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ON THE FINEST LEBESGUE TOPOLOGY
ON THE SPACE OF ESSENTIALLY

BOUNDED MEASURABLE FUNCTIONS

M A R I A N N O W A K

Let (Ω, Σ, μ) be a σ-finite measure space and let % and <%o denote
the usual metrizable topologies on L° and L°°, respectively. In this
paper the space L°° with the mixed topology 7 ( ^ , ^ | L ° ° ) is exam-
ined. It is proved that γ(<%o,<%\L°°) is the finest Lebesgue topology
on L°°, and that it coincides with the Mackey topology τ(L°°, L1).

1. Introduction. For notation and terminology concerning Riesz
spaces and locally solid topologies we refer to [1].

Let (Ω, Σ, μ) be a σ-finite measure space, and let L° denote the set of
equivalence classes of all real valued //-measurable functions defined
and finite a.e. on Ω. Then L° is a super Dedekind complete Riesz
space under the ordering x < y9 whenever x(t) < y{t) a.e. on Ω. The
Riesz F-norm

IIJCIIO = / \x(t)\(l + \x(t)\)-ιf(t)du for= ί
JΩ

where a function / : Ω —• (0, oo) is //-measurable with / Ω f(t) dμ = 1,
determines a Lebesgue topology on L°, which we will denote by ^ (see
[7,1, §6], [1, Theorem 24.67]). This topology generates convergence in
measure on the measurable subsets of Ω whose measure is finite. We
will denote by ^ the topology on L°° generated by the usual 2?-norm

Halloo = esssup|x(0|.
tea

Moreover, we denote by σ{L°°,Lx), τ(L°°,Lι) and β(L°°,Lι) the
weak, Mackey and strong topologies on L°° respectively, with respect
to the dual pair (L°°,ZΛ (, )), where

(x,y)= f x(t)y(t)dμ for x e L°°,y e L1.
JΩ

In this paper we shall examine the space L°° with the mixed topology
<9o|L°°). This topology is defined as follows. Take a sequence
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(εn) of positive numbers, a number r > 0 and let

where 5(r) = { J C E L ° ° : ||X||OO < r and F(βΛ) = {x e L°°: \\x\\0 < εn}.
Then the family of all such W((εn),r) forms a base of neighbour-
hoods of zero for y{%o,3^\L^) (see [11, p. 49]). In view of [11, The-
orem 2.2.2] y{%o,^o\L^) is the finest linear topology on L°° which
agrees with ^ | L ° ° on || ||-bounded sets. Henceforth, we will write
briefly y instead of γ(9Zo9&o\L<χ>)

The space of bounded sequences l°° with the mixed topology γ has
been investigated in [4], where among other things, the results from
Theorems 5, 6 and 8 below are obtained. The mixed topology γ on
l°° is the same as the strict topology β [3] on C(S), where S = N =
the set of all natural numbers.

2. The mixed topology γ on L°°. It is well known that the norm
topology %Q on L°° satisfies both the Fatou property and the Levi
property (see [7, IV, §3] and [7, X, §4]), and that %o does not satisfy
the Lebesgue property if Ω does not consist of only finite number of
atoms (see [7, IV, §3]). We shall show that the mixed topology γ is the
finest Hausdorff Lebesgue topology on L°°. We start by giving some
characterization of sequential convergence in (L°°, 7).

THEOREM 1. For a sequence (xn) in L°°, xn —• Ofor γ if and only if
| | * Λ | | O —• 0 and | |x«||oo < M for some M > 0 and all n = 1 ,2 , . . . .

Proof Since the balls B(r) = {x e L°°: \\x\\oo < r}, r > 0 are
closed in 3^ (see [7, IV, §3, Lemma 5]) the result follows from [11,
Theorem 2.3.1].

We now are able to prove the basic property of y.

THEOREM 2. The mixed topology y is the finest Hausdorff Lebesgue
topology on L°°.

