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ISOMETRIES OF TRIDIAGONAL ALGEBRAS
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Let Alg.Y be a tridiagonal algebra which was introduced by F.
Gilfeather and D. Larson. In this paper it is proved that if
p: Alg.Z — Alg.Z is a linear surjective isometry, then there exist
unitary operators ¥ and V such that ¢(4) = WAV for all 4 €
Alg.Z.

Introduction. The study of reflexive, but not necessarily self-adjoint,
algebras of Hilbert space operators has become one of the fastest-
growing specialties in operator theory. In this paper we study the lin-
ear surjective isometries of a certain class of reflexive algebras, which
were introduced by F. Gilfeather, A. Hopenwasser and D. Larson [5].
These algebras have been found to be useful counterexamples to a
number of plausible conjectures. In particular, these algebras have
non-trivial cohomology [5], and they admit automorphisms which are
not spatially implemented [2].

First we introduce the notation which is used in this paper. Let
{ey,es,...,e2,} and {e, e,,...} be fixed bases of 2n-dimensional com-
plex Hilbert space and separable infinite dimensional Hilbert space,
respectively. If x;,Xx,,..., X, are vectors in some Hilbert space, we
denote by [x;, x»,...,x;] the closed subspace spanned by the vectors
X1sX2yeeoy Xko

Let x and y be two vectors in some Hilbert space. Then (x,y)
means the inner product of the vectors x and y.

Let H,, be 2n-dimensional Hilbert space. We denote by .%,, the
subspace lattice generated by the subspaces [e;],[e3], [es]; - -.,[€n-1],
[e1,ex, €3], [e3, e4,€5), ..., [€2n-3, €202, €21-1), €1, €201, €2n]-

By Alg.%, = ®,, we mean the algebra of bounded operators which
leave invariant all of the subspaces in .%4,. It is easy to see that all
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such operators have the matrix form

*

* ¥ *

where all non-starred entries are zero. Note that all diagonal operators
and the identity operator 7 lie in Alg.%,,.

Let H, represent infinite-dimensional separable Hilbert space,
and let %, be the lattice of subspaces generated by [e;], [e3], [es], - - -,
[e1, €2, €3], [e3, €a, 5], ...

Let ®,, = Alg.%, be the algebra of bounded operators leaving every
subspace of .%,, invariant. Matricially, such operators have the form

where all non-starred entries are zero.

By an isometry of an operator algebra ® we mean a linear map
¢: @ — @ such that ||p(4)|| = || 4] for every 4 in ®. We do not assume
any algebraic properties for isometries, although the main theorem will
imply that such properties may exist.

Let i and j be two non-zero natural numbers. Then E;; is the matrix
whose (i, j)-component is 1 and all other entries are zero.

In this paper we will prove the following theorem.

THEOREM. Let ¢: Alg.%, — Alg. %, be a surjective isometry and
let o(I) = U. Then U and U* are in Alg.%,, and U is unitary. Let
9. Alg.H, — Alg. A, be the surjective isometry defined by ¢,(A) =
U*p(A) for all A in Alg.%,. Then either 9p(%,) = S, or 91(Fy) =
Gt If 01(SBy) = Sy, then there exists a unitary operator W such
that ¢ (A) = WAW* for all A in Alg.%,. If 9\(S,) = %%, then there
exist a conjugation J and a unitary operator W such that ¢,(A) =
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JWA*W*J for all A in Alg.%,. Let ¢: Alg.%, — Alg. %, be a surjec-
tive isometry and let ¢(I) = U, then U and U* are in Alg %, and U is
unitary. Let ¢,: Alg.%% — Alg. % be the surjective isometry defined
by (01(A) = U*(/)(A)for all A in Alg,%o Then q)l(I) =1, ¢1(Eii) =E;;
Joralli (i =1,2,...), 91(Zo) = Zo, and there are diagonal unitary
operators W and V such that ¢(A) = WAV for all A in Alg.%,.

1. Examples of isometries.

ExaMPLE 1. Let the Hilbert space be separable with an orthonormal
basis {¢;: k = 1,2,...} and let U be a diagonal unitary operator whose
(i, 7)-component is u;; such that |u;;| = 1 for all i. Define ¢: Alg. %, —
Alg %, by ¢(A4) = U*AU for all 4 in Alg.%,,. Then ¢ is a surjective
isometry such that ¢(I) = I, the (i, {)-component of ¢(A) is the same
as the (i, /)-component of 4 and if 4 = (g;;) is in Alg.%,, then the
(2 + 1,2i + 1)-component of ¢(A4) is uz;12i4+132i+1,2:42i2; and the
(2i + 1, 2i + 2)-component of ¢(A4) iS U;y1,2i4102i+1,2i+282i+2,2i+2-

In Examples 2 and 3, the Hilbert space is 2n-dimensional with an
orthonormal basis {ej,es,...,e€,}.

ExXAMPLE 2. Let D, be the n x n matrix with 1 the (i,n — i + 1)-
component (i = 1,2,...,n) and O elsewhere. Let Uy;y; = Dy @
Dyn_zi—). Define ¢: Alg.%, — Alg.%, by ¢(4) = Us;14U5;, for
every 4 in Alg.%,. It is straightforward to show that U,;,14U3;
and Uj; AUy, are in Alg.%, for every 4 in Alg.%,. So ¢ is a
surjective isometry such that ¢(I) = I, ¢(E1;) = Eait1.2i+1, ¢(E2) =
Esipis.-s 9(Ezic12i-1) = E33, 9(E2i2i) = Ep, ¢(Eziy12ir1) = Eny,
9(E2ir22i+2) = Eanans 9(E2i132i43) = Eanc120-15---5 @(E2n2n) =
Ejii22i+2. Moreover, it is easy to check that ¢(%,) = .%4,.

