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In the present work we examine a family of multivariable expo-
nential sums on a connected variety defined over a finite field.

0. Introduction. Let K = F, be the field with g elements (charK =
p#2,q=p/),Xe€K*, g,...,8 positive integers relatively prime
and prime to p (n > 2) and let 7% be the variety defined over K by

7 t¥ =X. Let Q be a complete algebraically closed field containing
Qp, ©: K — Q* an additive character and for each i € {1,...,n} let
xiiK* — Q> bea multiplicative character Let ¢,,...,C, be non-zero
elements of K, and let f(¢) = Y7, ¢;t%, where ki, ..., k, are positive
integers prime to p. Foreachm € Z, let K, be the extension of K of
degree m. We consider the twisted exponential sums

0.1) Sw(f, 7%= ) HX:ONK (@) x © o Trg,  (f(7))

(F1yeenstn)EZS(K,) =

and the associated L function:

[ o]
02)  L=LF.T)=exp (- X Sulf7T"/m).
m=1
Our main results are the following:
A. We show that L(-1)" is a polynomial of degree

h= (ggi/kz) iljlki-

B. We compute explicitly a lower bound for the Newton polygon
of L(=1)"; this lower bound is independent of the prime number
p and its endpoints coincide with those of the Newton polygon
(Theorem 5.1 and Corollary 5.1).

C. Provided p lies in certain congruence classes, we show that
our lower bound is in fact the exact Newton polygon of L(~!
(Theorem 5.3).
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230 MICHEL CARPENTIER

D. As a consequence we obtain p-adic estimates for the sums (0.1),
since they are related to the reciprocal roots {y,-}ﬁ'=1 of (0.2) by
the equation

(0.3) Sm(f,7%) = (1" + -+ 9p).

We emphasize that our lower bound for the Newton polygon can be
computed explicitly: To fix notations, we assume that the multiplica-
tive characters y; are of the form y;(¢) = w(t)~@~12/7 where r and

pi are natural integers, r|g — 1,0 < p; < r. For a = (a~1,...,an) ez",
let o(a) = Inf;a;/g; and J(a) = 1 31| a;/k;. Let A, be the finite
subset of Z" defined by
0<ag(a)<r
aez;4: a; = p; (modr), i=1,...,n

o(a) < a;/g < a(a) +rki/gi, i=1,...,n.

Whenever two elements o and f of Z;, satisfy J(a) = J(B) and a; =
Bi (modk;) for all i, we only keep the first of these two_elements
for the lexicographic order and eliminate the other: let A, be the
resulting set. Z,, contains & = (3°7_, gi/k:) [17., ki elements, and the
slopes of our lower bound are the values on Z,, of the weight function
w(a) = J(a) - La(a) Y0, gi/ki. For example, if % is the variety
11383 = 1 and f(1) = £ +13+13, with trivial twisting characters x;, then
L~ is a polynomial of degree 26. When p = 1 (mod 18) its reciprocal
roots have p-adic ordinal 0, 1/3, 7/18, 4/9, 1/2, 2/3 (twice), 13/18,
7/9, 5/6, 8/9, 17/18, 1 (twice), 19/18, 10/9, 7/6, 11/9, 23/18, 4/3
(twice), 3/2, 14/9, 29/18, 5/3, 2. When p # 1 (mod 18), the Newton
polygon of L~! lies above the Newton polygon whose sides have these
slopes and their endpoints coincide.

Ifn=2k =k =1, gt = g =1, and the twisting charac-
ters are trivial, the sum (0.1) is the Kloosterman sum, which was
first investigated from a p-adic point of view by B. Dwork in [9].
More general situations have been studied by S. Sperber ([13], [14],
[15]) and Adolphson-Sperber ([1], [2]). We have made extensive use
of the work of these authors, especially from [15]. On the other
hand, using /-adic cohomology, P. Deligne [6] has shown, in the case
g = =g =k ==k, =1, that the reciprocal roots {y;}"_,
of L(=1)" have complex absolute value g"~!/2; this was later extended
by N. Katz [10]—from whom we borrow the title of this article—to
include the case k; = --- = k,, and general g4,..., g,. We complement
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here this result, by obtaining p-adic estimates for the y;’s. Our ap-
proach departs from previous literature on the subject by the use of
a new trace formula (Theorem 1.1) which provides a more balanced
treatment and avoids the restriction g, = k, = 1 ([4], [15]).

