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Let C be an irreducible plane algebroid curve singularity over an
algebraically closed field K, defined by a power series / G K[[X, Y]].
In this paper, we study those power series h e K[[X, Y]] for which
the intersection multiplicity (/•*) = άimκ(K[[X, Y]]/(f,y)) is an
element of the Apery basis of the value semigroup for C We prove
a factorization theorem for these power series, obtaining strong prop-
erties of their irreducible factors. In particular we show that some
results by M. Merle and R. Ephraim are a special case of this theo-
rem.

Introduction. In this paper we denote by K an algebraically closed
field of arbitrary characteristic.

Let C be an irreducible plane algebroid curve over K (i.e. C —
Spec(iί), where R = K[[X, Y]]/(f), with / irreducible). We will sup-
pose / £ YK[[X, Y]] and we will write n = Ordx(f(X, 0)).

We will denote by S(C) the semigroup of values of C (see [2],
11.0.1 and [3], 4.3.1), by An = {0 = α0 < ax < < an.x} =
{min{S(C)n{k + nZ+)\ 0 < k < n - 1} the Apery basis of S(C) rela-
tive to n (see [2], 1.1.1) and by {vo,...,vr} the n-sequence in S(C),
where v0 = n, and vt = min{t; € S{C)\ gcd(^o>^i>--->^/-i) >
gcdivct;,,. . . ,«/_!,!;)}, 1 < Ϊ < r (see [1], 6.6, [2], 1.3.2 and [6]).
(Note that gcd(τ;o>..., vr) = 1.)

The main objective of this work is the proof of the following theo-
rem.

FACTORIZATION THEOREM. Let h e K[[X, Y]] be such that 0<k =
Ordx(h(X,0)) < n - 1. Then (/• Λ) < ak. Suppose (/• h) = ak. Ifk =
Σo<q<rsq(nldq-\)> where dg = gcd(υ0,...,vg), (do = vo = n,dr= 1),
0 < sq < r and 0 < sq < dq-\jdqi then

h = Π hi and hi = Π Λy,

with hij either irreducible or unit in K[[X, Y]], 1 < j < mif \ < i < r,
and
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(2) (/ hij(X,0)) = di-tVi/n ifs) φ 0 and hi} is a unit in K[[X, Y]]
if si = 0, 1 < j < m, 1 < / < r.

Here (/• h) denotes, for two power series / and h, the intersection
multiplicity of the algebroid cycles defined, respectively, by / and h.

In the fourth section we see that the polars of an irreducible complex
analytic germ of a plane curve singularity satisfy the hypotheses of the
above theorem for k = n -1. Thus, the Theorem 3.1 of [5] and Lemma
1.6 of [4] follow from the above Factorization Theorem.

1. Apery basis and the «-sequence. In this section we will summarize
some properties of the Apery basis. For other properties you can see
[2] and [6].

PROPOSITION 1. If Mj = K[[Y]] + K[[Y]]X + + K[[Y]]XJ, 0 <
j < n - 1, then:

(1) {aj} = v(Mj.{ + XJ) - v{Mj.x\ 1 < j < n - 1,

(2) v(Mj) = Uo</<y(β/ + nZΛ 0<j<n-l,
( 3 ) αz + aj < cii+j, 0<i + j<n-l,

whereυ(Mi) = {(f g); g e M, -{0}}, 0 < i < n-\ andv^M^+X1) =
{(f ig + X*)); geλfi^l 1 < i < π - 1.

Proof. See [2], Satz 3 and [6], Proposition 2.

REMARK 2. Note that in the above proposition aj > (f-(g+Xj)) for
each g e M^u 1 < j < n - 1. (If (f (g + χj)) > aj, then there exists
gj-ι € My.! such that (/ (gj^ + XJ)) = aj, so aj = (/ (g - gj-ι))
and we get a contradiction.)

PROPOSITION 3. One has

&sx(dldύ+.-+sj{dldJ-X) = S\Vι + + SjVj,

and Vj+γ > (dj-ι/dj)υjf 0 < j < r - 1, with 0 < st < (έ//-i/έ//),
1 < / < r.