ExAMPLE 3. We denote the identity on n-dimensional Hilbert space
by I,. Let
0 I }
Vyir1 = .
2i+1 [ IZn—Zi 0

Then V3;,, is a unitary operator. Define ¢: Alg.%, — Alg.%, by
9(A) = V21 AVy;,, for every 4 in Alg.%,. It is straightforward
to show that V3;,14Vy;,, and Vi AV3;,, are in Alg%, for every
A in Alg.%,. So ¢ is a surjective isometry such that ¢(I) = I,
9(En) = Eziy1ir1, 9(E22) = E2ix22iv25 -+ 9(E2n-2i2n-2i) = Ean2n,
@(Ean-2ir1,2n-2i+1) = E11, 9(Ean-2is22n-2i42) = E225 -+, 9(E2n2n) =
E,; ;. Moreover, it is easy to check that ¢(%4,) = %,.
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EXAMPLE 4. Let ¢: Alg.%; — Alg.% be defined by ¢(4) = Ay for
every A in Alg.%, where if

ajp a0 ap ass az 0 ap
0 a 0 O 0 a 0O O

A= 2 ; then Ay = 33
0 a3 a3z asn 0 a3y axpn ap

0 0 0 aaq 0 0 0 ai

Define J: C* — C* by J(x1,x,x3,x4)" = (X3,%3,%2,%;)" for every
(x1, X2, X3, X4)" in C4.

Then J is a conjugation; that is,

(1) J is bijective.

(2) J(x+y)=Jx+ Jy for x, y in C4.

(3) J(ax) = aJx for every o in C and every x in C*.

(4) J2=1.

(5) (Jx,y) = (Jy,x) for x, y in C*.

It is easy to check that ¢(A4) = JA*J; ¢ is a surjective isometry by
(5) and ¢(I) = I. This isometry is not implemented by any unitary
operator. The algebra Alg.%, admits this kind of isometry for other
values of n. Note that in this example, if E is in .%,, then ¢(E)* is
in %,, that is, p(%,) = %..

2. General theorems. We want to show that every surjective isom-
etry on Alg.%, or Alg.%, is a composition of the types mentioned in
the examples. Our first task is to show that the image of the identity
under a surjective isometry of Alg.%, (or Alg.%,) must be a unitary
operator.

Let x and y be two non-zero vectors in a Hilbert space H. Then
Xx* ®y is a rank one operator defined by x* ® y(h) = (h, x)y for every
hin H.

LEMMA 1 (Longstaff [9]). Let & be a commutative lattice and let x
and y be two vectors. Then x*®y is in Alg.Z if and only if there exists
E in Z such that y is in E and x is in EL (EX means (E_)%), where
E_=V{F:Fisin¥ and F } E}.

The following lemma appears in an unpublished paper. We include
the proof for the convenience of the reader.

LEMMA 2 (Moore and Trent [10]). Let ¢: Alg%, — Alg. %, be a
linear surjective isometry. If A = ¢(I) and if x* ® x is in Alg.%,, then
llAx|| = [|x]|.
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Proof. Without loss of generality, we may assume that |x|| = 1.
Since x* ® Ax = A(x* ® x), the operator x* ® Ax lies in Alg.%,, and
there is an operator R in Alg.%, for which ¢(R) = x* ® Ax. For any
complex a,

I + aR|? = ||4 + a(x* ® Ax)]||?
= |[(4 + a(x* ® 4x))(A* + a((4x)* ® x))|
= ||[44* + (2Rea + |a]?)((4x)* ® 4x))||
<1+ || Ax|*|2Rea + |of?|.

By choosing a = —it purely imaginary, and by letting R = H + (K and
0 € o(K), we find that |1+15|? < 1+12]|4x]|?, or (||Ax||>—62)?—256t >
0 for all real 7, and it is easy to see that this condition implies that § =
0. Thus, o(K) = {0}, K = 0, and R is Hermitian. Now let 7 € o(R)
and let a = ¢ be real and deduce that |1 + 7|2 < 1 + ||4x||?|2t + 3|, or
2tt 41212 < ||Ax||?|2t + t2|. Choose ¢t = —2 to get 1> < 7, which means
that 7 > 0 (and hence R is a positive operator). Finally, let t — 0t and
conclude that t < ||4x]|?, and, consequently, that ||R| < ||4x]||?. But
IR] = llp(R)]| = lIx*®Ax|| = ||x|| | 4x|| = || 4x|. Thus, ||4x]|| < |4x]]?
and it follows that ||4x|| > 1. On the other hand, ||4|| = 1, so ||4x|| = 1
and we are done.

In particular, since e ®e; is in Alg %, ||4e;|| = ||le;|| = 1 by Lemma
2 for every 1 < i < 2n.

THEOREM 3. If ¢: Alg.%, — Alg A, is a surjective isometry, then
@(I) is a unitary operator in Alg %,,.

Proof. Let ¢(I) = A = (a;;). Then |a;;| = 1 by the above statement
for all odd numbers i; 1 < i < 2n. But [|[4|| = ||I||=1,s0a12 = a;2, =
0,a32=a33=0,as4 =a56 =0,..., @p_12n-2 = @2n—1,2n = 0. Thus,
@(I) = A is a diagonal matrix whose components have absolute value
1 and hence A = ¢(I) is a unitary operator in Alg.%,,.