Using Dwork’s methods, we construct cohomology spaces Wy , on
which a Frobenius map acts, Zx: Wy p — Wxep. These spaces have
dimension 4, and if x = x7 is a Teichmiiller point, the eigenvalues of
Z . are the reciprocal zeros of (0.2). The choice of a good basis for the
space Wy , is crucial in obtaining estimates for the Newton polygon of
the L-function: its elements are those of the set {x~?(®)/"t%|a € Zp},
chosen so as to minimize the weight function w(a).

Define p(0 = p, p), ..., pl¥) = p by the conditions

o .

pp!™V = p? =0 (modr)
0<p¥ <r Vi, j

For each aU) € A ), there exist (Lemma 2.8) unique elements aU+!) €

Z,,mn and 6V) € 7" satisfying

(J+1h )
ol RN § ST T2 W (o7 SNV ) NE- {2 R 10)!
p( rk,- O'(a )rki rk,- G'(a )rki 61

0<8Y <

Ifa=a® e, let Z(a) = 23_/:01 w(al)). We show that the Newton
polygon of L(=')" lies below that of 7,(T) =] (1 -~ p*“T), and
their endpoints coincide (Theorem 5.2 and Coroliary 5.1). On the
other hand, if p = 1 (modr), the Newton polygon of the L-function
lies above that of Z,(T) = Han,,(l — q¥(T) (Theorem 5.1). If fur-
thermore pg; = g mod(k;g;) for all i, j, then %,(T) = #,(T) and
therefore their common Newton polygon is that of L(-1)",

The precise determination of the Newton polygon in other congru-
ence classes requires finer estimates for the Frobenius matrix. This
question has been solved by Adolphson-Sperber ([2]) in the case n = 2,
g1 =& =1, ki = k,. We expect to address this question more fully
in a subsequent article.

In [5], we studied the deformation equation when k, = g, = 1.
With only minor changes, this treatment can be reconciled with the
point of view adopted here. Let us simply indicate that the deforma-
tion operator of [5, p. 9-04] should be replaced by

d
ny = Ey + nMc,,a—”tﬁ",

n
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where
E,(Y71%) = (y + M%) Y'e.
n

1. Trace formula. Let g;,...,g, be positive integers (n > 2),
g = (gl, .., &n). We assume that g.c.d.(g,...,8,) = 1. Fora =
(o

ay) € 1" we define:
«a; Qj

w,la)=——-—=, i,j=1,...,n;
W l,j( ) g g J
a(a)zlnf{ﬂ,...,gﬁ}.
81 8&n

Let u be a fixed positive integer; for any a € 7" let ¢,:2" — Z/uZ
be the group homomorphism defined by ¢o(y1,..., V) = i) Pit%-

LEMMA 1.1. Let o € ZV; the following conditions are equivalent:
(i) There exists B € 1" such that w; j(a) = uw; ;(B) for all i,j =
1,...,n.
(ii) There exist p € 7" and | € {1,...,n} such that w;;(a) =
pw;(B) foralli=1,...,n
(iii) Ker(¢g) C Ker(¢a).

Proof. The equivalence of (i) and (ii) is obvious from the defini-
tions. Suppose that « satisfies condition (ii) and let y = (y1,...,¥n) €
Ker(¢g). By assumption, o; 8 = o;8; + u(B:g; — B &:) for all i, hence:

n n n
gy vioi= (E J’igi> (o — 1By + 1&gy, 7iBi.
i=1 i=1 i=1

Since g;(a;—upB;) = g(aj—up;) foralliand g.c.d.(g1,...,8:) =1,
it follows that g; divides oy — uf;. Hence )7, y;a; = 0 (mod u) i.e.
y € Ker(¢,) and (ii)=>(iii).

