without
the shading and with x's in all the regions, to establish that the trace
of a braid a in this representation is the same as the partition function
invariant of ά.

We end §3 by pointing out a puzzling feature common to all the
models, related to Markov's theorem [Ma]. It is that, from the braid
point of view, all that is required for a link invariant is invariance
under the Markov moves (see [Jl] or [Tu]). This is guaranteed by
the equations for the model expressing invariance under the types I
and III Reidemeister moves. The existence of an inverse matrix is
also required, invoking one kind of type II equation ((1.3) or (2.21))
but not the other. Thus one may find R matrices defining invariants
via the braid representation picture, but not defining models as above.
Indeed here is an example. Let X and Y be defined on the vector space
V with basis vλ,v2,...,vn by Xvk = ωkvk,

y T h e n d e f i n i n g R
Yvk = v{k+ι)moάn (ω =

k2χk ® γ k
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it is easy to check that all the conditions for a vertex model except
(1.4) are satisfied (with fa = 0). In fact, the trace of the braid group
representation calculates the invariants of [GJ] outlined in (2.18).

On the other hand, if we adopt the regular isotopy point of view we
may forget about type I Reidemeister moves and one could imagine
models for which the braid/trace picture did not behave in any simple
way under the type II Markov moves. The situation on these points
seems unclear at this juncture.

4. Equivalences. The author would like to thank H. Au-Yang and J.
Perk for pointing out (in statistical mechanics) the existence for every
spin model of an equivalent IRF model, and for every IRF model of
an equivalent vertex model. These equivalences persist in the knot
theory context but are more subtle because of positive and negative
crossings. It is also true that, in statistical mechanics, to every vertex
model on a square lattice there is an equivalent IRF model (see [PW])
but we have been unable to make such an equivalence in the knot
theory version. For these reasons we state our equivalences as formal
results.

PROPOSITION 4.1. Let S = {θ,w±} be a proper spin model Then
there is an IRF model I = {Θ,w±} such that Z£ = (Zf) 2 for all
oriented connected link diagrams L, where we forget the orientation of
LforZs

L.

Proof. Let θ have n elements. Set

w±{a,b,c,d) = (l/y/ή)w±(a,c)wΨ(b,d).

It is easy to check (2.20) —> (2.23). Note that for a given link diagram
L, the set of vertices £f of the graph βf is the union of the set of
vertices for Ψ and its dual #\ The faces of %? are quadrilaterals whose
diagonals are the edges of <% and #\ So to each state of %? there are
unique states of *£ and #\ Thus by (2.14) we have

Y[wε,{b,d)
edgesstates

Uwε(a,c
edges

Vof W

where ε, ef are + and - . Pairing up the products according to the
faces of ^ , the proof is completed by observing that the choice of ε
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FIGURE 4.2

according to Fig. 2.10 corresponds to our definition of w±(a, b, c, d)9

regardless of the orientation at a crossing. See Figures 4.2 and 2.25.
Note also that since L is connected, #(faces of L)=#(faces

PROPOSITION 4.3. Let I — {Θ, w±} be an IRF model. Then there
exists a vertex model v = { θ x θ , ώ ± , / } (with f = 0) for which
nZ!

L = ZV

L for any oriented link. Moreover υ has the type I property.

Proof. Define

ϋ*±{{d,a),{b,c)\tf,b'){c>,d'))

w±(a, b, c, d) if (α, b9 c, d) = (a', V, c', d'),

0 otherwise.

It is easily checked that this defines a vertex model and

w±(a,b\x,J)= Σ Y[w±(a>b,c,d) = Z[. α
states crossings states faces
ofυ o f L of/ f r

Thus up to a choice of square root, vertex models are more general
than spin models and IRF models. We would add, however, that this
should not be taken as a reason to ignore the spin and IRF models
as the above equivalences are a little trivial and the natural context
for the spin model is not the vertex model. For instance, the number
of sites per edge is the square of the number of spins per site, which
immediately makes the vertex model approach rather cumbersome.

For particular models there may be non-trivial equivalences between
spin and vertex models. For instance, the vertex model defining VL
(n = 1 in Example 1.16) is equivalent to the collection of all Potts
models (Example 2.17) by what is known to physicists as Temperley-
Lieb equivalence. This was discovered in [TL] using the transfer ma-
trix picture but a direct proof for arbitrary planar graphs is given in
[Ba]. The idea is to represent the two states per edge of the vertex
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model by arrows and given a state of the model, to eliminate all cross-
ings according to the arrow configuration at the crossing. A clever
counting argument shows that one obtains the partition function for
the Potts model. The idea of eliminating the crossing according to
the configuration around a vertex gives precisely the states model of
Kauffman for VL (see [Kl], [K2]). Thus the Kauίfman states model is
an intermediate step in the proof of Temperley-Lieb equivalence.
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