Similarly, we can get the following theorem.

THEOREM 4. If ¢: Alg. %, — Alg.% is a surjective isometry, then
@(I) is a unitary operator in Alg.%.

Let ¢(I) = U. Then UA and U*A4 are in Alg.%, (resp. Alg. %)
if 4 is in Alg.%, (resp. Alg.%,). Define ¢: Alg. %, — Alg. %, by
p(A) = U*p(A) for every 4 in Alg.%, or ¢: Alg. %, — Alg %, by



102 YOUNG SOO JO

¢(A) = U*p(A) for every 4 in Alg.%,. Then ¢ is a surjective isometry
such that ¢(I) = 1.

Let Q = {A: A is a diagonal matrix in Alg.%, (or Alg.%,)}. Then it
is easy to check that € is the smallest von Neumann algebra containing
Sy (or Z) and Q = Alg %,N(Alg.%,)* (or Q = Alg %, N(Alg.Z0)*).

We will require the following facts, first proved by Kadison.

LeMMA 5 (Kadison [8]). A linear map ¢ of one C*-algebra into an-
other which carries the identity into the identity and is isometric on
normal elements preserves adjoints, i.e., p(A*) = (p(A))*.

DEFINITION 6. Let ®; and ®, be C*-algebras. A Jordan isomor-
phism or C*-isomorphism ¢: ®; — P, is a bijective linear map such
that if A is self-adjoint in ®,, then ¢(A) is also self-adjoint in ®, and
p(A") = (p(A4))".

LEMMA 7 (Kadison [8]). (a) A linear bijection ¢ of one C*-algebra
®, onto another ®, which is isometric is a C*-isomorphism followed
by left multiplication by a fixed unitary operator, viz, ¢(I).

(b) A C*-isomorphism ¢ of a C*-algebra ®, onto a C*-algebra ®,
is isometric and preserves commutativity.

LEMMA 8. ¢(Q) = Q, (where ¢ and Q are defined above).

Proof. Since ¢|S2 preserves adjoints by Lemma 5, ¢(£2) is contained
in Q. Similarly, $~!(Q) is contained in Q. Hence ¢(Q) = Q.

Since ¢: Alg. %, — Alg.%, (or Alg.%, — Alg.%,) is a surjective
isometry, just like ¢, and since the main theorem would be true of ¢
if it were true of ¢, we now work exclusively with ¢ and drop the “*”
symbol. Equivalently we assume that ¢ (/) = 1.

Then we can get the following corollary.

COROLLARY 9. If ¢: Alg.%, — Alg. %, (or Alg%%, — Alg.%,) is a
surjective isometry such that ¢(I) = I, then p(Q) = Q.

LEMMA 10. Let ¢: Alg.%, — Alg.%, (or Alg.%, — Alg %) be a
surjective isometry such that ¢(I) = I. Then E is a projection in Q if
and only if p(E) is a projection in Q.

Proof. First, suppose that E is a projection in Q. Since ¢|Q is a
Jordan isomorphism, ¢(E) = ¢(E*) = ¢(E)* and ¢(E) = ¢(E?) =
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¢(E)?. So ¢(E) is a projection in Q because ¢(Q) = Q. Suppose that
@(E) is a projection in Q. Then since ¢~!|Q is a Jordan isomorphism,
by the above argument ¢~ ' (E) = E is a projection in Q.

LEMMA 11 (Kadison [8)). If ¢ is a Jordan isomorphism from a C*-
algebra ®, onto a C*-algebra ®,, then p(BAB) = ¢(B)p(A)p(B) with
A and B in ®,.

THEOREM 12. Let ¢: Alg. %, — Alg. %, be a surjective isometry such
that p(I) =1. Let {e;: i = 1,2,...} be the orthonormal basis for which
the generators of the lattice are [e(],[es),...,[€mn-1],-..,[e1,€2,€3],
[es,es,e5),..., [€n—3,€2n_2,€2n_1],.... Then p([e;]) is rank-one for
eachi;i=1,2,....

Proof. Let E; = 9~ !([e,]) for each k; k = 1,2,..., that is, ¢(E}) =
[ex]. Then Ej is a projection in Q by Lemma 10. If E; is not a rank
1 projection, then E;, = E + F with E, F on Alg.%,,, both non-zero
projections. But then [e;] = ¢~ !(E) + ¢~ !(F) expresses [e] as a sum
of 2 non-zero projections.

With the same proof as Theorem 12, we can get the following the-
orem.

THEOREM 13. Let ¢: Alg. %, — Alg.%, be a surjective isometry
such that o(I) = 1. Then ¢([e;]) is rank-one in Q for each i; i =
1,2,...,2n.

LEMMA 14. Let R be an operator and suppose that there is a non-
negative number M and a positive number N such that, for all complex
numbers o with |a| > N, we have |R + al||?> < M? + |a|?>. Then R = 0.

Proof. Choose x in the Hilbert space H, with ||x|| = 1. We have
|Rx + ax||?> < M?+|a?, or |Rx||> + |a|*> + 2Rea(Rx, x) < M? +|af?,
or 2Rea(Rx,x) < M? — ||Rx||?. Choosing a = t(Rx, x) for positive
t, we get 2t|(Rx, x)|*> < M? — ||Rx||? for all ¢ > N. This is impossible
unless (Rx,x) = 0. The fact that this equation holds for all x means

that R = 0.

