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ELEMENTS OF FINITE ORDER IN V(ZA,)

P. J. ALLEN AND C. HoBBY

The conjugacy classes for all elements of finite order in the unit
group V' (ZA,) are determined. As an application, it is shown that all
normal complements to A4 in V' (ZA4,) must be torsion free

Let V(ZG) denote the group of units of augmentation 1 in the in-
tegral group ring ZG. There is considerable interest in determining
whether the group G has a torsion free normal complement in V' (ZG).
The authors showed in [2] that S3; has two types of normal com-
plements in V' (ZS3), one with torsion and one without. They have
also shown (see [1]) that 4, has a torsion free normal complement
in V(ZA,) and that S; has a normal complement in V' (ZS;) which
includes torsion elements (see [3]). Two questions arise naturally:

1. Can A, also have a normal complement in V' (ZA4,) which in-
cludes torsion?

2. Can S also have a torsion free normal complement in V' (ZS;)?

This paper gives a negative answer to Question 1 by completing the
task of finding all of the conjugate classes of elements of finite or-
der in V' (Z A4) and then showing that a subgroup containing any such
class must also contain an element of order 2 in A4. Earlier work has
shown that the torsion elements of V' (ZA,) are of order 2 or 3 and
that all elements of order 2 are conjugate {1]. Sekiguchi [4] showed
that there are four conjugate classes of subgroups of V' (ZA44) which
are isomorphic to A4. It follows from his work that there are at least
eight conjugate classes of elements of order 3; these classes include
all of the elements of order 3 which lie in subgroups isomorphic to
A4. Our Theorem 1 shows that there are exactly four additional con-
jugate classes of elements of order 3 which do not lie in any subgroup
isomorphic to A4. Theorem 2 gives the answer to Question 1.

The results of [1] characterize V' (ZA,4) as an explicit subgroup of
SL(3,Z) and thus permit us to utilize information about SL(3, Z).
The characterization relies on the following definition: If X = [x;;] €
SL(3, Z), then the pseudotraces ty, t,, and t, are given by t5 = x;; +
X232 + X33, 1] = X12 + X23 + X31, and £, = X3 + X2; + X33. Then we can
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think of 44 as generated by

-1 0 O 010
A= 0 -1 0}, and B=|0 0 1
0 0 1 1 00

and of V(ZA,) as {X € SL(3, Z)|X satisfies conditions (1) and (2)}
where

condition (1): X = B' (mod 2) for some i
and

condition (2): two of the pseudotraces ¢; are 0 modulo 4.

We begin by finding the centralizer of B in the ring M3(Q) of all
3 x 3 rational matrices.

LEMMA 1. Let X € M3(Q). Then XB = BX if and only if X =
S r;B' with r; € Q. Moreover, if X € SL(3, Z), then

(i) XB = BX (mod 2) if and only if X = B' (mod 2) and

(ii) XB = BX if and only if X = B'.

Proof. If X = Y_r;B’, then it is clear that XB = BX. On the other
hand, an inspection of the entries in the matrices XB and BX will
show that XB = BX implies that X = }_r;B’ for some r; € Q. The
remainder of the lemma follows from the fact that the group ring R(B)
has only trivial units if R is the ring of integers modulo 2 or if R = Z.

Let I, and 1, denote, respectively, the subgroups of SL(3, Z) con-
sisting of all matrices which are the identity modulo 2 and 4. It is
clear that I, is contained in V' (ZA4) and that (B)I, is the subgroup
consisting of all matrices which satisfy condition (1).

LEMMA 2. V(ZA,) is a normal subgroup of (B)I,. The factor group
is the elementary group of order 4 with coset representatives Ry = I,

1 20 1 0 2
Ri={01 0]}, R,={0 10
0 01 0 01
and R3 = R1R2.

Proof. If M € I, then one of the MR; must belong to V' (ZA,) since
multiplying M on the right by R; or R, has the effect, modulo 4,
of adding 2 to ¢, or #,. Thus precisely one of the MR; will satisfy
condition (2). Since B € V(ZA,) it follows that the R; are a full set
of coset representatives of V' (ZA4) in (B)I,. The square of each of



ELEMENTS OF FINITE ORDER IN V' (ZAy) 3

these representatives is in I; and thus in V' (ZAy4). A direct calculation
shows that BR' and B® are in V' (ZA4), thus the normality of V' (ZAy)
follows from the fact that I, is abelian modulo the subgroup I, of
V(ZAy).

The next lemma is well known. In fact, Tahara [5] describes all of
the conjugate classes of finite subgroups of SL(3, Z).