Proof. See [2], Satz 2 and [6], Proposition 1.

REMARK 4. Note that Vj = ad/dj, 1 < j <r and

An = {*Sι(dido)+.»+sr{didr-x)\ 0 < Si < (rf/-i/rf/), 1 < i < r}.

EXAMPLE 5. Here we give some examples of different possibili-
ties for the Apery basis and π-sequences. Let us consider the curves
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d = Spec(^[[X? Y]]/(J}))9 1 < i < 3, where fx = X 2 + 7 5 , /2 -
(y + X 2 ) 2 + X5 and /3 = r 2 + X5. It is easy to check that

S(d) = S(C2) = S(C3) = {0,2,4, 5, 6,7,8,... },

and one has fi £ YK[[X,Y]], 1 < / < 3, and Ord;K/i(X,0)) - 2,
Ord^(/2(X,0)) - 4 and Ord x(/ 3(X ?0)) = 5. So Λ2 = {0 - α0,
αi = 5}. The 2-sequence is {v0 = 2,v{ = 5}, a\ = {f\ X),
d0 = d = 2 and rfj = 1. ^ 4 = {0 = a^a\ — 2,α2 = 5,α3 = 7}.
The 4-sequence is {v0 = 4,V\ = 2,^3 = 5}, αi = (/2 X), a2 =
(/2 (7 + X2)), α3 - (/2 (Γ + X2)X), d0 = d = 4, dx - 2 and
rf2 = 1. And ^5 = {0 = ao, d\ = 2, α2 = 4, ^ 3 = 6, #4 = 8}. The
5-sequence is {v0 = 5,V\ = 2 } , α, = (/ 3 X 1 ) , \<i<4, do = d = 5
a n d d\ = \.

2. π-sequences and Hamburger-Noether expansions. Let x and y
be, respectively, the residue classes of X and Y in i?. Assume that
no = (f - X) < (f - Y) = n, that is, X is a generic coordinate (or x
is a transversal parameter of C, see [3]) and Y could be generic, or
have maximal contact with /, or any thing in between. In this form,
we can study all of these possibilities for Y simultaneously. This is
the point of taking the Apery basis with respect to a general n, rather
than n — no- If n = no then Y should be generic.

Let
y = aO\x + ••> + aohox

h° + xh°zu

l _ ! = aSχkχz
k

s\

be the Hamburger-Noether expansion of C in the basis (x,y) (see
[3], 2.2.2 and 3.3.4), and let m = Ordz^(z/), 0 < i < sg (z0 = x),
(l=nSg< nSg-ι < ..<no<n = OτdZsg{y), see [3], 2.2.5).

Note that the Hamburger-Noether expansion is nothing but an ex-
plicit description of the minimal resolution of singularities C of C by
a sequence of point blowing-ups, z/, z/_i are the regular parameters
of the ambient plane at the h0 H h Λ/th blowing up. zSg is a regular
parameter of C. In particular, for any h e K[[X9 Y]] such that / does
not divide h

(f.h) = OτdZs(h).
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The following proposition is an easy consequence of the Hamburger-
Noether expansion and the formula for Zariski exponents of a plane
curve (see [3] 4.2.7 and 4.3.10).

PROPOSITION 6. With the above notations one has:
(l)/io = min(5(C)-{O»,
(2) ΠQ < n = v0 < hoπo + ni,
(3)(i) Ifv0 < vχ9 then r = g,υo = no and

0 < / < r - 1, (SQ = 0). Moreover OQ\ Φ 0.
(ii) Ifv0 > vx andd\ = Vχ> then r = g+l,υo = kovχ, k0 >2,v{=

and

0 < / < r - 1, (SQ = 0). Moreover aOj = 0, 1 < j < k0 and aιko Φ 0.
(iii) I/VQ > Vx and dx < vx, then r = g, vλ = ΠQ, υ0 = hφ^ + nx and

0 < / < r - 1, (so = 0). Moreover aOj = 0, 1 < j < h0.