Proof. Using [1, Theorem 1.2] it is easy to show that γ is a lo-
cally solid topology. In order to show that γ is a Lebesgue topology,
let us assume that xft j 0 holds in L°° and let (εn) be a sequence
of positive numbers and r > 0. Then there exists an increasing se-
quence of indices {an} c {a} such that xan j 0 holds in L°°, because
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L°° has the countable sup property (see [9, Proposition 5.20]). Since
<9Q is a Lebesgue topology, we have xan —• 0 for γ by Theorem 1.
Then there exists a natural number n$ such that xan e W((εn), τ), so
xa G W((εn), r) for a > ano, and hence xa —• 0 for y. Now let £ be a
Hausdorff Lebesgue topology on L°°. Then by [1, Theorem 12.9] we
have ί[-jc,X] = ,5o|[_x?X] for every 0 < x E L°°. Hence, by [11, Theo-
rem 2.2.2] the inclusion ζ c γ holds, and thus the proof is finished.

REMARK. It is known that L°° has no minimal topology, if the
measure μ is atomless [2].

We now consider the problem of separableness of the space (L°°, γ).
First, we recall some definition. Let ~ be the following equivalence
relation in Σ: A ~ B if and only if μ(A - B) = 0 (- denotes the
symmetric difference). Denote by Σ/ ~ the set of equivalence classes
and by [A] the equivalence class of A, Then on Σ/ ~ one can define a
metric function p([A],[B]) = \\χA - XB\\O (XA denotes the character-
istic function of the set A.) The measure μ is said to be separable if
the metric space (Σ/ ~,p) is separable (see [7, I, §6]).

THEOREM 3. The space (L°°, γ) is separable if and only if the mea-
sure μ is separable.

Proof. Assume that the space (L°°, γ) is separable and let 0 < x G
L°. Let xn = xΛne, where e denotes the constant function one. Then
0 < xn ΐ x holds in L°, so xn —> x for «̂ J. Thus L°° is dense in
(L°,«9δ), hence ( L 0 , ^ ) is separable by hypothesis [7, 1, §6]. By [7, I,
§6, Theorem 16] the measure μ is separable.

Next, assume that the measure μ is separable. Let

CkXAk AkeΣ,μ(Ak) <oo,
k=l

Akx Γ\Akl = 0 for/cj φk2,ck GR,mGN

where R denotes the set of real numbers. Then 3° c L°° and using
Theorem 1, by usual argument one can show that the set & is dense
in (L°°,y). Let ΣQ be a countable subset of Σj ~, which is dense in

(Σ/ ~,/>). Let ĉ b = {ΣΓ=i r ^ ^ G ^ : ί^itl 6 Σ o ? ^ Ξ Q}? where Q
denotes the set of rational numbers. Let 0 < x = Σ/*= 1 ̂ /^^ G ^ .
Then, by hypothesis, for every k = 1,..., m there exist a sequence
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([A%]) in ΣQ and a sequence (r£) of positive rational numbers such
that \\χAn -χAk\\0 -> 0 as n -> oo and 0 < r\ \n ck for k = l , . . . ,m.
Putting xn = Y%=\ rk%An

k for n = 1,2,..., we have \\xn - x | | 0 -+ 0 and
|jcΛ(ί)l < maxi<*<mfy a.e. on Ω. Thus, by Theorem 1, xn -> * for
y. It follows that the set &>0 is dense in (^, y|^), so ^b is dense also
in (L°°, y). Thus the space (L°°, y) is separable, because the set 3% is
countable.

The next theorem describes the topological dual of (L°°, y).

THEOREM 4. For a linear functional f on L°° the following state-
ments are equivalent:

(i) / is continuous for y.
(ii) / is sequentially continuous for γ.

(iii) There exists a unique y e Lι such that

f(x) = / x(t)y(t) dμ for x e L°°.
JΩ

Proof, (i) <* (ii) It follows from [11, Theorem 2.6.1].
(ii) <* (iii) By Theorem 1, the functional / is sequentially continu-

ous for y if and only if it is sequentially order star-continuous, and if
and only if it is sequentially order continuous (cf. [6, VII, §2]). Thus,
in view of [7, VI, §2, Theorem 1] the proof is finished.

As an application of Theorems 2 and 4 we get the following impor-
tant property of y.

THEOREM 5. The mixed topology γ on L°° is a Mackey topology,
i.e., y = τ(L o o,L 1).