LEMMA 3. SL(3, Z) contains exactly two conjugate classes of ele-
ments of order 3. One of these classes contains B. The other one

contains
1 0 O
W=|[(0 0 -1}{.
01 -1

In SL(3, Z), B is conjugate to B2, but this cannot happen in V' (ZA4,),
or even in (B)I,, since conjugating B by an element in (B)I, produces
an element in Bl,. We shall restrict our attention to the conjugate
classes in V' (ZA,4) of elements congruent to B modulo 2; the squares
of the elements in each class will be a conjugate class of elements
congruent to B2 modulo 2.

Lemmas 1 and 2 yield a complete description of all of the conjugate
classes in V' (ZA,4) of elements which are conjugate in B in SL(3, Z)
and are congruent to B modulo 2. As we will see later, additional
classes arise from conjugates of W.

LEMMA 4. Conjugating B by the four coset representatives R; of
Lemma 2 produces elements of four conjugate classes in V(ZA,). Any
conjugate of B in SL(3, Z) which is congruent to B modulo 2 and be-
longs to V(Z Ay) will lie in one of these classes.

Proof. Suppose that BR: = BRM for some M € V(ZAs). Then
R;MR;! commutes with B so, by Lemma 1,

R;MR;! € (B).

It follows from the normality of V' (ZA,) that R;R;! € V(ZA,), thus
R; = R;. Consequently, the BR lie in distinct conjugate classes of
V(ZAs).

Next, suppose that X = B (mod 2), that X € V(ZA,), and that
X = BM for some M € SL(3,Z). Then B = BM (mod 2) so by
Lemma 1, M = B’ (mod 2) for some i. It follows from Lemma 2 that
M = R;N for some j and some N € V(ZA4). Thus X is conjugate in
V(ZAy) to BR,
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There are elements of order 3 in V' (ZA4) which are congruent to
B modulo 2 and conjugate to W in SL(3, Z). (Because of Lemma 3,
such elements cannot be conjugate to any of the BR:) In fact, if

1 1 1
T = 011
-1 0 1
then

0 1 2 0 5 8
wT=10 -2 -3 and WRi=|0 -2 -3
1 2 2 1 4 2

are in V' (ZA4) and are congruent to B modulo 2. We shall show that
these two elements lie in different conjugate classes in V' (ZA44) and
that every element of V' (ZA4,4) which is congruent to B modulo 2, and
conjugate to W in SL(3, Z), is conjugate in V' (ZA,) to one of them.

LeMMA 5. WT and WTR: are not conjugate in V(Z Ay).

Proof. We begin by observing that if M € V(ZA,) then conditions
(1) and (2) imply that the sum of the entries in M must be 3 modulo
4. By condition (1), the entries on one pseudotrace are 1 + ey, 1 + e3,
1 + e3 where the e; are even, and all other entries of M are even.
Consequently, 1 = |[M|=1+e; +e; +e3 (mod 4), so the pseudotrace
with odd entries is 3 modulo 4 and it follows from condition (2) that
the sum of the entries of M is 3 modulo 4.

Now suppose that W = WTR: for some M € V(ZA,). Let

1 00
P={01 2
2 21

and observe that B = W7, so BPM = BPRi, By Lemma 1, if X =
PMR;'P~!, then
X =sI +tB + uB?

for some rational numbers s, ¢, and u. Each of the column sums of X
is s+t + u; thus, if we start to evaluate | X | by adding the first two rows
to the third, we see that |X| = (s + ¢ + u)(s? + 2 + u? — st — su — tu).
Next, note that X* = MRI‘1 is an integer matrix of determinant 1
which also has column sums s + ¢ + u since I, B, and (B2)F have
column sums of 1. Therefore, s + ¢ + u is an integer. If we start to
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evaluate |X”| by adding the first two rows to the third, then factoring
out s + ¢ + u, we see that

1=|XP|=(s+t+un

for some integer n. It is now clear from the form of | X| that s+ ¢+ u
and s2 + t2 4+ u? — st — su — tu are both 1 or both —1. If

S+ +ul=st+su+tu—1
then st + su + tu > 1. Hence
l=(s+t+u)l=s>+2+u?+2(st +su+tu)>2,

a contradiction. Therefore s+t +u = 1.

We now know that X* = MR;! where the column sums of X7 are
each 1. Multiplying X” on the right by R, adds twice the first column
to the second, thus the column sums of M are, respectively, 1, 3, and
1. But then the sum of the entries of A/ is 1 modulo 4, a contradiction.

We found that the BR: come from four different classes. One might
expect that the WTRi would come from four new classes. Lemma 5
has shown that W7 and WTR: do come from different classes. These
turn out to be the only new classes.

