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Let B be the unit ball and S the unit sphere in C" (n > 2). Let ¢
be the unique normalized rotation-invariant Borel measure on S and
m the normalized area measure on C.

We first prove that if A is a holomorphic homogeneous polynomial
on C" normalized so that A maps B onto the unit disk U in C and
if 4 = o[(Als)”'], then 4 < m and the Radon-Nikodym derivative
du/dm is radial and positive on U. Then we obtain the asymptotic
behavior of du/dm for a certain, but not small, class of functions A.
These results generalize two recent special cases of P. Ahern and P.
Russo. As an immediate consequence we enlarge the class of functions
for which Ahern-Rudin’s Paley-type gap theorems hold.

1. Introduction. Let n be a positive integer. Write B = B, for the
unit ball in C” and let S = S,, = 8 B,,. When n = 1, we use the notation
U and T in place of B; and S|, respectively. We shall let ¢ = g,, denote
the unique normalized rotation-invariant Borel measure on S and m
the normalized area measure on C. The symbol P, stands for the
class of holomorphic homogeneous polynomials A on C" normalized
so that A(B) = U. The maximum modulus set A~(T)NS of A€ P,
is denoted by Max A. It is assumed »n > 2 in the rest of the paper
unless otherwise specified.

To begin with, let us look at some special cases which motivated
the main results of this paper. We have the following “change-of-
variables” formula for A € P, of degree 1 [Ru, Section 1.4]:

(1) /S woA do=(n—1) /U w(A)(1 - |42 dm(d).

Here A* = A|g and y denotes an arbitrary nonnegative Borel function
on U. The similar integral formula for A(z) = z? + --- + z2 has been
recently proved by P. Russo [Rus]:

@ [ wondo=(n-1/2 [ y)1 =R dm),
S U
Also, P. Ahern [A] has shown that if A(z) = n*/?z; --- z,, then
(3) [wonrdo=[ vy dma
S U
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where w is a weight such that
(4) 0< 11%111 w(r)/(1 = r2)n=3/2 < 0,
r

Here and in what follows, a weight means a positive [m] a.e., radial,
integrable Borel function on U.

Formula (1) is an immediate consequence of Formula 1.4.4 in [Ru].
In [A] and [Rus], while (2) and (3) are the important first steps to the
main pullback results (see 3.4 below), their proofs strongly depend on
the precise formula of A. In §2 we prove that every A € P, induces a
unique (up to a set of [m] measure 0) weight w so that (3) holds. Note
that the exponents in (2) and (4) are the same, while they are different
from that in (1). Why? One possible way to explain this might be as
follows. It is easily verified that if A(z) = z3 +---+ z2, then Max A is
topologically equivalent to S”~! x T and if A(z) = n"/?z,--- z,, then
Max A is topologically equivalent to 77". Also it is clear that if A € P,
is of degree 1, then Max A = T, topologically. Hence a close look
at the exponents in (1), (2) and (4) leads to the interesting fact that
all these exponents can be written as a single expression d(A)/2 — 1.
The notation J(A) means the topological co-dimension of Max A in
S, i.e., d(A) = (2n — 1) — dim(Max A) where dim(Max A) denotes the
topological dimension of Max A. It is known that d(A) > n — 1 (see
[Ru, Section 11.4]). Although one cannot expect precise formulas of
weights as in (1) and (2) in general, it is a pleasant fact that 6(A)/2—1
is the right exponent for a certain class, say ,, of functions A € P,.
More precisely, in §3 it is shown that if w is the weight induced by
A € Q, in the sense of (3), then

(*)  w(r)=cA)(1 -2 L 01 -r2)] asril.
Even when n = 1, §(A)/2 — 1 is the right exponent at least in the

weak sense. Of course d(A) = 0 for every A € P, and it is not hard to
verify that

do
: _1212ye-1 =
lﬁga(l [A19)*~" dm(A) 5
in the weak*-topology of the dual of C(U). Hence

2n

od0 [ de
vohe gy = [ vy,

= lima —1212ya—1
—gg_éwuxl|u) dm(2)

for every y € C(U).
We do not know whether () holds for every A € P,.
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2. Existence. In this section we shall prove that to each A € P,
corresponds a unique weight as mentioned above. This will be derived
from a more general fact Theorem 2.4 below. We shall let (, ) denote
the complex inner product on C” and |z|? = (z, z) for z € C".