Proof. (1) and (2) are obvious from the Hamburger-Noether expan-
sions. We must only prove (3).

For this, if one writes β0 = no and

0 < / < g - 1, then one has
(I) £ 0 = minίSίCMO}) a n d ^ = min{^ e

> gcd(βθ9...9β^l9β)}9 l<i<g (see [3], 4.2.7 a n d 4.3.10).
On the other hand, note that one has the equalities
(II) VQ - n and V( = min{^ G S(C);gcd(^o, ,^/-i) >

gcd(vo,...9Vi-i9v)}9 1 < i < r.
We distinguish the following three possibilities:
(i) no = n < hono + n\. In that case aoχ φθ,vo = no and it follows

from (I) and (II) that r = g and V; = βh \ <i< g.
( i i ) n o < n = k o n o < h o n o + n x . T h e n a O j = 0 9 l < j < / c 0 , a Q k o φ 0 ,

υ0 — kono, v\ = n0 and it follows from (I) and (II) that r = g + 1 and
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(iii) n0 < n = hono + n\. Now aOj = 0, 1 < j < fι0, v0 = hono + n\,

V\ = no and it follows from (I) and (II) that r = g and vι = βi9

2<i<r.

3. Infinitely near points and intersection multiplicity. Now consider
another irreducible plane algebroid curve over K, C = Spec(H'), with
R' = K[[X, Y]]/(f), C φ C and /' £ YK[[X, Y]]. Let x' and / be
the residue classes of X and Y, respectively, in R'. We denote by

k' H's' h's'
Z i _ i = CL IUI Z 5j + + dsιuι Zst + Z i Z i

/ _ al Z

f 8' A . . .
Sg'~l Sg'kg' Sgf

the Hamburger-Noether expansion of C in the basis (x'5y') We also
put n\ = Ordz/; (zj), 0 < / < sf,, (xf = zf

0) and n1 =

Let N be the number of infinitely near points that C and C have
in common (i.e. N = ho + h\ H h Λ5-i + / - 1, $ being the largest
integer for which hq = h'q,0 < q < s - \, and α ^ = α^, i <k < hj,
0 < j < s — l9 and / being the least index such that asi Φ a'si (i <
hs + lj<h's+l)) (see [3] 2.3.2).

PROPOSITION 7. If

1 < i < g, (so = 0), then (f • f) < n'dj^Vj/n, where j = / ifv0 < v\
or VQ > V\, d\ < V\, and j = / + 1 ifv0 > υh d\ = V\. Furthermore, if
(/ /') < n'dj-iVj/n, then dHX divides (f • f).

Proof. One has n = hq+xnq+x + nq+2, sj < q < sJ+ι - 2, nSj+ι_ι =

kj+ιnSj+ι, 0<j<g-\,andn'p = h'p+ln'p+l + n'p+2, ή<p< s'j+ι - 2,
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So nSi divides niy and n's, divides n'k for / < Sj and k < s'j. On the

other hand, since

then hq = hq, 0 < q < 57-1 - 1 and fc/_i = k\_v so
( I I I ) n / n S i _ l 9 n q / n S i _ { = n'q/n's._ι9 0 < q < s ^ { .
From Proposition 5 we see that
(TV) dj-X = nSi_r

Thus, one can compute (/•/') in terms of the possible values of iV
(see [3], 2.3.2 and 2.3.3). Namely, one has the following possibilities:

(A) N = Σo<*<5/_,-i hQ + fc/-i> w i t h fc/-i < k

In that case one has

so dj-ι divides (/•/) by (IV), and a = n'dj-iVj/n, by (III), (IV) and
Proposition 6.

(B) TV = Eo<<7<* h«> w i t h ^i-i ^ ^ < τnin(si9s[) and A5 < Λ;.
Now one has

hqnqriq + ns+xn's
0<q<s

(Note that A5 < ΛJ, so ns-\nf

s = hsnsn
f

s + ns+\n's < (hs + \)nsn's <
h'snsn' < h'snsn's + nsn's+x.) By (III), (IV) and Proposition 6, it follows
that

hqnqn'q + ns^+ins.^ =n'dj^xvjln, or

^ ^ < + ^ / - i < _ ι + i < β = n'dj-j

and dj-\ divides (/ f).