LEMMA 6. Each WTR: s conjugate in V(ZAy) either to WT or to
Wk,

Proof. It suffices to show that WTRiR: js WTM for some M in
V(ZA,). Tt will follow that WTR and WR: are in the same class,
since R3 € V(ZA4). The matrix

1 4 4
M=|-2 -7 -6
2 6 5

has the required properties.

The next lemma shows that the 6 classes found in Lemmas 4 and
5 account for all of the elements of order 3 in V(ZA44) which are
congruent to B modulo 2.

LEMMA 7. Suppose that X € V(ZA,), that X = B (mod 2), and that
X = WM for some M € SL(3,Z). Then X is conjugate in V(ZA,) to
one of WT and WTR:,
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Proof. By hypothesis, WM = MB (mod 2). If M = [m,;], then a
comparison of the entries of WM and MB shows that

mi my mi
M= myy myy My + My (mod 2)
my + My My myo

Since |M| = 1, m;; must be odd, and not both of m,;, m,, can be
even. Thus, modulo 2, M is one of

1 11 1 11 1 11
01 1], 1 01}, 1 1 0]).
1 01 110 011

We shall need the matrix P such that B® = W7 (see Lemma 5), the

matrix
-1 1 0
U= -1 "0 -1
-1 -1 1

which can be seen to have the property that BY = W, and the matrix

0 0 -1
K=sI+tWT +uWwhHT = | -1 0o 2
0o -1 =2
where s =t =-2/3, u=1/3.
We now let

| 0 -1
G=K'P'UM = ( -1 1 1) M.

1 -1 0
Then G € SL(3, Z) and it follows from our information about the form
of M modulo 2 that G € (B)I,. Thus, By Lemma 2, GR; € V(ZAy)
for some .

Note that
UM = PKG = (PKP~")PG

where PKP~! commutes with powers of B since it is a sum of powers
of B. Therefore,

X:szBUMzBszWTG,

Thus, X® = WT(CGR) is a conjugate of W7 in V(ZA4). It follows
from Lemmas 2 and 6 that X is conjugate in V' (ZA,) either to W7 or
to WTR:,

THEOREM 1. V(ZAy) contains precisely 12 conjugacy classes of ele-
ments of order 3. The elements BR, i = 0,1, 2,3, together with WT
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and WTR\ gre representatives of the 6 conjugacy classes that are con-
gruent to B modulo 2; their squares are representatives of the other 6
classes.

Proof. The theorem is immediate in view of Lemmas 3-7. As we
noted after stating Lemma 3, it suffices to find the classes for elements
congruent to B modulo 2; there are then corresponding classes for
elements congruent to B2 modulo 2. Lemma 3 narrowed the search
to conjugates of B and W in SL(3, Z). Lemma 4 described the classes
arising from conjugates of B. Lemma 5 exhibited two distinct classes
arising from conjugates of W; Lemma 6 showed that these were the
only new classes generated from W7 by the R;; Lemma 7 showed that
any class arising from a conjugate of W has to be one produced from
WT by an R;.

The authors have shown (see [1])

LEMMA 8. All elements of order 2 in V(ZA,) are conjugate in
V(ZAy).

Theorem 1 and Lemma 8 account for all the conjugacy classes of
elements of finite order in the unit group V' (ZA4,). If N is any normal
subgroup of V' (ZA,) containing an element of order 2, then it follows
from Lemma 8 that 4 € N. Thus, a normal complement to 44 in
V(ZA4) cannot contain an element of order 2. We shall now show
that any normal subgroup containing an element of order 3 must also
contain an element of order 2 and thus establish

THEOREM 2. All normal complements to Ay in V(ZA,) are torsion
free.

Proof. Let N be a normal subgroup of V' (ZA,) containing an ele-
ment of order 3. In view of Theorem 1, it follows that N contains
one of the BR or WT or WTR:,

Case 1. Suppose BR: € N. A routine calculation shows that AR e
V(ZA4) for each i. In A4, the commutator (4, B) is an element of
order 2; therefore (A4, B)® is an element of order 2 which lies in N.

Case 2. Suppose that N contains W7 or WTR:,
Let

-1 0 -2 1 2 0
M, = 2 -1 2 and M,=| -2 -3 0],
-2 0 -3 2 2 1

and note that the M, € V(ZA,).
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Let
-1 00
X =wTwT™ ™, _ 0 -1 0
8 8 1

Then X is an element of order 2 in V(ZA4) which will lie in N if
N contains WT. Also, since R, normalizes V' (ZA,), any normal sub-
group containing WX must contain WTRiH: where H; = M and
thus will contain X%,

REMARK. The proof for Case 1 amounted to showing that any
normal subgroup containing a BX' must contain a conjugate of Aj.
As Sekiguchi showed in [4], V' (ZA4) contains just 4 conjugate classes
of groups isomorphic to 44. Our elements W7 and WTR: are not
contained in subgroups of V' (ZA4) which are isomorphic to A4. For
example, WT = BP but A” ¢ V(ZA,) so (BF, AP) is isomorphic to
A4 but it is not contained in V(ZA,).