Suppose that Ker(¢,) C Ker(¢,) and, fori=1,...,n—1,1let 7; =

g.c.d.(gi, &n)-

Since g 2
__ngl - _lgn - O

our assumption implies the ex1stence of integers zy,..., z,_; satisfying
&n 8i

T—la,—r—lan_uz, foralli=1,...,n—1.

Furthermore, for each such i, there are integers f; and ﬂ,(,i) such that:

(1.2(1)) = p&r - g0

Tl
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Thus

. - gl
&_%zu(ﬁ_ﬂi) foralli=1,...,n—1.
8 &n 8  &n

Observe that, if (S;, ﬁ,(,i) ) is a solution of equation (1.2(i)), then so
is (Bi + gi/7i, 04 g, /7). We must show the existence of solutions

satisfying B\ = ... = B"™V. Leti,j € {1,...,n— 1} with i # j:
a_a=ﬂ<u+&_&)
8 & 8n g &

On the other hand, just as above, we can find integers ¢; and ¢; such

that:

& _ % _ ﬂ(ﬁ - ﬁ),

& & 8 &
Hence, letting 6, = B, —¢;, 0; = Bj—¢; and 7, ; = g.c.d. (1;, 7;) we can
write:

U) _ pld gzgffz,j:gnfi,j o 8o
(B Br’) T 1T (ajgl 51gj)-

Since g,7;;/7;7; and g;g;7; ;/7;7; are relatively prime, there exists
Z € Z such that

gnTt,j
— B =z
;T

In turn, there exist £, n € Z such that Zt; ; = {1; 4+ nt; and therefore

L
T (7]

If we let r, = g,/7% (k= 1,...,n— 1), we have just proved that, for
alli,je{l,...,n—1}:

(1.3) BY - B erz + 1.

We now proceed by 1nduction Let k < n — 1 and suppose that we
have found solutions (ﬂ,, ﬂ,, ) of equations (1. 2(i)) for all i, with the
property that 8" = - = ) (= B).

Let m; =l.c.m. (ry,...,r;). By (1.3), ﬁ,, N(k“) € myZ+riZand
therefore there are integers A, { such that ,B,, +Amy, = ﬁ(k+ )+ Crin
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Let:

(B =B + Amy 1<i<k
Bi=Bi+2a5im, 1<i<k
&n
'Br('k+1) — ’(1k+1) +Crk+1
Bis1 = Bis1 + kaH
k+1
B’ = B j>k+1
( B = Bj Jj>k+1
For each i = 1,...,n — 1, (B, BY") is a solution of (1.2(i)) and we
have BV = ... = B*Y_ Finally we obtain g = (Bi,..., Bx) with
Win(a) = pw;,(B)Vi=1,...,n.
Hence (iii)=>(ii). O

Notation. If o, B € 7" satisfy w; j(a) = pw; j(B) foralli,j=1,...,n
we shall write:

(1.4) w(a) = po(B).

REMARK 1.1. Let o, f € Z" satisfying (1.4) and let / € {1,...,n},
then

_a _B
(1.5) o(a)= 2 < a(p) 2
Let:
(1.6) S={a€Z"|0<0(a) <1}.

LEMMA 1.2. Let o, B € S; then a = f & w(a) = w(B).

Proof. The first implication is obvious. Conversely, suppose that
w(a) = w(f) and let / be an index such that o(a) = o;/g;. By the
remark above, a(f) = B,/ g

By assumption, gi(a; — B)) = gi(a; — B;) for all i. If y4,...,y, are
integers satisfying 37, yigi = 1, then o) — B, = g; 37, yi(e; — B;) and
therefore g; divides a; — B;.

Since a and B are elements of S, —g; < a; — f; < g, hence o; = B
and it follows that o; = §; for all i. ]

We fix r, a positive integer, and for each a € Z" we set

(1.7) Sa) = 2a(a).

r
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Let:

(1.8) E={ae?"|0<s(a)<1}={ac?"|0<a(a)<r}.
If p e 7", with 0 < p; < r we set

(1.9) ZW ={ael"|a; = p; (modr) for all i},

(1.10) EP) =ZP)NE.
LEMMA 1.3. Let a, B € EP); then o = B & w(a) = w(p).