LEMMA 15 (Moore and Trent [10]). Let ¢: Alg.%, — Alg. %, (or
Alg %, — Alg.%y) be a surjective isometry such that ¢(I) = I. Let P be
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a projection in Q and let T be in Alg.%,, (or Alg. %) with T = PT P,
Then we have ¢(T) = ¢(P)p(T)p(P)* + ¢(P)*o(T)p(P).

Proof. We Igegir} by writing ¢(7") as 2 x 2 matrix, using the decom-
position I = P + P+:

_|Ri R 5 |1 0 s [0 0
(/’(T)—-[R3 R4]’ P—[O 0] and P _[0 e

where P = ¢(P). Then, for all complex a,

_ DIl _ Ri+a Ry
I7 +aPl = o1+l = | [ Fier e 221,
On the other hand, 7, written using “/ = P + P1”, is the matrix
T = [53]- So
2 *
RN e S][a S
1T+ aPl” = [0 o] = [0 0”0 0]

= laf? +|IS|I?

B “[8 IalzgSS*]

since SS* is a positive operator. Thus, |R; + a|]? < |a|? + ||S||?, and
Lemma 14 tells us that R; = 0. Similarly, by considering ||¢ + aPt|,
we can show that Ry = 0. So ¢(T) = Pp(T)P+ + P+o(T)P.

THEOREM 16. Let ¢: Alg. %, — Alg.% be a surjective isometry such
that 9(I) = 1. Let ¢(E2,'__1’2,-_1) = Ejj and let ¢(E2i,2i) = Eix. Then
|k —jl=1

Proof. Since

E3; 5iEi12iE2i2i = Esj_1; and

Esi1pi-1E2i-12iE3;_y i1 = Eai-12i,

Lemma 15 tells us that
0(E2i2:) " 9(E2i-121)9(E2i 2i)

+ 9(E2i21)0(E2i—1,2i)0(E2i2i)" = 9(E2i—1,2i)

and
@(Ezi—12i-1)9(E2i—121)9(Eai—12i-1)*
+ @ (E2i—12i-1)"9(E2i-1,2)9(E2i—1,2i-1) = ¢(E2i-1,2:)-

Then
(*) Ei59(Ezic12:)Exk + Exi9(Ei—12) Eile = ¢(Eai—121)
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and
Ejj9(Ezi—12)E}; + Ef;0(Ezi—12)Ejj = 9(Ezi-1,2)-

So we can get the following from the second equation of (x);

(1) If j is 1, then ¢ (E;;—;2;) is a matrix all of whose entries are zero
except for the (1,2)-component and the (1, 2n)-component.

(2) If j is an odd number and j # 1, then ¢(E3;_; ;) is a matrix all
of whose entries are zero except for the (j, j — 1)-component and the
(J,j + 1)-component.

(3) If j is 2, then ¢(E,;—; ;) is a matrix all of whose entries are zero
except for the (1, 2)-component and the (3, 2)-component.

(4) If j is an even number and j # 2, then ¢(E;_; ;) is a matrix
all of whose entries are zero except for the (j — 1, j)-component and
the (j + 1, j)-component.

(a) From the first equation of (x) we know the following: If k is 1,
then ¢(E,;_;2;) is a matrix all of whose entries are zero except for the
(1,2)-component.

(B) If k is an odd number and k # 1, then ¢(E;;_;3;) is a matrix
all of whose entries are zero except for the (k,k — 1)-component and
the (k, k + 1)-component.

(1) If k is 2, then ¢(E5;_;2;) is a matrix all of whose entries are
zero except for the (1, 2)-component and the (3, 2)-component.

(6) If k is an even number and k # 2, then ¢(E;_ ;) is a matrix
all of whose entries are zero except for the (k — 1, k)-component and
the (k + 1, k)-component.

Then the following cannot happen at the same time;
(1) and (o) because j # k.
1) and (B) because j = 1 and k > 3.
1) and () because k > 2.
2) and (@) because j # 1.
2) and (B) because j # k.
3) and (7) because j # k.
3) and (J) because k > 2.
4) and (a) because j > 2.
4) and (7) because j > 2.
4) and (J) because j # k.
hen the following can happen at the same time;
(1) and (7) if |k — j| = 1.
(2)and (r)if j=3 andso |j — k| = 1.
(2) and (9) if |[j — k| = 1.

=
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(3) and (o) if [j — k| = 1.
(3)and (B)if k =3 andso |j — k| = 1.
(4) and (1) if |j — k| = 1.
So we can get the result of the theorem.

Note that in all cases, ¢(Ey;_1;) is a scalar multiple of Ej; or E .
From this theorem, we can get the following corollary.

COROLLARY 17. Let ¢: Alg. %, — Alg.%, be a surjective isometry
such that o(I) = 1. Then (1) ¢(E;;) = E;; forall i;i=1,2,3,... and
(2) 9(Z0) = Zo-

Proof. Suppose that ¢(E},) = E;; fori # 1. Then ¢(Ey) = E;_1 -
or p(Ey) = Ei+l,i+1 by Theorem 16. If ¢(Ey) = Ei~1,i—1, then
@(E33) = E;_»;_7, and by continuing we get ¢(E;;) = Ej;. Let
¢(Eis1i+1) = Exr. Then since k > i+ 1, kK — 1 # 1, contradicting
Theorem 16. If ¢(E2) = Ejy1 41, then by Theorem 16 ¢(E33) =
Eii2it2,--s0(Exk) = Eivg—1ivk—1,---(x). But since ¢ is a surjective
isometry, ¢(E“) = E,; for some j. But ¢(E]]) = Ei+j——l,i+j—l by (%).
Then i+ j—1=1. So j =2 — i, which is impossible because i > 2.
Thus ¢(E,,) = Ey, and hence ¢(E;;) = E;; for all i by Theorem 16.
By (1) ¢(%%) = Z.