REFERENCES

[1] P.J. Allen and C. Hobby, A characterization of units in Z[A,], J. Algebra, 66
(1980), 534-543.

[21 —_, A note on the unit group of ZSs3, Proc. Amer. Math. Soc., 99 (1987),
[3] e , A characterization of units in ZS,;, Comm. Algebra, 16 (1988), 1479-
[4] II(S.OSSékiguchi, On the units of integral group rings, Tokyo J. Math., 3 (1980),
[5] Ii(::;%lg%a, On the finite subgroups of GL(3, Z), Nagoya Math. J., 41 (1971),

Received February 28, 1987.

UNIVERSITY OF ALABAMA
TuscAaLoOsA, AL 35487



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

V. S. VARADARAJAN R. FINN RoBION KIRBY

(Managing Editor) Stanford University University of California
University of California Stanford, CA 94305 Berkeley, CA 94720
Los Angeles, CA 90024 HERMANN FLASCHKA C. C. MOORE
HERBERT CLEMENS University of Arizona University of California
University of Utah Tucson, AZ 85721 Berkeley, CA 94720
Salt Lake City, UT 84112 VAuGHAN F. R. JONEs HAROLD STARK
THOMAS ENRIGHT University of California University of California, San Diego
University of California, San Diego Berkeley, CA 94720 La Jolla, CA 92093

La Jolla, CA 92093

STEVEN KERCKHOFF

Stanford University
Stanford, CA 94305

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WoLF K. YOsHIDA

(1906-1982)

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA

MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO

NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY

UNIVERSITY OF OREGON

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY

UNIVERSITY OF HAWAII

UNIVERSITY OF TOKYO

UNIVERSITY OF UTAH

WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON



Pacific Journal of Mathematics

Vol. 138, No. 1 March, 1989

Paul J. Allen, Jr. and Charles Ray Hobby, Elements of finite order in

V(ZAL) oo 1
Carlo Cecchini and Dénes Petz, State extensions and a Radon-Nikodym

theorem for conditional expectations on von Neumann algebras ........... 9
Anne Duval and Claudine Mitschi, Matrices de Stokes et groupe de Galois

des équations hypergéométriques confluentes généralisées .............. 25
Cornelius Greither and David Kent Harrison, On constructions similar to

the Burnside ring for commutative rings and profinite groups ............ 57
Thomas Eric Hall and Katherine Gay Johnston, The lattice of

pseudovarieties Of INVErse SEMIZIOUPS ..« o.vvvreenteentenneenneennennn. 73
Osamu Hatori, Range transformations on a Banach function algebra. IT ...... 89
C. N. Linden, Integral logarithmic means for regular functions ............. 119
Sibe Mardesic and Leonard Rubin, Approximate inverse systems of

compacta and covering dimension ................oiiiiiiiiraraanan. 129
Maria Helena Noronha, Conformally flat immersions and flatness of the

normal CONNECLION .. ....ouutt it 145
Kayoko Shikishima-Tsuji, Galois theory of differential fields of positive

CharaCteriStiC ... .. u ettt 151

Justin R. Smith, Topological realizations of chain complexes. II. The
rational case



http://dx.doi.org/10.2140/pjm.1989.138.9
http://dx.doi.org/10.2140/pjm.1989.138.9
http://dx.doi.org/10.2140/pjm.1989.138.25
http://dx.doi.org/10.2140/pjm.1989.138.25
http://dx.doi.org/10.2140/pjm.1989.138.57
http://dx.doi.org/10.2140/pjm.1989.138.57
http://dx.doi.org/10.2140/pjm.1989.138.73
http://dx.doi.org/10.2140/pjm.1989.138.73
http://dx.doi.org/10.2140/pjm.1989.138.89
http://dx.doi.org/10.2140/pjm.1989.138.119
http://dx.doi.org/10.2140/pjm.1989.138.129
http://dx.doi.org/10.2140/pjm.1989.138.129
http://dx.doi.org/10.2140/pjm.1989.138.145
http://dx.doi.org/10.2140/pjm.1989.138.145
http://dx.doi.org/10.2140/pjm.1989.138.151
http://dx.doi.org/10.2140/pjm.1989.138.151
http://dx.doi.org/10.2140/pjm.1989.138.169
http://dx.doi.org/10.2140/pjm.1989.138.169

	
	
	