Proof. Suppose that w(a) = w(f) and assume that o; > f; for
some index /. Then «; > f; for all i and, letting y; = (a; — Bi)/7,
vy = (¥1,...,7n) 18 an element of S, with w(y) = 0. Lemma 1.2 implies
that y = (0, ---,0). O

We now fix p, a prime number, with (p,r) = 1. If pe 72", 0< p; < 1,
we let p' € 7" be the unique element satisfying

{0§p§-<r,

(1.11) ;
pp;—pi=0 (modr).

LEMMA 1.4. Let o € ZP) satisfying the equivalent conditions of
Lemma 1.1 with u = p. Then, in (1) and (ii), B can be chosen uniquely
so that

(1) peEVY,
(2) o(e) - ps(B) 1.

Proof. Suppose that w(a) = pw(d). Certainly, 6 may be chosen
(uniquely) so that 0 < g(d) < 1. By Remark 1.1, gi(o(a) — po(d)) =
a; — po; Vi. Let yy,...,y, be integers satisfying >_7 | ;g = I:

Y gwila(a) —pa(B)) =Y vilai — pdy),
i=1 i=1

hence o(a)—po(d) € Z. In particular, pd —a belongs to the cyclic sub-
group of Z” generated by g. Sinceg.c.d. (p,r)=1=g.c.d.(g1,...,8&n),
there is a unique integer A4, 0 < A < r, such that p(d + Ag) — a € rZ".
Now set # =06 + Ag. 0

Let @, be the completion of the field of rational numbers for the
p-adic valuation, and Q an algebraically closed field containing Q,.
We denote by “ord” the valuation on Q normalized so that ordp = 1.
Let / be a positive integer such that r | p/ — 1, let ¢ = p/ and let
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x € Q* be a Teichmiiller point: x? = x. Let K be an extension of

Q, in Q containing x. Let #;,...,7, be indeterminates. We shall use
multi-index notation: if a = (ay,...,a,) €N, * =" ... ;"
Fix ki, ..., k, positive integers. Given b, ¢ e R w1th b > 0, let:

(1.12)5,”(b,c)={ > But*| B, €K and ord B, >b2—+c}

aEN?

(1.13) Zb)=J=®,0.

ceR
For each p = (p;,...,pn) € Z" with 0 < p; < r we let

(1L14)  Zb,o)={{=Y But" € Z(b,c) | B.=0if a ¢ ZW};

(1.15) Z(b) = |J % (b,0).

ceR

Z(b,c),Z(b),Z(b,c),-Z(b) are p-adic Banach spaces with the norm
n
= Ca = g.l_ —
lI<1] = SEDP ,  Ca bg s ord B,,.

Let # =37, gi/ki and

(1.16) Z(b,c) = {n =Y Cut*|Co€K and

acE
ord C, > b(Z——/Va( )) +c};

(1.17) Zb)=J=Z®,c);

ceER

(1.18) Z,(b,c) = {n =Y Cut*€Z(b,c)|Ca=0 ifa¢E<P>};

a€E

(1.19) Z,b) =] Z,b,0).
ceR

Z(b,c),Z(b),Z p(b,c),Z (b) are p-adic Banach spaces with the
norm

n
linll = Supp®, cx= b(Z % —/Va(a)) — ord B,.
“ i=1 1
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If a, B € 7", there exist T € Z and J € E, uniquely defined, such that
a+ f =0+ trg and we set
(1.20) 1"« th = x70.

Since g(a + B) > o(a) + d(B) and o(6 + trg) = o(J) + 77, this
operation makes Z(b) (respectively .Z (b)) into a K-algebra; if { is
an element of Z (b, ¢'), then § — { * maps .Z(b, ¢) continuously into

Z(b,c+ ).
Let ¢ be the K-linear map whose action on monomials is given by
(1.21) G(t*) = 1] * 132 % - % Lyn.