The other cases can be proved in a similar way:

(BO TV = Σo<q<s-\ K + K> w i t h si-ι < s < min(j/, jj) and h's < hs.
(C.I) N = Σo<q<Si-\ hq + ki-\9 with Si < ή and kt < h's..
(C.2) TV = Σ o ^ ^ - i K + h'si> w i t h ΐ̂ < s'i a n d ^ < ki
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(CM) N = Σo<ϊ<5ί-i hq + k<-l, with s't < Si and k\ < hή.

(C.2) N = Eθ<<?<s''-1 hd + \'» w i t h S'i < Si a n d Λ ί ' < k'i
(D) ΛΓ = Σo<q<Si-'\ hg + ki-ί, with ί, = ή and fc, < fcί.
( D ; ) N = Σo<g<Si-ι hg + ki-l, w i th st = s't a n d k\ < kf.

(E) JV = Σo<ί<s,-i hi + ki ~ !> w i t h si = s'i> ki = k'i a n d aΦi + a'Sikr

COROLLARY 8. For each nonnegative integer j , 1 < j < r, the fol-
lowing statements are equivalent:

(1) (f-f)>n'dj_ιvj/n,

(2) N=

wherei = j ifv0 < V\ orυ$ > vx andd\ < v\, andi = j-l, ko = VQ/V\
ifvo > v\ and d\ — V\. In particular, if either (I) or (2) is true then
nf = n's.n/dj.

Proof. (1) => (2). If VQ > vu d{ = v{ and (/ /') > n'v{ then
TV > ko - 1. Indeed, suppose N < ko - I. Then a§q = af

Qq, for

q < N and aON+ι φ ^ + 1 - I f a0N+ι Φ ° t h e n (N + ι)no = n' a n d

if af

0N+ι = 0 then N + 1 = k0 and (N + l)n'o < nf, so in any case
(/. /') = (jV + l)πo«ό - n'v\ a n d w e S e t a contradiction.

Now suppose (f JΓ) > n'dj-\Vj/n and

0<q<Si-l

with y > 1 if t>0 < ^i or v0 > V\ and d\ <Vχ, and with j > 2 if v0 > υ\
and d\ =V\. Then we can assume

with 1 < / < p. It follows from Proposition 7 that (/•/') < n'ds-ιvs/n,
with s < j and ̂ 5 _ i ^ < dj-\Vj (see [2], Satz 2) which is a contradic-
tion.

(2)=> (1). Ifv0 >vudx =vx and # > * b - l , then (/•/') > konon'o,
and «' = Λb/î , (α0^ = α ^ ) , so one has (/•/') > n'vx (/i0 = Vi).

Now if

J^ ^ + hi - 1 < N
0<q<Si-l
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with / > 1 then n/nSi = n'/n's.9 nq/nSi = n'g/n'Si, 0 < q < Si and

(/ * /') = Σ hqϊiqπ'q + kiΠSin's. = γ.
0<q<Si-\

By Proposition 6

V j + nSi_ι+xnSi_x

\0<*<*ί-i

Now

γ= Σ hqnqriq + kinSin
f

s. = [nSi_x /nS

0<^<5/_,

Thus we have to show that

But this follows by repeated application of the identities nq-\ — hqnq +
nq+x, since fc/zi,. = ^ . - 1 .

COROLLARY 9. For 1 < 7 < r, if(f-f') < n'dj-iVj/n, then dj-\
divides (f - f).

Proof. If i>o > v\9 d\ = v\ and (/ f) < n'vx then N < k0 - 1
(Corollary 8). Thus, if aOq = af

Oq, 1 < q < TV, and <zO;v+i 7̂  ^OAΓ+I
 t h e n

Λ^+l = k0 and (f - f) = (N + l)non'o = n'oυo. (For if 7V+1 < ̂ 0 then
(/./ ' ) = ft'^ which is a contradiction.)