2.1. Jacobian and co-area formula. Consider a continuously differ-
entiable function ¢: § — C. Fix £ € § and T;(S) be the real tangent
space to S at £. We regard T;:(S) as a (2n — 1)-dimensional real space
sitting in C”. Also C is regarded as a 2-dimensional real space. There-
fore, for z € C", z € T¢(S) if and only if Re({, z) = 0. Let D be the
differential of ¢ at ¢ defined by

d
D(X) = 2(r(1))|  for X € T¢(S)
=0
where y is any curve in S such that (0) = £ and y'(0) = X. If
rank D < 1, then ¢ is called a critical point of ¢. The Jacobian of ¢ at

£ is defined by
Jo(&) = Vdet D o D*,

By the Binet-Cauchy formula [G], one computes J¢(&) as the square
root of the sum of squares of the 2 by 2 subdeterminants of the matrix
realization of D with respect to orthonormal bases of T;(S) and C. It
follows that ¢ is a critical point of ¢ if and only if J¢(&) = 0.

Federer’s co-area formula for manifolds [F1, Theorem 3.1] will be
the key to proving the existence of weights. A simple version, which
is enough for our purpose, is as follows:

fgrdo=cn [ [ gdhsdmin

for every nonnegative Borel function g on S. Here 4,,_3; denotes the
(2n — 3)-dimensional Hausdorff measure on S.

2.2. LEMMA. Let ¢ € C*"=2(S). Then
ol¢ "N« m ifandonlyif J¢>0|[o]ae.

Proof. First assume o[¢~!] « m. It suffices to show m[#(K)] = 0
where K is the set of all critical points of ¢. But this follows directly
from Sard’s theorem (see [F2, p. 310]) because ¢ € C2"~2(S).
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Conversely, assume J¢ > 0 [o] a.e. By the co-area formula we have
[ gedo=cn) [ hausls™ D1dmia)
¢~(E) E

for every Borel set E in C. In particular, if m(E) = 0, then o[¢~!(E)]
= 0. In other words, g[¢~!] < m. The proof is complete. o

The following lemma was proved for A(z) = Z% +-+++ z2 in [Rus].
The proof given below is a modification of P. Russo’s proof found
there.

2.3. LEMMA. Suppose ¢ is a function on S which extends to a func-
tion holomorphic on some open set containing B. Then

(1) J¢ =|Vel\/IVe|* - RSP

where V¢ is the complex gradient of ¢ and R¢ is the radial derivative
of ¢, i.e, R(E) =(Ve(£),<).

Proof. Fix £ € §. Let D be the differential of ¢ at ¢ and T:(S)
the real tangent space to S at £&. We may regard ¢ as a function
holomorphic on some open set containing B. Hence by the chain rule

(2) D(W) = (W, V(&)

for every W € T¢(S). Define X = V¢(&) — RP(£)E. Then (2) can be
written

(3) D(W) = (W, X) + iR$(c) Re(W, ic)

because Re(W,l) = 0 for W € Tx(S). It is easily seen that i,
X and iX are orthogonal vectors in 7;(S). Also it is easy to see
X2 = [V4(&)I* — |RS(E)|* because RH(&) = (VH(£),&). Using (3),
we easily obtain D(i¢) = iR#(¢), D(X) = |X|? and D(iX) = i|X|>. In
addition, if W € Tx(S) is orthogonal to i, X and iX, then D(W) = 0.
Now assume that X # 0, extend {i&, X/|X|,iX/|X|} to an ordered or-
thonormal basis for T:(S) and regard {1, i} as an ordered orthonormal
basis for C. With respect to these orthonormal bases, D can therefore
be realized as a 2 by 2n — 1 matrix

(—Iqu&(é) 1X| 0 0~~-0)
ReR$(E) O |X| 0---0)°

It is easily verified that this matrix realization of D is still valid when
X = 0. A little computation now leads to (1). o
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2.4, THEOREM. Let ¢ € C**~2(S) and u = o[¢~']. Suppose that ¢
is nonconstant and extends to a function holomorphic on B. Then

(Hu<m,

(2) du/dm > 0 [m] a.e. on ¢(S). More explicitly,

du .. dhyn-3
%—(A) = c(n)/¢_lw 7z [m] ae AeC.