LEMMA 18. Let ¢: Alg.%, — Alg. %, be a surjective isometry such
that o(I) = 1. Let 9(Ey,) = E;; and let p(Ey) = Ei. If 1 < i < 2n,
then |i — k| = 1.

Proof. Since E11E12EIJ‘1 = E12 and EELZEIZEZZ = El2: E,','¢(E12)EI-JI-‘+
Ef9(En)E;; = ¢(E12) and Ej, 9(E1)Exi + Exc@(En)E, = 9(Ep).

(1) If i is an odd number, then ¢(E|,) is a 2n X 2n matrix whose
entries are zero except for the (i,i — 1)-component and the (i,i + 1)-
component.

(2) If i is an even number, then ¢(FE);) is a 2n x 2n matrix whose
entries are zero except for the (i — 1, i)-component and the (i + 1, i)-
component.

(o) If k is an odd number, the ¢(E/;) is a 2n X 2n matrix whose
entries are zero except for the (k, kK — 1)-component and the (k,k + 1)-
component.

(B) If k is an even number, then ¢(E},) is a 2n x 2n matrix whose
entries are zero except for the (k — 1, k)-component and the (k + 1, k)-
component.

Then the following combinations are impossible;



ISOMETRIES OF TRIDIAGONAL ALGEBRAS 107

(1) and () because i # k.

(2) and (B) because i # k.

The following combinations are possible;

(1) and (B) if |i — k| = 1.

(2) and (o) if |i — k| = 1.

By an argument similar to Lemma 18, we can get the following
lemma.

LEMMA 19. Let ¢: Alg. %, — Alg.%, be a surjective isometry such
that 9(I) = 1. Let ¢9(Eyi—12i-1) = Ejj and let 9(Ey;2i) = Epx. If
1 <j<2n,then|j—k|=1.

From Lemma 18 and Lemma 19, we can get the following corollary.

COROLLARY 20. Let ¢: Alg. %, — Alg. %, (or AlgZ%, — Alg%)
be a surjective isometry such that o(I) = I, ¢(Ezi_12;—1) = Ejj and
9(Ezii) = Exi. If 1 < j < 2n, then p(E3;_13i-2) and ¢(Ey;-12;) have
the form

or

i 0] | 0]

In particular, if ¢(E;;) = E;; foreach i (i = 1,2,...,2n), then there
exists a complex number «;; such that ¢(E;;) = o;;E;; for each E;; in
Alg %, (or E;; in Alg.%,).

In the following, we will investigate ¢(.%,) case by case.

LeEMMA 21. If ¢: Alg. %, — Alg. %, is a surjective isometry such
that o(I) = I and if 9(Ey1) = E\1, then 9(5,) = S

Proof. Since E\E\zE{; = Ei3, E\0(E)Ef; + Efj9(En)En =
¢ (E12). So p(E,) is a 2n x 2n matrix whose entries are zero except for
the (1, 2)-component and the (1,2n)-component. Set ¢(E»;) = Ei.
Since E5,E12Ery = Ep, Ei3 9(E12)Exi + Exi9(E12)Ey. = 9(Enn). So
the only possibility is k = 2 or kK = 2n. Assume that kK = 2. Then
9(E;;) = E;; for all i by Lemma 19; i = 1,2,...,2n. In this case,
¢(L,) = Z,. Assume that k = 2n. Since E5;E3Ey = E3; and
E3yEnEsy = E3, Es, 5,0(E3)Eanan + Eonpn9(Ex)E3, 5, = 9(E3)
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and Ej;9(E)E;; + Ejj¢(En)E;; = p(E3), where Ej; = ¢(E33). We
know that j# 1and j # 2n. By the first equation, ¢ (E3;) is a 2n x 2n
matrix whose entries are zero except for the (1,2n)-component and
the (2n — 1,2n)-component. If j is an odd number, then ¢(E3,) is
a 2n x 2n matrix whose entries are zero except for the (j,j — 1)-
component and the (j,j + 1)-component. If j is an even number,
then ¢(E3;) i1s a 2n x 2n matrix whose entries are zero except for
the (j — 1, j)-component and the (j + 1, j)-component. So the only
possibility is j = 2n — 1, that is, ¢(E33) = E2,—1 2,—1. By Lemma 19,
¢(Es4) = Ean—22n-25--+>9(Ean2n) = Ep. In this case, if ¢(Exy) =
E;;, then k and j have the same parity and it is straightforward to see
that ¢(£,) = %n.

COROLLARY 22. If ¢: Alg.%, — Alg.%, is a surjective isometry
such that p(I) = I and ¢(Ey\) = Ezp 2y, then 9(S,) = %5

Proof. Let ¢,: Alg. %, — Alg.%, be the surjective isometry in Ex-
ample 4. Then ¢, o ¢: Alg.%, — Alg.%, is a surjective isometry
such that ¢, o ¢(I) = I and ¢ o ¢(Ey;) = ¢1(Ezn 2n) = Epn. So
9100(L,) = Z5, by Lemma 21. Since ¢(5,) = %5, 9(Fn) = 55

LEMMA 23. Let ¢: Alg. %, — Alg.%, be a surjective isometry such
that p(I) = I and 9(L,) = & Then 9(Z) = B

Proof. 9(&}) = 0(Ba)t = (L)t = B,

COROLLARY 24. Let ¢: Alg.%, — Alg.%, be a surjective isometry
such that o(I) = 1. Let op(E\) = E;j; i # 1l and i # 2n. If i is
an odd number, then ¢(%,) = S,. If i is an even number, then
9(Hp) = %Jn'