For each p, ¢ is a continuous algebra homomorphism from %, (b, ¢)

into Z(b,c). If a € Z(») we define

x@)-p«B)¢B if 38 € E(P) such that w(a) = pw (),

(1.22) () = { .
otherwise.

Note that if a, # € Z", then
(1.23) w(t® * tP) = y(torh).

It follows from Lemma 1.4 that v extends to a continuous linear
map from Z (b, c) into £, (pb,c). Since r | g—1, y/ maps Z (b, ¢c)
into Z,(gb,c). If b' > b, then Z ,(¥', ¢) is a subspace of Z (b, ¢) and
the canonical injection i:Z ,(b',¢) — £ ,(b, ) is completely continu-
ous [12, §9].

We fix F(t) = 3, cne Bot® an element of Z(rb) and we let F(¢) =
P(F(1")) € Zo(b). We define F, to be the composition:

—_ i = * y —
Z,(qb) - Z,(b) L 2, (b) X2 Z,(gb).

By [12, §3], %, is a completely continuous endomorphism of Z(gb).
Its trace and Fredholm determinant are well defined and

det(I - T%,) = exp ( Z te(F)") —) is a p-adic entire function.

For m € N* we let
(1.24) Zm={{t1,...,tn) €K™ |t ' =1 and £5 x --- x t& = x}.

THEOREM 1.1.

(- 1)"'tr(F, | Z,(gb)) =Z(ﬁ (4~ 1”'/'>F(t)
€7 “i=1
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Proof . Write F(£) = Y ,cs Y sen Batagt®™8. Let G(1) = ¥ 5 Cat®,
with C, = 3, BatagX?. Foreach i=1,...,nlet6; = —p;i(q — 1)/r
and set X,(¢) = [T, t;‘_ Then Yo Xp()F () = Xyear Xp(D)G(2).

On the other hand, F(¢) = ¢(F(t")) = )_ 5 Cat™ = G(1").

Note that for each f € Z" we can find y € Z" such that w(y) =
(g—1)w(p). Since r | g—1, we can choose y so that y; = 0 (mod r) for
all i. Furthermore, after adding or subtracting multiples of rg, we may
assume that y € E. Accordingly, for each § € Z", we denote by B the
unique (by Lemma 1.3) element of S satisfying w(rf) = (¢ — 1)w(B).

For fixed § € E(*),

%(tﬂ) = Z Coy” (7 x tP) = Z C,x*rath=a:()yr,
a€S

where the last sum is indexed by the set of all « € S such that
w(ra+ ) = qo(y), v € E®). The coefficient of ¢# in this sum is

ngd“ﬁ)‘(‘l‘l)’(ﬁ), and therefore,

(1.25) ()= Y, C~x’(’”) (a=1)(8),
PEEW®
There remains to show that (¢ —1)"~!tr(%,) = 3, X,(£)G(2), and
it is sufficient to check this when G(¢) is a s1ng1e monom1al G(t) =
Cot*. Let G=(Z/(g - V)2)*; if a = (a,,.. )andb (by,...,bn)

are two elements of G, we let Geb = El 1a b;. Fix { a primitive
(g — 1)-st root of uni_tz. Since g.c.d.(gy,...,82) = 1, we can find
yeGsuchthat x =("8. Let H={€ G |7Neg =0}:

Z Xp(0)t* = C?-(3+a) Z CWSJ“E),

ter neH

The homomorphism from G into Z/(q — 1)Z sending 77 € G into
7j¢g is surjective, with kernel H; hence |H| = (¢ - 1)1, Furthermore,
77— T % is a character of H. Therefore

Ecﬁ.@-m):{(q—l)"—l if 7@ +a) =0 VieH;
0 otherwise.

neH

By Lemma 1.1, (6 + @) = 0 V§ € H if and only if there exists
¢ € I" such that w(d + o) = (¢ — 1)w(¢) or equivalently w(ra) =
(g — Da(re + p).
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Thus 77+ (6 +@) = 0 Vi € H if and only if there exists § € E*)
(necessarily unique) such that w(ra) = (g — l)w(p). If so,

0~ p 9L = giLu(ra) — (a — De(B)] (modq — 1) Forall i

hence (7-60+8) — xs(ra)=(a=1):(B), a
LEMMA 1.5. Let F(t) € Z(rb); then w/ o (xF(19)) = «F(t) o w/ .