Proof. The proof of Theorem 1 in [S] shows that the set of critical
points of ¢ has [¢] measure 0. In other words, J¢ > 0 [g] a.e. Thus by
Lemma 2.2, we obtain (1). Since J¢ is also continuous, x4-1(g)/J & is
a Borel function on § whenever E is a Borel set in C. Here x4-1(g) de-
notes the characteristic function of ¢~!(E). Apply the co-area formula
to this function and obtain

u(E) = c(n) / / » ‘”’2" S22 dm(3).

From this it follows that

(3) =c(n )/ )dhz” 3 [m]ae. AeC.

Now suppose that A € ¢(S) is a regular value. This means that 1 is
not in the image of critical points under ¢. Since A is a regular value,
¢~ 1(A) is a (2n — 3)-manifold and thus the right side of (3) is strictly
positive. Since ¢ € C?"~2(S), Sard’s theorem says that the set of
regular values of ¢ is of full [m] measure in ¢(S). This proves (2). O

We now come to the main result of this section.

2.5. THEOREM. Let A € P,. Then there exists a unique (up to a set
of [m] measure 0) weight w on U such that

(1) /!/IOA*dO'=/l//’wdm
s U
for every nonnegative Borel function w on U.

Note. Since o(MaxA) = 0, y o A* is a Borel function defined [o]
a.e. on S. This w will be called the weight induced by A.

Proof. Let u = o[(A*)"!]. By Theorem 2.4 u < m. Put w =
du/dm. Since A(S) = A(B), w > 0 [m] a.e. on U by Theorem 2.4.
Recall that we have

dhy,_3

w(ld) = c(n)/ — forieU
(A-«)—l(l) JA
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after redefining w on a set of [m] measure 0. Since A € P,, [VA|is T-
invariant, i.e., |VA(&)| = [VA(&e'?)| for every & € S and real number
0. Since RA = (deg A)A, JA* is T-invariant by Lemma 2.3. It follows
from homogeneity that w is radial, because 4,,_3 is also 7T-invariant.
Thus w is a weight on U. Now, by definition of x, (1) holds for every
characteristic function y of a Borel set in U. The general case follows
from a standard approximation. The proof is complete. O

2.6. REMARK Let w be the weight induced by A € P,. For every
nonnegative Borel function y on [0, 1) we have

1
/ wo|A*|do = 2/ ry(ryw(r) dr.
S 0

Thus w is completely determined by such y. This fact will be the
basis for the asymptotic estimate of w near r = 1 in §3.

3. Estimation. We shall estimate the asymptotic behavior of the
weight induced by a function belonging to a subclass of P,.

We need some more notation and terminology. Suppose that ¢,
and ¢, are C-valued functions on D; ¢ C¥ and D, c C!, respectively.
We shall let ¢; ® ¢, and ¢; & ¢, denote the functions defined by
(618 62)(z,w) = $1(2)2(w) and (¢, ® $2)(z, w) = ¢y (2) + b (w) for
(z,w) € D; x D, ¢ Ck x C! = C¥*!. For simplicity A € P, is called
good if Max A is a disjoint union of finitely many compact manifolds
in S and if the weight induced by A satisfies (). Also every A € P, is
called good.

3.1. THEOREM. Suppose ¢, € P, (k > 1) and ¢, € P, (I > 1). Let
A€ P, (n=k+1) be one of the following:

(a) A=bd; @ ¢y, b >0,

(b) A=ad, ® ¢y, degA >3,0<a<,

() A=al’® ¢y, degA=2,0<a< 1.
Incase (¢), k =1and ! =n—-1. If ¢; and ¢, are good, then so is A.