Proof. First, let i = 2k — 1, for some k. Let ¢, be the surjective
isometry in Example 2; that is, ¢;(Ej;) = Ejt_j2—1- Then ¢, o
9(E1) = ¢1(Ex-12k-1) = E11. By Lemma 21, ¢ 0 9(%,) = £,.
So ¢(HA,) = ¢1_1(°%n)- Since ¢1(Hn) = Hn, 9(Hn) = (Pl—l(a%n) =
Z,. Let i = 2k for some k. Let us consider V,_,;,; in Example
3 and let ¢,: Alg. %, — Alg.%, be a surjective isometry in Example
3. Then ¢, 0 ¢: Alg.%, — Alg.%, is a surjective isometry such that
@20¢(I) =1 and g3 0 9(Ey1) = ¢2(Esx k) = Ezn2n. By Corollary
22, 930 9(H) = L. S0 9(Fp) = 95 (L) Since 92(Hy) = B,
0(Sn) = Fi-
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If we summarize lemmas and corollaries, then we can get the fol-
lowing theorem.

THEOREM 25. Let ¢: Alg.%, — Alg.%, be a surjective isometry
such that o(I) = I. Let ¢(E\\) = E;;. If i is an odd number, then
0(Ly) = Lou. If i is an even number, then p(%,) = Z5%.

Let ¢: Alg. %, — Alg.%, be a surjective isometry such that ¢(I) =1
and ¢(%,) = Z:. If J is the bijective conjugation which is defined
below, then for all x, y in C?" and all o in C

) Jx+y)=Jx+Jy,

(2) J(ax) =aJx,

(3) (Jx:‘]y) = (y,x),

(4) (Jx,y) = (Jy,x) and

(5) J2=1.
Define
J(X1, X2, .., X20)" = (Xam, Xan—t15-- -, X1)f
for every (x1,X2,...,Xa,)" in C?",

If A is in Alg.%,, then the map 4 — JA*J is linear and “flips” A
across the northeast-southwest diagonal (see Example 4).

Define ¢,: Alg%A, — Alg%, by ¢;(4) = JA*J for every A4 in
Alg.%,. Then ¢, is well-defined by the above statement, linear, ¢,
is a surjective isometry, and ¢,(%,) = %;. If 9(%,) = %, then
define ¢ = p; 0 ¢: Alg.%, — Alg.%,. Then ¢(H,) = ¢ 0 ¢(Ly) =
01(%,) = %, by Lemma 23.

Since (JAJ)* = JA*J, ¢7' = ¢, and we can get the following
theorem.

THEOREM 26. Let ¢: Alg. %, — Alg.%, be a surjective isometry
such that o(I) = I and 9(%,) = Z:-. Then, there exist unitary opera-
tors U and V such that §(A) = UAV ifand only if p(4) = JV*A*U*J
Jor every A in Alg.%,.

Let ¢: Alg.%, — Alg.%, be a surjective isometry such that ¢(I) =
I, 9(E;;) = Ej; foreach i; i = 1,2,... and ¢(%%) = Zo. Then by
Corollary 20, there exists a;; in C such that ¢(E;;) = a;;E;; for all
E;; in Alg %o (|i — j| = 1). Then we claim that there exists a diagonal
unitary U such that ¢(E;;) = UE;;U* for all E;; in Alg % (|i—j| = 1).
Let U be a diagonal matrix whose (j, j)-component is €%/ for all j
(J=12,...).
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Then the equation ¢(E;;) = UE;;U* holds for all E;; in Alg.%,
provided the following system can be solved
ei0=02) = ¢ .
el(03=62) — g5,
el(03=64) — q5,.

The equation can be solved recursively (6; may be set equal to 0).
From these facts, we can get the following theorem.

THEOREM 27. If ¢: Alg. %, — Alg % is a surjective isometry such
that o(I) = 1, 9(Ey;) = Ejj forall i (i = 1,2,...) and ¢(%0) = Z,
then there exists a diagonal unitary operator U whose (j, j)-component
is e’ for all j (j = 1,2,...) such that p(A) = UAU* for every A in
Alg %,

For the rest we will consider a surjective isometry such that ¢(4,)
= %,. As a special case, we first consider n = 1.

THEOREM 28. Let ¢: Alg.% — Alg.% be a surjective isometry such
that o(I) = I and ¢(E;;) = E;;; i = 1,2. Then there exists a unitary
operator U such that 9(A) = UAU* for every A in Alg.%.

Proof. Let
eiel 0
U = [ 0 eiOZ] .
Let

_Jan ann _Jan b2
A—[O azz] and ¢(A)—[0 dzz}'

Then there exists a complex number « such that a;; = ab;;. This a
depends only on ¢ (by linearity), not on the matrix entries. Note that
la| = 1 because ¢ is an isometry. If we fix e/%t and if we determine
e'%2 such that e’01¢~192 = o, then p(4) = UAU* for every 4 in Alg.%.

LEMMA 29. Let U be a unitary operator. Then ||I + U| = 2 if and
only if L is in o(U).

ProPosSITION 30. Let A be an n x n matrix (n > 2) with 1 on the
diagonal and just below it, 1 the (1,n)-component and O elsewhere.
Then || 4] = 2.