Now we can assume (/ /') < n'dj-xVj/n, with j > 1 if t>o < V\ or
^o > ̂ 1 and d\ < vu and j > 2 if v0 > v\ and ^i = vx. By Corollary
8 one has

with / = j if v0 < V\ or ̂ 0 > ^1 and d\ < v 1? and with / = j - 1 if
t>o > v\ and ί/j = v\. So, by Proposition 7, ί/7_! divides (/ / ' ) .

4. Proof of the Factorization Theorem. As Ordx(h(X,0)) = k we
can write A = uhf, with A' e Mk_x + X^ and w e K[[X, Y]] being a
unit. So (/•*) = (/•*')< a*.

Also, we can write αk = Σ o < ^ < ^ ^ ^ a n d ^ = 12o<q<rs«(d/d<i)>
with 0 < ^ < dq-\/dq (see Remark 4). Let # be the greatest index
such that sq^0 and let

h= Π ^
0</<m
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be the factorization of A as a product of irreducible elements in

K[[X9Y]].
If for any j

(f'hj)/Ordx(hj(X,0))>dq-ιvq/n

then, by Corollary 8, Ordx(hj(X,0)) = an/dq {a Φ 0), but k < n/dq

which is a contradiction. (Note that sp = 0 for p > q and

k < Σ iίdp-xldp) ~ 1) = (d/dq) - 1 < d/dq = n/dq.)

On the other hand, if for 1 < j < m

(f hj)/Ordx(hj(X,0))<dg-lvq/n

then dq-\ divides (/• h) by Corollary 9. So dq-\/dq divides sq, and
hence sq = 0 since 0 < sq < dq-\/dq, and we get a contradiction.

Thus, there exists hJo such that

(f hj0)/Ordx(hjo(X90)) = dq-lυq/n.

Moreover, if q > 2 then Oτdx{hjQ(X,ϋ)) = an/dq-\ by Corollary 8,
as dq-\Vq > dqvq-\ (see Proposition 3). If q = 1 then (/ hjQ) =
Ordx(ΛΛ(JΓ,0)) = anjdq-x. In any case Ord x (^ 0 (Z,0)) = α/i/^_!
with 0 < a < sq.

(Note that k < Σι<p<q-ι((dp-ι ~ 1) - \){dIdp-{) + sqdIdq-X <
d d / d ( )d/d /d)

So h! = h/hjo satisfies Ordx(h'(X90)) = k' = k - an/dq-ι and
{f'h') = a^-a{njdq-\)dq-\vqjn — a^-avq = α^; hence the Theorem
follows by iterating the above reasoning using h1 instead of h in the
next step.

5. The complex analytic case. In this section, C is assumed to be
an irreducible complex analytic germ at 0 e C2 of a plane curve sin-
gularity.

Let n be the multiplicity of C and let P(C) be a general polar of C
(i.e. />(C) is defined by a reduced element h = λ(df/dX)-μ(df/dY)
of C{X, Y}9 and A2 - 1 is the multiplicity of P(C)). M. Merle in [5]
has proved that P(C) descomposes into g curves Γ ( 1 ),.. ., Γ ^ , where
Γ(£) (1 < q < g) is such that

(1) its multiplicity is {nleq.x){{eq.xleq) - 1),
(2) every irreducible component of Γ ^ , Γ^)/ has a contact of order

βq with C and (Γ(q)i C)/m(Γ{q)i) = ~βq/(n/e).
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Here {β0,..., βg} is the minimal system of generators of S(C), eq =

gcdQ ô,•..>/?<?)> 0 < q < g, β0 < β\ < < βg are the Puiseux
exponents and m(Γ^i) denotes the multiplicity of Γ^), .

Without loss of generality, we may assume that n — Ordx(f(X, 0)),
and therefore n - 1 = Oτάx{h(X9Ό)).