3.2. CoROLLARY. Suppose that A € P, is a monomial or A(z) =
ayz? +---+ayz4. Then A is good. o

3.3. Class Q,. It is easily seen from Remark 2.6 that if A is good,
then so is any power of A. Also, if A is good, then so is Ao % for every
unitary transformation Z on C” because A and A o % induce exactly
the same weight and Max(A o Z) = #*(MaxA). Now choose any
function as in Corollary 3.2, but of fewer variables, apply Theorem
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3.1, (a) through (c), repeatedly to construct a new function in more
variables, form any power of this new function, and compose it with
any unitary transformation. Let Q, be the subclass of P, obtained by
any combination of this process. Then every A € Q, is good. The class
Q,, is not small in the sense that it contains most of those functions
which may occur in the actual examples or applications.

Before we prove Theorem 3.1, let us look at some consequences

3.4. Pullback theorem. Let 0 < p < co. The Hardy space H?(B)
consists of functions f holomorphic on B such that

171 = sup / £(rOP do(&) < co.

O<r<l1

For a > —1, the weighted Bergman space 42(U) consists of functions
g holomorphic on U such that

/U AP (1 - AP)* dm(2) < oo

Now consider A € Q, and let w be the weight induced by A. Then
g € A2(U) where a = 6(A)/2 — 1 if and only if

/U €A Pw(A) dm(d) < oo

Hence it follows that g o A € HP(B) for every g € A2(U). This
pullback property is sharp in the sense that the “weight” d(A)/2 — 1
cannot be improved.

It is known [A], [Rus] that if A(z) = n™?z{---z, or A(z) =
z2 + .-+ + z2, then g o A* is a function of bounded mean oscilla-
tion on S for every Bloch function g on U. P. Ahern and W. Rudin
have recently found a new proof of this BMO-result, which does not
seem to extend to the H”-context mentioned above, and proved the
same for every monomial A € P,. Their method has been used by the
author [C] to prove the same BMO-result for a certain subclass of Q,
containing all the previous functions.

3.5. Gap theorem. Let E be a set of positive integers. Following
[AR2] we call E a Paley set if |[{k € E: N < k < 2N}| stays bounded
as N — oo. Also we recall that E is called a A(q)-set, for g > 2, if
there is a constant C such that

(/ S aelt? —n) N <C (keZEmkF) "

keE
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for all {a;}. It turns out that every Paley set is a A(q)-set for every
g > 2. Fix A € P,. If f € L!(0) and if k is a nonnegative integer, then
we shall write f; for the projection of f into the one-dimensional space
spanned by A*. In their recent paper [AR2] P. Ahern and W. Rudin
have also shown the following Paley-type gap theorems which have
no analogue in the one variable case for a special class of functions
A € P, i.e., for A monomials and A(z) = z? + --- + z2. We refer to
[AR?2] for further details:

THEOREM. Let 1 < p <2 < q < oo. Then the following are equiva-
lent.

(a) E is a Paley set.

(b) T 1418 < CIAN for every f € HP(B).

(c) There exists t < 2 so that 3, N fill, < CIfI, for every f €
HP(B).

(d) |a)|§ < CXrep \hilld for every h € HY(B) of the form h =

(€) There exists s > 2 so that ||hl|§ < CYopcp 1l for every h €

HY(B) of the form h = ¥ g ar A*.

THEOREM. Let 1 < p < 2 and q the conjugate exponent. If E is a
A(q)-set, then the following two equivalent conditions hold.

(@) WAl2 < Cpeg |2 for every h € H(B) of the form h =
ZkeE akA".

(b) Xier 1llz < CIAN for every f € HP(B).

THEOREM. [f2 < p < oo, then ||f]l; < C3520(X 0 <k 1 fxllp)?
holds for every f € HP(B) of the form f = Y32, ai Ak

The only property (except A € P,) used in their proof is the follow-
ing:

(1) /S A" do ~ (#)m.

The notation ~ means that the ratios of two terms are bounded above
and below. The only importance of the exponent J(A) is the positiv-
ity. It is not hard to verify via Stirling’s formula that (1) holds for
every A € Q,,. It follows that Ahern-Rudin’s Paley-type gap theorems
mentioned above hold for every A € Q,. The above observation leads
to a natural conjecture that (1) holds for every A € P,.
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Now we return to the proof of Theorem 3.1. The following integral
formula will be the main key to proving this. The normalized volume
measure on C¥ is denoted by v,.