Proof. 1t is sufficient to check that, for a monomial t#, p € 7":
w/ (19 % 1) =P x w/ (+*) foralla e E.
Joap gy [ XOTEO0 G 0B+ a) = go(d);
w/ (t ) )
0 otherwise.
Suppose that w(gf + a) = gw(d). Then w(a) =qw(d - f);let AeZ
be such that d — f + Arg = y is an element of E:
y//([a) — x’(a)_q’(y)ly; hence
By (1) = x D= @@)HAd

Suppose that o(d) = J;/g;; Remark 1.1 shows that o(¢f + a) =
(g8 + )/ 8- Thus,

AaB+0) = 4s0) = (@B + 01 = 48) = 7-(os — an) + 4k

Likewise, if o(a) = oy /g, then
1 1

and —(a; — = —(ay — .
g/( 1= 4q7) gk( k= 47)

Hence
W(gB+a)—qs0) =s(a) —qs(y) + A modg = 1. ]
COROLLARY 1.1,

(g™ = )" 1r(F," | Z(qb))

=2 (H ey ”’“)F(r)F(rq)---F(zq"‘“>.

1€, Ni=1

2. Special subsets of 2". Let a = (ay,...,a,) and d = (dy,...,d,)
be two n-tuples of positive integers.
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Let M = lL.c.m.(a;,...,a,) and D = lL.c.m.(dy,...,d,). If a =
(ays...,an) € Z" we let

(2.1) s(a):Inf{ﬂ,...,ﬂ}.

a; ap

Let J:Z" — 47 be the map defined by
n

Q;
d;’
i=1 !

(2.2) J(a) =

We define an equivalence relation on Z” by setting:
(2.3) a~<d if and only if a; = @} (modd,) forall i =1,...,n.

There are [}, d; equivalence classes, which we call “congruence
classes™; if a € 7", we denote by @ its congruence class.
Let

2.4) A= {an" ls(a)gg—f Ss(a)+§ Vi = 1,...,n}.
, .

1
If @ and B are two elements of A’ we set

{ aZ B if and only if a ~ g and J(a) = J(B);

(2:3) A=N/Z.

We identify A with the subset of A’ obtained by choosing, in each
equivalence class for %, the first element in lexicographic order.

LEMMA 2.1. Let o € A and let B € 7" be such that B ~ o and
J(B) = J(a), then

5(B) < s(a).

Proof. If B # a, there is an index i such that 8; < ;. Since B ~ a,
we have in fact §; < a; — d;. Hence
Bi  ai_di

— — < s(a). O
a — a; a,-‘()

For each i € {1,...,n} we denote by U; the element of Z" with 1 in
the i-th position and O elsewhere.
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LEMMA 2.2. Let K € 7 and let @ be a congruence class in " such
that a N J~Y(K) # @. Then there exists a unique element B € A such
that p €@ and J(B) = K.

Proof. Let S(@, K) = Max{s(d) | 6 €@ and J(J) = K}.

Pick § € @ with J(J) = K and s(J) = S(@, K).

If 6;/a; < 5(6) +d;/a; for all i, then § € A’ so A’NJ~1(K) # & and
we are done.

Suppose now that J;/a; > s(d) + d;/a; for some index i and let k
be the index such that J; /a; is maximum among those satisfying the
last inequality. Let also / be an index such that s(d) = d;/ay; note that
necessarily k # /.

