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Consider the solution of the capillary surface equation over do-
mains with a corner. It is assumed that the corner is bounded by
lines. If the corner angle 2o satisfies 0 < 2a < wand o +y < m/2
where 0 < y < /2 is the contact angle between the surface and the
container wall then it is shown that the leading term which was dis-
covered by Concus and Finn is equal to the solution up to O(r¢) for
an ¢ > 0 where r denotes the distance from the corner.

We consider the non-parametric capillary problem in presence of
gravity over a bounded base domain Q C R? with a corner. That
means, we seek a surface S: u = u(x), defined over Q, such that S
meets vertical cylinder walls over the boundary dQ in a prescribed
constant angle y such that the following equations are satisfied, see
Finn [3],

(1) divTu=xu inQ,
(2) v-Tu=cosy on the smooth parts of 0Q,
where

Du

V1 +|Dul?’
x = const. > 0 and v is the exterior unit normal on 9Q.

Let the origin x = 0 be a corner of {2 with interior angle 2« satis-
fying

(3) 0<2a<m.

We assume that the corner is bounded by lines near x = 0, see
Figure 1. Furthermore, we assume that the contact angle satisfies

T
5.
Concus and Finn [2] have shown that u is bounded near x = 0 if and
only if a +y > m/2 is satisfied.

In the case a + y > n/2 there exists an asymptotic expansion of u
near the origin, cf. [4]. In the borderline case o + y = n/2 Tam [5]

(4) 0<y<
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FIGURE 1

obtained that the normal vector to the surface .S is continuous up to
the corner.

In this note we are interested in the case
n
5
If (5) is satisfied, then a solution of (1), (2) is unbounded near the
origin, see Concus and Finn [2] or Finn [3, Theorem 5.5]. Moreover,
the leading term of a possible asymptotic expansion was given in these
works. Here we show that this term is an approximation up to O(r®)
for the solution itself.

The easy proof is based on a comparison principle of Concus and
Finn [1], see also Finn [3, Theorem 5.1] and requires only some cal-
culations with barrier functions which are not much different from
comparison functions used by Concus and Finn [2], see also Finn [3,
Proof of Theorem 5.5].

Let r,0 be polar coordinates centered at x = 0, and set k =
sina/cosy.

(5) a+7y<

THEOREM. Let u be a solution of (1), (2). Then, provided (3), (4)
and (5) are satisfied, one has for an ¢ > 0 the expansion

Y- cos @ — Vk2 —sin® 6 N
- kxr

o(r?)
near the corner.

Proof. We set B,(0) = {x € R;x? + x3 < p?}, p>0,and Q, =

QN B,(0). Let
o 00— Vk2 —sin’ 0

krxr
and set w = v — Ar* where A = const. > 0 and A = const. > 0.
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Using polar coordinates, we obtain after some calculation that there
are positive numbers 7y, Ky and Ay such that for all r, 4 and A4 with

(6) O<r<r, A>0, 0<Ai<4i and Ai1<Kj
we have
(7) divTw = kw + Axr* + n, + 1,

in Q,,, where
Im| < cir® and |na| < cydArt.

The constants ¢;, ¢; do not depend on r, A and A. Moreover, we find
after calculation that

(8) v-Tw<cosy onZX, ify>0
and
(9) v-Tw=cosy=1 onZ, ify=0

for all r, A and A satisfying (6). Here we set
Z, =[0Qn B,(0)\{0}.

Now, we choose 4; and 4; (4; > 0 small and 4; > O large) from
the region defined by (6) such that

(10) Ak — A —cr3 >0

is satisfied in €, , r; > 0 small enough, r; < ry. Set I', = QNI B,(0).
We may choose 4 > A; and A, < A; satisfying (6) such that we
have v(r;,0) — A;gr;12 < u on I';. The boundedness of u on l_",1 is
a consequence of a result of Concus and Finn [2], cf. also Finn [3,
Proof of Theorem 5.5]. The inequality (10) remains valid for these
A,, A, too. That means, we have obtained that w = v — A,r*2 satisfies
divTw > kw in Q,, cf. (7) and (10), v-Tw < v-Tu on X, , cf. (8) or
(9) and (2), and w < u on I';,,. The comparison principle of Concus
and Finn, see for example Finn [3, Theorem 5.1], implies

v—Ayr? <u in Q.

Setting w = v + Ar*, we obtain an upper bound for u as follows.
Again, by calculation we find in Q,, for r, 4, 4 satisfying (6) (we use
the same notation for the constants ry, K, ..., which may be different
from the corresponding constants from above) that

(7) diva:xw—Axr’l+711+n2
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where 1, n, fulfill the same inequalities as above. If y > 0, then for
r, A and A satisfying (6), we see after some calculation that

(8" v-Tw > cosy + c3AAr*t! — cyr?

is true on X,, with positive constants c3 and ¢4 not depending on 4, r
and A. Suppose that (6) and that for a positive constant K, K; < Kj,
the inequality K, < A4 is satisfied. In particular, we assume that

(11) K| < AA < Ky

for A and A from the region given by (6).
Now, inequality (8') implies that there are positive constants r;, 4,
and A, such that one has

(12) v-Tw>cosy onZX,

for all 4 and A with 4 > A, and 0 < A4 < A, satisfying (11). We may
choose an A = A, and a A = 4, such that the inequality

(10") —Aar* (K — cdy) + ¢ < 0

takes place in Q,, for an r, < r;. Now, we take 43 large enough,
Az > A,, and A3 > 0 small enough, A3 < 4,, so that (11) and the next
inequality (13) are both satisfied,

(13) v+ A3ry >u onT,.

Hence, since (10') remains valid if A4, is replaced by 43 and 4, by 43,
we obtain, see (7') and (10'),

diviw <kw in Q,,.
From (13), this inequality and because (12) is true on Z,, it follows
v+ A3 >u inQ,

from the comparison principle of Concus and Finn.

If y = 0, then the above considerations with respect to £ are su-
perfluous since (9) takes place for this w too. Thus, the theorem is
proved.

REMARK. An inspection of the above proof shows that we have
proven in fact a stronger result as formulated in the theorem: there
exist positive constants py, A and A only depending on «, y and k¥ and
not on the particular solution u considered such that

lu—v| < Ar* inQ,,.
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This follows because r; in the above proof concerning the lower bound
for u and r, which occurs in the proof of the upper bound do not
depend on u. Then we use that there are bounds for |u| on T, and T,
which do not depend on u itself, compare Finn [3, Proof of Theorem
5.5].
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