3.6. ProPOSITION (Integration by Averaging). If k and | are positive
integers such that k + | = n, then for every f € L'(a,)

[ rao= (") [ [ re/1= RO da@-iz) du )
holds.

Proof. Let O be the group of all unitary transformations on C! and
fix f € L'(0,). By Lemma 1.4.2 in [Ru] we have

/S”fd"n =/S"/0f(5,‘?/n)d?/dan(c,n)

where d% is the Haar measure on O. In the right side of the above
the inner integral is independent of # once { is chosen, and hence by
Formula 1.4.4 in [Ru] the left side of the above is equal to

(n_1>/ / fe1 - 12P7e) dz (1 - |2PY ! du(2)

where £ is an arbitrary point in S;. By Proposition 1.4.7 in [Ru] the
inner integral of the above is in turn equal to

[ £z fi= 122 dancd)
The proof is complete. O

3.7. Proof of Theorem 3.1. We will assume k > 2 (in cases (a) and
(b)) and / > 2. The proof when / = 1 or k = 1 is much simpler and in
fact the proof given below can be repeated without any difficulty. w
will denote an arbitrary nonnegative Borel function on [0, 1). Also, v;,
i = 1,2, denote the weights induced by ¢; and w the weight induced
by A. We will handle the constants ¢ = c(k,/,¢;,$,) in the usual
manner; they are not necessarily the same at any two occurrences.

Case (a). In this case Max A = Max ¢; x Max ¢,, topologically, and
therefore 6(A) = d(¢) + (¢2) + 1. It remains to verify that

(1)  w(r) =c(l —r)0@+@)-D211 L O(VT—=7r)] asr]l.
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Put d = deg¢; and e = deg¢,. Note that d, e > 1. Define

h(x) =by/x4(1-x)¢ for0<x<1.

Note that 4 is strictly increasing on [0, xg], strictly decreasing on
[x0,1], and A(xp) = 1 where xo = d/(d + ¢). Let f be the inverse
function of 4 on [0, xo] and g the inverse function of ~ on [x, 1].

Integration by averaging, integration in polar coordinates and
change of variables show that

/Sy/o|A*|da,,=c/01xk‘1(l—x)1_1
- /S /S w(h(:)|61 ©lea(m)) doy (1) do (£) dx

1
=c /S /S | 00w olor@Ns2m) dp doi(on) oy (@

where 0 = f*~1(1 — f)I-1f" — gk=1(1 — g)/~'g’. By definitions of v,
and v,, the latter integral is equal to

/ / / 0(p)y (pst) d(pstyvi(s)va(t) ds dt
- C/O W(r)/SIZr O, (r)vi(s)va(t) dsdtdr

where 6, ,(r) = 6(r/st) for st > r. From this we conclude (see Remark
2.6)

w(r)=c[l1+ 01 -r)]
2) x / 0. (r)(1 = 5)0@)/12=1 (1 — £)0(8)/2-1 g gy,
st>r

It remains to estimate 0, ,(r) as r T 1. Since A'(xp) = 0 and A" (xg) < O,
we have

hll( )

(3)  h(x)=14+—(x—x0)%[1 + O(]x — x0|)] as x — xo

and
(4) H'(x) = h"(x0)(x — x0)[1 + O(|x — x0[)] as x — Xo.
From (3) and (4) it follows that

) 1 [1+0(x - xo)]
R(x)  \/=2R"(x0)\/1 = h(x)

as x T xp.
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Putting x = f(r), we obtain from (3) and (5) that

f(r) = xo[1 +O0(v1-r)]
{f’()— [1+0H1-r)] asrtl

V2R (xo)V1 =7

Similarly,

g(r) = xo[1 + O(v1 —7r)]

{ (r) = — 1+ 01 -r)] asrt 1.

s = V=2R (xp)V/ 1 =7

Hence
6(r) = i+ OT_(_' lr_ 2l asr11

and therefore
(6)  O54(r) = cll + 25 _‘ lr— )l uniformly in st > rasr1 L.