Proof. Let U be an n x n matrix with 1 just below the diagonal,
1 the (1,n)-component and O elsewhere. Since U(xy,Xx2,...,X,)! =
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(Xn, X1,--.,Xn_1)" for every vector (xi, X3,...,X,)" in C*, U is a unitary
operator. Then 4 = I+ U. Let X be a vector in C" all of whose entries
are 1. Then since UX = X, 1 is in a(U). So ||4|| = 2 by Lemma 29.

PRrOPOSITION 31. Let U be an n x n matrix with t; the (i + 1,1i)-
component and t, the (1,n)-component (i = 1,2,...,n—1). If 1l is
in o(U) and |tj| = 1 for every i; i = 1,2,...,n, then U is a unitary
operator and []_, ti = 1.

Proof. Since U(x1,X2,...,%Xn)" = (tnXn, 11 X1, 82X25 + ., tn_1Xp_1)* for
every vector (X, X3,...,X,)" in C*, U is a unitary operator. Since 1 is
in o(U), there exists a non zero vector (xi, X2,...,X,)’ such that

U(X1,X25 -« s Xn)' = (tnXns 11 X1, 82X, oy by 1 Xn—1)’
= (X1,X2,...,%n)".

So thxy, = X1, L1 X1 = X2, hXy = X3,...,tn—1Xn_1 = Xn. If x; = 0 for
some [ (1 <i<n),thenx; =x;=---=x, =0. So x; # 0 for every i
(i=1,2,...,n). Then ([T}, t;) TI/-, xi = [T, xi;. Hence, [T, t; = 1.

PROPOSITION 32. Let A be an n x n matrix with a; the (i, i)-compo-
nent (i =1,2,...,n),sj the (j+1, j)-component (j = 1,2,...,n—1), s,
the (1, n)-component and O elsewhere. If |a;| = |s;| =1 (i=1,2,...,n)
and ||A|| = 2, then T}, a; = [T, si.

Proof. Let U be an n x n diagonal matrix whose (i, i)-component
isa;! forall i (i =1,2,...,n). Then U4 is the n x n matrix with 1
on the diagonal, a;;'s; the (i + 1,i)-component (i = 1,2,...,n — 1),
ay Is, the (1, n)-component and O elsewhere. Let V' be an n x n matrix
with a;'s; the (i + 1,1)-component (i = 1,2,...,n — 1), a;''s, the
(1, n)-component and 0 elsewhere. Then V' is a unitary operator and
UA =1+V. Since U is a unitary operator, |UA|| = ||4]| = || [+ V] = 2.
By Lemma 29, 1 is in o(V'). Since

a7 syl = |ay2s1| = lag's2) = -+ = |ag 's,g| = 1,

by Proposition 31,

i (@) "si ) a7 sn = ’ a;! ) si]=1.
1 i
i=1 i=1 i=1

Hence 17, a = [I, s
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LEMMA 33. Let ¢: Alg. %, — Alg.%, be a surjective isometry such
that 9(E;;) = E;; for each iy i =1,2,...,2n and n > 2. Let ¢(E;j) =
a;;E;j for all E;j in Alg %, where |a;;| = 1 for all i, j. Then

1203203405405 * * * Q1 2001 2 = 1.

Proof. Let A be a 2n x 2n matrix with 1 the (2 — 1, 2i)-component
(i =12,...,n) and the (2j + 1,2j)-component (j = 1,2,...,n—1)
and the (1,2n)-component, and O elsewhere. Then, by hypothesis,
¢(A) = (a;;). Let B be the n xn matrix with 1 on the diagonal and just
below it, 1 the (1, n)-component and O elsewhere. Note that the n x n
matrix B and the 2n x 2n matrix A have the same norm. Let D be the
n X n matrix with ay;_; 5; the (i, i)-component (i = 1,2,...,n), aj 2,
the (1, n)-component, a;y;.,; the (j + 1, j)-component (j = 1,2,...,
n— 1) and O elsewhere. Then ||D|| = ||¢(A4)||. Since ¢ preserves norm,
|4l = lle(4)||. So ||B|| = ||D||- By Proposition 30 ||B|| = 2 and hence
”D” = 2. Since la2,~_1,2i| = Iazl'__l’zi_zl = 1 for each I; 1= 1,2,. .., N

Q120i3203400540056 * * * Q21 2n—2Q2n—1,2nQ1,2n = 1

by Proposition 32.

THEOREM 34. Let ¢: Alg.%, — Alg.%, be a surjective isometry
such that ¢(E;;) = E;; for each i; i = 1,2,...,2n and n > 2. Then
there exists a unitary operator V' such that ¢(A) = VAV* for every A
in Alg.%,,.

Proof. Let A = (a;;) be in Alg.%, and let ¢(E;;) = «;;E;; for all
E;; in Alg.%,, where |a;;| = 1 for all ;.

Let V' be a 2n x 2n diagonal matrix whose (j,j)-component is
et for all j (j = 1,2,...,2n). Then VAV* is the 2n x 2n matrix
with a,, the (r,r)-component (r = 1,2,...,2n), eiepap,p+1e“"p+l the
(p,p + 1)-component (p = 1,3,...,2n — 1), e'%a,, je7"%-1 the
(g,q—1)-component (¢ = 3,5,...,2n-1), e?%1a; 5,e7%n-1 the (1, 2n)-
component and O elsewhere.

So the theorem will be proved if we can determine e, e, . . it
satisfying the following relations;

elfe=if = g,
ei03e=i02 — o35,
ei03¢=i0s — o3,

eitn-10=i00n = a2p—1,2n-

eltie=i0m = @ ,,.
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Let a;; = €' for all 4, j such that E;; is in Alg.%,. Then 6,3, 63,
034, eees 02,,_1,2,, and 01,2,, are known by Q12,032,034,...,02,12p
and «;y, respectively. It will suffice to solve the linear system;
(¥)...,00 =0y = 01z, 03— 0y = O3,...,00_1 — 02y = 02512
and 01 - 02,, = 91,2,,.