Let
= . Yk i
y=0—-d U, +dU: =>s() and = > s(9).
ay a
Hence s(y) > s(d) and Lemma 2.1 implies s(y) = s(9).
Furthermore y,/a; = s(y)+d,;/a;. Repeating the process if necessary,
after a finite number of steps we obtain e € A'Na with J(¢) = K. O

Notation. If B satisfies the conditions of Lemma 2.2 we write

(2.6) B = 1(a K).
Let
(2.7) N=Ja) = ; Z—i

i=1
Observe that « €A & a4+ a € A. Thus, ifanJ1(K) £ @:
(2.8) 1@ K)+a=1@a¥aK+N).

LEMMA 2.3. Let K € 52 and let & be a congruence class in 7" such
thatanJ~Y(K) # &; let B = 1(a,K),d = 1(@, K + 1); there exists an
index 2 = A(@,K) € {1,...,n} such that p = 6 — d,U,. Furthermore
s(B) = Bi/a.

Proof. Let
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and let / be the smallest index such that s = (J; — d;)/a;. Let y =
0 —dU;: foralli#l,

Ji S —di _ v

o 250)2 2= =71 hences(7) = /e =
Furthermore, for all i # [, (y; —d;)/a; < s(y) so y € A'. Suppose that
there exists ¢ € A’ such that e%y and ¢ precedes y in the lexicographic
ordering. Let j be the smallest index such that &; # y;; theneg; < y;—d;
and there exists k > j such that &, > y; + di:

i —d;

s(e) < L < N < g(y),

a; aj

s(y) < ‘J_).Ii < M < s(g).

ay ay
Hence s(y) = s(e) = s, &¢j = y; — dj, & = yx + di; in particular
s = (yj —d;)/a; so we must have j # [; hence ¢; = J; — d; and
therefore j > I. Let now ¢’ =0 — d;U; + dy Uy:
f_j_' _ Jj—d'

J
s < 2 P < s(9)
s(g)sé&=&<_=u:s.
Qe  a a
Thus Y
s=5(0")=506)=-L= %4,
a; aj;
Furthermore,
51’ _ 0; ' di ..., . 6’ 5k+dk
5—555(5)'*"1—1. if i # j,k, anda a = (5)+

Hence &' € A,0'#6 and ¢’ precedes J in the lexicographic ordermg.
This contradicts the choice of 6. Hence y = g = 17(@,K) and [ =

M@, K). 0
We now let

(2.9) A={aeA|0<s(a)< 1}

(2.10) A={a€A|0< J(a)< N}

LEMMA 2.4. [A| = (A,

Proof. We construct two maps:

[
*

NS

—
—

B> B

l
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Let o € A: we can find o €N, ry € ZliN’ unique such that J(a) =
Nu, + r, and we set:

(2.11) (o) = a— Uqa.
Clearly, 1(a) € A with 5(i1(@)) = s(a) — 4, and 0 £ J(1(a)) < N; hence

() € A. If B € A, there exist vg € N and kg < 1 unique such that
s(B) = vg + kg; we set:

(2.12) 1*(B) = B - vga.

Clearly 1*(B) € A with 0 < s(i*(B)) < 1, i.e. 1*(B) € A.
It is now straightforward to check that : and * are inverse to each
other. O

LEMMA 2.5. Let 6 = 5I1\_ydi. If K € $Z, then J~'(K) meets
exactly 0 congruence classes in 7.

Proof. Let G=12/d;iZx ---x1/dyZ and let H = $2/7. J:1" — 12
induces a group homomorphism:

(2.13) 7:G — H.

It is sufficient to prove that |7_1(h)| =0 forany h € H. Let

6= [] 4

1<j<n
J#i
Observe that = g.c.d. (dy,...,d,) and therefore there exist integers
aj,...,a, such that § = Y7 | 0;0;. Dividing by []7_, d; we obtain
5 =", a;/d;, showing that J is surjective. Hence, for 4 € H,

D
_ 6l _ i di

¥ D = g. m|

|71 (h)|

LEMMA 2.6. |A| = NI, d.