Insert (6) into (2) and estimate the double integral to obtain (1). O
Cases (b) and (c). Let d = deg A. As above, we have

| veinida,
Sy

c/lx L1 —x)i!

/S /S (ax?2py(&) + (1 — x)Py(n)) doy(n) doy (€) dx

= [(Ht -

-//t//(laxd/2/1+(1 x)42z|)vy(z) dm(z)v (A) dm(A) dx
UJu

1
c/ xk=11 = x)-!
0

/1/ w(lax??s + (1 — x)42z|)vs(z) dm(z)sv,(s) ds dx.
mz>0

Compute the innermost integral in polar coordinates, make change of
variables, and get
/1 /' w(v/a2xds? + (1 — x)412 + 2astx9/2(1 — x)42y) dytv,(t) dt

Vi
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In the inner integral of the above we make another substitution

a?x9s? + (1 — x)4¢2 + 2astx9/2(1 — x)4/2y,

simplify the integral obtained, and arrive at

/h“(x) 2ry(r)dr
8ua(x) \/r2 g2,(x) \/h x)—r2

where
hsi(x) = asx?? + 1(1 — x)4/?  and
gs.1(x) = |lasx?? — (1 = x)4/?).
So far,
/ wo|A*|day
S,

) k=11 — x)=lry(r)drdx
__C/ / {// (x) \/r2~g§z(x)\/hs2,z(x)_"2}
-sv1(8)tvy(t) ds dt.

For each fixed s and ¢, the integral in the bracket is taken over the
region {(x,r): g(x) < r < hys(x)} and therefore the interchange of
the order of integration yields 6;; such that

/wo|A*1dan—c/lr¢// //05, (r)svi(s)tvy(t)dsdtdr.

Accordingly,

(7) w(r) = C/ol /0] 0s.:(r)sv(s)tvy(t) ds dt.

Now we subdivide into two cases (b) and (c). Before going further,
we assume a > 0 (if a = 0, then Max A = Max ¢,, topologically, and
the proof in case (a) can be easily adapted).

First, consider case (b). Since d > 3, k;, is strictly convex for every
s and ¢. By elementary calculus if ¢ > (1/2)4/2-1, then A, and g, are
strictly decreasing on [0, 1/3] for every s. For such ¢, let a5, and S,
be the inverse functions of 4, and g, on [0, 1/3], respectively. We
first prove two sublemmas.
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SUBLEMMA 1. Define fort > r and r ~ 1

ag,(r) k—l 1= /—ldx
Es,t(r) = / ( )

a(r) \/rz—gst \/h (x) —r2

Then E; (r) = c(t — r)*"'[1 + O(V1 =7)] uniformly in t > r and s as
r1l.

Proof of Sublemma 1. We easily obtain
das(r)=2(t—r)[1 + O/1-r)],
(8) dfs(r) =2(t =1+ O0W1-r)],
a5 (r) = Bsu (N1 + O(V1 = 1)),
where O(v/T =) is uniform in ¢t > rand s as r 1 1.

Define Hy; = h?, and Gy, = g2. Since d > 3, H} (x) =
—dt?[1 + O(\/x)] uniformly in ¢t ~ 1 and s as x | 0. Thus by the
mean value theorem and (8), if f;,(r) < x < a,,(r), then

Hy(x) = 1? = d(as,(r) = x)[1 + O(VT = 7)]
uniformly in ¢ > r, s and x € (B (r), as(r)) as r T 1. Similarly,
r? — Gs(x) = d(x — Bs(r)[1 + OV =7)]
uniformly in ¢ > r, s and x € (fs(r), as:(r)) as r T 1. It follows that
a, (1) xk—l(l _ x)l—l dx
Esslr) = el + OWL=1)] Bu(r) VX = Bs(r)y/es(r) =
uniformlyin ¢ > rand s asr T 1. In this integral, make the substitution

— X = ﬂs,t(r)
as,t(r) - ﬂs,t(r)

and get
1
0 ([as,e(r) = Bs,e(r )]J’+ﬂs,t(r))k—1
(1= Boar) + [Borlr) — e ()~ 22—
y(l1-y)
This shows the sublemma by (8). 0

Ifa = 1andifs > (1/2)4/>~!, then ks, and g, are strictly increasing
on [2/3,1] for every t. For such s, let y;, and J;, be the inverse
functions of A, and g, (with a = 1) on [2/3, 1], respectively. The
proof of the following sublemma is “symmetric” and is omitted.
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SUBLEMMA 2. Define for s > r and r ~ 1

/ Os4(r) xk— 1 x)l-l dx
St .
nln (fr2 - g2,( )\/hs{,(x) —r?