On the other hand,

(/•*)= Σ {{eq-xleq)-\)βq.
0<q<g

and hence (/• Λ) = an-\, since {β0,..., jff̂ } is the /^-sequence in S(C)
(see [2], Satz 2 and [5], Prop. 1.1).

Thus, h satisfies the hypotheses of the Factorization Theorem for
k = n - 1, and the above Theorem 3.1 of [5] is a special case of
ours. (Note that T^ has a contact of order βq with C if and only if
(Γ(q)r C)/m(r{q)i)=^q/(n/eq^)y see [5], Prop. 2.4.)

In general, if M is a smooth germ of a plane curve singularity de-
fined by z e C{X, Y}, then the polar of C with respect to M is the
(possibly nonreduced) germ whose defining ideal is generated by the
Jacobian / ( / , z) = <?(/, z)/d(X, Y) (see [4]). In particular, a general
polar P(C) of C is defined by h = J(f,λX + μY) with (λ,μ) general.

Thus, without loss of generality, we may assume that z = Y (since
M is smooth) and / ( / , z) = df/dX.

PROPOSITION 10. Keeping the above notations, one has
(a) Ordx((df/dX)(X,0)) = Ordx(f(X,0)) - 1 = n - 1.

Proof, (a) It is obvious.
(b) If n = Ordx(f(X,0)) > Oτdγ(f(0,y)) = m then one has a

Puiseux type parametrization of C

X = tm, Y = Ψ(ί)

and we can write (up to multiplication by a unit)

0<q<m

Thus,

(f-(df/dX)) = Ord,((df/dX)(tm,Ψ(t)))

+ Ord? I [ | (Ψ(/)
\<q<m-l

where Ψ 1 ^ 1 / " 1 ) = d/ΘX(Ψ(Xιίm)).
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On the other hand, we can write

aOjX
jn/m

where m = βo < β\ < < βg are the Puiseux exponents of C and
e/ = g c d ( A ) , . . . , # ) , 1 < ί < S -

Then we have Ord, Ψι(Xι/n) = n-m, and

Ord (
\<q<m-\

(Note that Ord,(Ψ(ί) - Ψ(w«t)) = βJ9 if

q e {k(ej-2/ej-ι); \<k< ej.x} - {k(ej-ι/ej); \<k< ej}9

l<j<g (e-\ =eo =

Now

where c is the conductor of S(C) (i.e. c = min{d e S(C)\d + Z+ c
S(C)}, see [3], 4.4) and c + n - 1 = aw_1? since

An = (min(5(C) n (7 + πZ+); 0 < j < n - 1}.

Finally, a similar argument shows that (/ df/dX) = c + n - 1, if
)) < Ordy(/(0, Y)).

REMARK 11. Proposition 10 shows that if h defines the polar of C
with respect to M then h satisfies the hypotheses in the Factorization
Theorem for k = n - 1, so Lemma 1.6 of [4] is also a special case of
(2) in the Factorization Theorem.

Acknowledgments. I would like to the thank the referee for this
valuable suggestions and kind help.

REFERENCES

[1] S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Institute
of Fundamental Research, Bombay, (1977).

[2] G. Angermuller, Die Wertehalgruppe einer ebenen irreduziblen algebroiden
Kurve, Math. Z., 153 (1977), 267-282.



96 ANGEL GRANJA

[3] A. Campillo, Algebroid Curves in Positive Characteristic, Lecture Note No. 813,
Springer-Verlag, (1980).

[4] R. Ephraim, Special polars and curves with one place at infinity, Proc. Symp.
Pure Math., 40, Part 1 (1983).

[5] M. Merle, Invariant polaires des courbes planes, Invent. Math., 41 (1977), 103—
111.

[6] H. Pinkham, Courbes planes ay ant une seule place a Γinfini, Publications de
Centre de Mathematiques. Ecole Polytechnique, F. 91128 Palaiseu, (1977-
1978).

[7] B. Teissier, Varietes polaires I. Invariants polaires des singularities des hypersur-
faces, Invent. Math., 40 (1977), 267-298.