Let A be the matrix of coefficients of () and let 4!, 42,..., A%"
be the column vectors of A. Let B = (612,032,034, .., 02n—1.2n, 01.20)"
Then the system (x) has solutions if and only if rank4 =
rank(A4!, 42, 43,..., 4%"  B).

It is easy to check that the left hand side is » — 1. Thus, the rank
of the right hand side must be n — 1 and the ranks will be equal if

O12—03+034—--+ 02,12, —012,=0.

But the last equation is the same as aj2a3234054 - - 2p—1 2,01 20 = 1,
which we know to be true by Lemma 33. So (*) has solutions. Hence
p(A) = VAV* for every A4 in Alg %,,.

THEOREM 35. If ¢: Alg. %, — Alg%, is a surjective isometry
such that 9(I) = I, p(En1) = Ezip12i41, 9(En) = Epipi, ¢(E33) =
Eyic12i-15-- - 9(Ezic12i-1) = E2, 9(E2i2i) = Eq1, 9(Ezig12i41) =
Ernons .o s9(Ezn2n) = Ezit2iy2. Then there exists a unitary operator
W such that p(A) = WAW™ for all A4 in Alg.%,.

Proof. Let Upit1 = Dyiy1 @ Dyp_zi1.

Define ¢,: Alg%A, — Alg%A, by ¢((4) = U1 4U5;,, for every
A in Alg.%,. where Uy, = Uy;, ;. Then ¢, is a surjective isometry
because U,; 1 AU,;, 1 is in Alg. %, for every 4 in Alg.%4,. See Example
2. Define ¢ = ¢, 0 9. Then ¢(E;;) = ¢, 0 ¢(E;;) = E;; for each
i,1=1,2,3,...,2n. So there exists a unitary operator ¥ such that
@(A) = VAV* for every A in Alg.%, by Theorem 34. Since ¢(A4) =
910 9(4) = Upr19(A)U3,,, = VAV* for every 4 in Alg.%,, 9(4) =
Us; (| VAV*Uyjyy. Set Us; |V = W. Then ¢(A4) = WAW™* for every A4
in Alg.%,,.

THEOREM 36. If ¢: Alg.%, — Alg.%, is a surjective isometry such
that o(I) = 1, 9(E11) = Eziy12i415

9(E22) = Ezit22i42> -+ > 9(Ean—2i2n-2i)
= Eypon, @(E2n-2i41,2n—-2i+1)
=E,...,0(Em2n) = Eni 2,
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then there exists a unitary operator W such that ¢p(A) = WAW™* for
every A in Alg %,

Proof. Let

0 I,
Van—2iy1 = []2. 2n() 21:' .
i

Define ¢, : Alg. %, — Alg%, by ¢1(A) = Vapn-2i114V5,_5;,, for every
A in Alg.%,. Then since V2,414V, 5, and Vo 5. 1 AVap_2it1
are in Alg.%, for every A in Alg.%,, ¢, is a surjective isometry.
See Example 3. Define ¢§ = ¢; o 9. Then ¢(E;;) = E;; for each i,
i=1,2,...,2n. So there exists a unitary operator U such that ¢(4) =
UAU* for every A in Alg.%, by Theorem 34. Since ¢(A) = ¢, o
9(A) = Vap2i19(A)Vy, 5,1 = UAU” for every 4 in Alg %, ¢(A4) =
Vor_2is1UAU V2 2y for every A in Alg%,. Set V), _,. U =W.
Then ¢(A) = WAW™ for every A4 in Alg.%,,.

THEOREM 37. If ¢: Alg. %, — Alg.%, is a surjective isometry such
that o(I) =1, p(E11) = E11, 9(Ex2) = Eann, 9(E33) = Ezp—12n-15-- -5
P(Ezi—12i-1) = Ean—ic1-2)2n-i-1-2)s++->9(E2n2n) = Ep, then
there exists a unitary operator W such that p(A) = WAW™ for every A
in Alg.%,.

Proof. Let U = Dy & D,,_,. Define ¢,: Alg.%, — Alg.%, by
¢1(4) = UAU* for every A in Alg.%,, where U = U*. Then ¢,
is a surjective isometry because UAU is in Alg.%, for every A in
Alg.%,. Define ¢ = ¢, 0¢. Then ¢(E;;) = 910 ¢(E;;) = Ey; for
each i, i = 1,2,...,2n. So there exists a unitary operator V' such
that ¢(A) = VAV* for every A in Alg.%, by Theorem 34. Since
§(A) =p00(4) =Up(A)U* = VAV* for every A in Alg. %, p(A) =
U*VAV*U. Set U*V = W. Then ¢(4) = WAW™* for every A in
Alg %,.

The last three theorems exhaust all possible cases where ¢(E;;) =
E,, and k is an odd number. Then the last three theorems show that
there exists a diagonal unitary operator U such that ¢(A) = UAU* for
every A in Alg %,,. If k is an even number, then Theorem 26 and the
last three theorems show that there exists a unitary operator W and
a conjugation J such that ¢(4) = JWA*W*J for each A4 in Alg.%,.
If p(I) = U # I, then the reduction following Lemma 8 shows that
there exists a unitary U so that the isometry ¢(4) = U*¢p(A4) has one
of the above two forms. Thus the main theorem has been proved.
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