Then F;,(r) = c(s — r)!='[1 + O(VT =7)] uniformly in s > r and t as
ril. O

Assume a = 1. Then Max A is the disjoint union of Max ¢; and
Max ¢,. Hence it is enough to prove that

w(r) = [c(l — r)5(¢l)/2+[‘1 + C(l _ r)5(¢z)/2+k——l]
[1+0W1-r)] asril.

By a geometric consideration, for r sufficiently close to 1,

9)

0 ift<rands<r,
B, /(1) = Es(r) ifs<r<t,
ST Fou(rn) ifr<r<s,

Egi(r)+ Fs (r) ifr<tandr<s.
Hence by (7), up to a constant factor,

_ / l / "By (r)sv (s) dstvy(f) dt
r JO
+/Or/;1 F; (r)svy(s) dstvy(t)dt

+/rl/rl(Es,t(r)+Fs,t(r))svl(s)dstv2(z)dz

1l
- / / Es/(F)sv1(s) dstos(t) dt
r JO
1l
+/ / Fs(r)svi(s)dstvy(t)dt =T+ 11
0 Jr
By Sublemma 1

[=c[l+0W1- r)]/l(z — k(1 = 1)°@)2-1 gy

=c(1 = r)°@)24k=111 L O(VT=7r)] asril.
Similarly, by Sublemma 2

I =c(l—r)°@I2H=1 4 0+/(1=7)] asril.
This proves (9).
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Now assume a < 1. Then Max A = Max ¢,, topologically. Thus we
need show

(10) w(r) =c(1 = r)Y0@2+=111 L O(VT=7)] asrtl.

As above, for r sufficiently close to 1,
0 ift<r,
Hs,t(r) = {

Es,t(r) if r S t.
Thus by (7) and Sublemma 1
1l
w(r) = c/ / E; (r)sv(s) dstv,(t) dt
r JO
1
=c[l+O0W1- r)]/ (t—r)1(1 = 1)0@)12=1 gt asrl.

After a little calculation we obtain (10).
Finally, we consider case (c¢). In this case k = 1 and / = n— 1. Also,
Max A = Max ¢,, topologically. Thus we need verify

w(r)=c(1- r)é(¢2)/2[1 +0(V1-r)] asril.
Note that (7) is still available with s = 1, i.e.,

1
(11) w(r) = c/ 0:.:(r)tvy(t) dt.
0
Forr>a,
0 ift<r,
(12) O1.(r) = { E(r) ifr<i,

where E;(r) is the function as in Sublemma 1 with appropriately de-
fined functions. More precisely, for t > r > a,

hi(x) = ax + (1 — x), (x) = |ax — (1 — x)|,
() = =, BU -

and

(13) o (r) (1 =x)""2dx

ROV TN Ty

By (11) and (12), for r > a,

w(r) =c[1+0(V1- r)]/l E/(r)(1 -1’9/ 14 asr1 L.
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Thus it suffices to show that

(14)

E(r)=c[14+O(1-r)] uniformlyint>rasr11.

Clearly a;(r) = O(1 —r) and B;(r) = O(1 — r) uniformly in ¢t > r as
r 1 1. Hence it is not hard to see that

and

hi(x) = r* = 2(1 = a)(e(r) = x)[1 + O(1 = 1)]

r? — gl (x) = 2(1 +a)(x = B(r)[1 + O(1 ~ )]

uniformly in ¢ > r and x € (B:(r), o;(r)) as r 1 1. Substitute these into

(13) and obtain (14) as before. m]
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