[8] O. Zariski, Modules de branches planes, Publications de Centre de Mathema-
tiques. Ecole Polytechnique, F. 91128, Palaiseau (1973).

Received December 31, 1986 and in revised form November 18, 1988.

FACULTAD DE CIENCIAS

UNIVERSIDAD DE VALLADOLID

47005-VALLADOLID, SPAIN

AND

FACULTAD DE VETERINARIA

UNIVERSIDAD DE LEON

24007-LEON, SPAIN



PACIFIC JOURNAL OF MATHEMATICS
EDITORS

V. S. VARADARAJAN

(Managing Editor)
University of California
Los Angeles, CA 90024-1555-05

HERBERT CLEMENS

University of Utah
Salt Lake City, UT 84112

THOMAS ENRIGHT

University of California, San Diego
La Jolla, CA 92093

R. FINN

Stanford University
Stanford, CA 94305

HERMANN FLASCHKA

University of Arizona
Tucson, AZ 85721

VAUGHAN F. R. JONES

University of California
Berkeley, CA 94720

STEVEN KERCKHOFF

Stanford University
Stanford, CA 94305

ROBION KlRBY

University of California
Berkeley, CA 94720

C. C. MOORE

University of California
Berkeley, CA 94720

HAROLD STARK

University of California, San Diego
La Jolla, CA 92093

ASSOCIATE EDITORS
R. ARENS E. F. BECKENBACH

(1906-1982)
B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS
UNIVERSITY OF ARIZONA
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY

UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON



Pacific Journal of Mathematics
Vol. 140, No. 1 September, 1989

Michel Brestovski, Algebraic independence of solutions of differential
equations of the second order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Bohumil Cenkl, Cohomology operations from higher products in the de
Rham complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Gustavo Corach and Daniel Suarez, Generalized rational convexity in
Banach algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Keresztély Corrádi and Sándor Szabó, A new proof of Rédei’s theorem . . . . 53
Steven R. Costenoble and Stefan Waner, Equivariant orientations and

G-bordism theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Angel Granja, Apéry basis and polar invariants of plane curve

singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Young Soo Jo, Isometries of tridiagonal algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Ronald Leslie Lipsman, Harmonic analysis on exponential solvable

homogeneous spaces: the algebraic or symmetric cases . . . . . . . . . . . . . . . . 117
Erich Miersemann, On the behaviour of capillaries at a corner . . . . . . . . . . . . .149
Marian Nowak, On the finest Lebesgue topology on the space of essentially

bounded measurable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Pascal J. Thomas, Hardy interpolating sequences of hyperplanes . . . . . . . . . . . 163
H. Bevan Thompson, Differentiability properties of subfunctions for second

order ordinary differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Pacific
JournalofM

athem
atics

1989
Vol.140,N

o.1

http://dx.doi.org/10.2140/pjm.1989.140.1
http://dx.doi.org/10.2140/pjm.1989.140.1
http://dx.doi.org/10.2140/pjm.1989.140.21
http://dx.doi.org/10.2140/pjm.1989.140.21
http://dx.doi.org/10.2140/pjm.1989.140.35
http://dx.doi.org/10.2140/pjm.1989.140.35
http://dx.doi.org/10.2140/pjm.1989.140.53
http://dx.doi.org/10.2140/pjm.1989.140.63
http://dx.doi.org/10.2140/pjm.1989.140.63
http://dx.doi.org/10.2140/pjm.1989.140.97
http://dx.doi.org/10.2140/pjm.1989.140.117
http://dx.doi.org/10.2140/pjm.1989.140.117
http://dx.doi.org/10.2140/pjm.1989.140.149
http://dx.doi.org/10.2140/pjm.1989.140.155
http://dx.doi.org/10.2140/pjm.1989.140.155
http://dx.doi.org/10.2140/pjm.1989.140.163
http://dx.doi.org/10.2140/pjm.1989.140.181
http://dx.doi.org/10.2140/pjm.1989.140.181

	
	
	