Proof. Since the Mackey topology τ(L°°,Lι) is a Lebesgue topology
(see [1, Ex. 4, p. 163] and [1, Theorem 9.1]), by Theorem 2 we have
τ(L o o,L 1) c y. According to Theorem 4, it suffices to show that y is
a locally convex topology. Indeed, let us put xn(t) = n for t e Ω and
n = 1,2, Let 9] be the generalized inductive limit topology of
(L00\τ{L°°',Lι), j n , [-xn,Xn]) (see [5, p. 2]), i.e., JΊ is the finest of all
locally convex topologies ξ on L°° under which the inclusion maps

/ fΓ— v v 1 τ(T°° Γhlr -Λ —* (J°° ?\

are continuous for n = 1,2, By [5, Proposition 5] ^j is also the
finest of all linear topologies ξ on L°° under which each of the maps j n
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is continuous. Since γ and τ(L o o,L 1) are Hausdorff Lebesgue topolo-
gies, by [1, Theorem 12.9] we have

7[-XHfXH] = τ{L»X)\{-XntXΛ for n = 1 , 2 , . . . .

Thus γ c3J. On the other hand, since

W π ] c τ t L ^ L 1 ) ! ^ ^ ] = 5 5 | [ - W l l I for n = 1,2,...,

by [11, Theorem 2.2.2] we get ̂ c y . Thus <9/ = y; hence γ is locally
convex. Therefore, we have γ c τ(L°°, L 1). Thus the proof is finished.

For a linear topology F on L°°, we will denote by Bd(y) the col-
lection of all y-bounded subsets of L°°.

Additional properties of γ are included in the next theorem.

THEOREM 6. The space L°° endowed with γ is complete.

Proof. Since γ is a Lebesgue topology, in view of [1, Theorem 13.9]
it suffices to show that γ is a Levi topology. But Bd(y) = B d ( ^ ) [11,
Theorem 2.4.1], so γ is a Levi topology, because we know that <%o is
a Levi topology.

COROLLARY 7. 77ze mixed topology γ is not metrizable.

Locally convex Hausdorff space (X,ξ) is called sequentially barreled
if every σ(X*,X)-convergent to zero sequence in the topological dual
X* = (X,ζ)* is equicontinuous [10].

THEOREM 8. The space (L°°, γ) is sequentially barreled.

Proof. Combining Theorem 4 and Theorem 5, we have γ =
τ(L o o,(L o o,y)+), where (L°°,y)+ denotes the sequential topological
dual of (L°°,y). Since the space (L°°,γ) is complete, according to
[10, Proposition 4.3] the space (L°°, γ) is sequentially barreled.

Since L°° is the norm dual of L1 we have β{L°°,Lι) = 3^. There-
fore, according to Theorem 4 and Corollary 7 we obtain that the space
(L°°, γ) is not barreled.

Additional characterizations of sequential convergence in (L°°,γ)
are included in the next theorem.
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THEOREM 9. For a sequence (xn) in L°° the following statements are
equivalent:

(i) xn ->Oforγ.
(ii) xn —> 0 for the absolutely weak topology \σ\(L°°,Lx).

(iii) / Ω \xn(t)y(t)\ dμ -• Ofor every y e ZΛ

Proof (i) ^ (ii) Since \σ\(L°°,Lι) c τ ^ 0 0 ^ 1 ) (see [1, Theo-
rem 6.7], assume that xn -* 0 for IσKL0 0,^1). By [1, Theorem 12.9]
we have |σΊ(Z,°°, JL1)^-^^] = <¥o\[-x,X] for every 0 < x e L°°, because
IσKLjL1) is a Hausdorff Lebesgue topology. Since the set {xn} is
σ(L,Lι)-bounded and Bd(σ(Lo o

?L
1)) = Bd(τ(L°°,L1)) = Bd(τoo) we

obtain that {x«} c [-x,x] for some 0 < x e L°°. Thus ||x«||o —> 0,
and in view of Theorem 1 we have xn —> 0 for γ.

(ii) <=> (iii) Obvious.

The next theorem gives criteria for the compactness of sets in

THEOREM 10. For a subset Z of L°° the following statements are
equivalent:

(i) Z is relatively compact for ^ and ||x||oo < M for some M > 0
and every x e Z.

(ii) Z w relatively compact for γ.
(iii) Z z"s relatively compact for \σ\(L°°9L

ι).

Proof, (i) o (ii) Obvious, because we know that B d ( ^ ) = Bd(y)
and the topologies γ and 5Q coincide on order intervals of L°°.

(ii) =» (iii) Obvious, because \σ\(L°°9L
ι) c y.

(iii) =» (ii) Combining [8, I, §3, Lemma 11] and Theorem 9, Z is
relatively compact for γ.
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