Proof. By Lemma 2.5, J-!(K) N A has exactly 6 elements for each
K € }Z. Hence, using the definition of A, |A| = N[J.,d;. The
conclusion follows from Lemma 2.4. m}

Let r be a fixed positive integer and let g = (g1,...,8n), k =

(ki,...,kn) be n-tuples of positive integers, with g.c.d.(g,..., &) =
1.
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From now on we shall assume that a; = rg; and d; = rk; for all
i=1,...,n. Thus,in (1.7) and (2.1):

(2.14) s(a) = s(a) Vo € 7",

If p=(p1,...,pn) €Z", with 0 < p; < r we let
(2.15) Ap={a€A|a;=p; modr};
(2.16) A,, =AnAp,

(2.17) A, =ANA,.

Lemma 2.7. |A,| = [A,] = NI k;

Proof. The map A— A of Lemma 2.4 restricts to a bijection
between A,, and A,. Hence IApl |Ayl. Let 1 = (n1,...,1m) € I,
with0 <#g; <r. IfaeA welety=a—p+n. Thereisaunique
integer A, such that K, = J (y) + Ao N satisfies 0 < K, < N, and we
set Fp (@) = 1(y + 40, K,). F,, maps A, and A, and is easily seen
to be injective. Hence, the r”" sets Z,,, 0 < p; < r, all have the same
cardinality

— 1 — "
|Mpﬁw=NH@ o

LEMMA 2.8. Let p be a prime number, with (p,a;) = (p,d;) = 1 for
all iy let p € 7", with 0 < p; < r and let p' € 7" satzsjjzmg 0<pi<r

andpp;—p; =0 (modr)Vi. Ifo’ € A,,/, there exist a € A,, and integers

01,...,0n uniquely determined by the conditions:
a’ a; «; a;\ )
{ p(§ @) - (5 -s@F) =e.
0< 5,' <p-1
Furthermore:

(i) Letl € {l,...n}, then
aj a
— =—+&d=0.
s(a) = 2 & s(d) = 2 0,=0
(ii) o +— a is a bijection between Z,,: and A,.
Proof. Certainly, using notation (1.4), there exists # € Z" such that
w(p) = pw(a'), and an argument similar to that of Lemma 1.4 shows
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that B can be chosen uniquely in E(). Furthermore, if s(¢/) = o}/a,
then s(B) = B;/a;. Since o' € A, we have

0< a_,i - _1 g_
a; a a
hence d
o<hi B ,4
a; a; a;
for all i.
If
b B4
a; a a;

there is a unique integer J;, 0 < J; < p — 1, such that

pi—ddi B _di

0< .
a; a a;
If
a; a a;

wesetd, =p— 1.
Now let a; = B; — 6,;d; for all i. It is straightforward to check that
a=(ay,...,a,) and 6 = (dy,...,0,) have the required properties. O

LEMMA 2.9. Let p = (p1,...,pn) EN", with 0 < p; <r. Then

. -1
> w(a)=N£[lki(n2 )

a€l,

Proof. Let G = [[_,Z/d;Z and let .:G — (Z/rZ)" and 4:7" — G
be the natural quotient maps. Let 7 = - o4(p) and K, = -~ 1(Pp).
Note that

n
|K,,|=Hk,-, a€A,ea+acA, and €K, &N+ z(a)€K,.
i=1

Let H be the cyclic subgroup of G generated by z(a) and let {G,}(G H)
be the orbits of G under addition by elements of H: G = [[\* e 1
We have K, = [Ix 40 G and A, = I1\%/" A,(1), where Z,,(l) =
{a €3] (a) €K,NG)).

Let / be such that K, N G; # @ and let n € A,(/) be such that
J(n) is minimum. Let ¢ = |H|; ¢ is the smallest integer such that
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ea; =0 (modd;) for all i. For any a € Zp(l ), there is a unique integer
1 € N such that 0 < u < ¢ and o; + ua; = n; (modd,;) for all i, and
we have J(n) < J(a+ ua) < J(n) + eN. Conversely, if f € A satisfies
J(n) < J(B) < J(n)+ &N and B; = n; (modd,) for all i, there is a
unique v € N, 0 < v < gsuchthat J(n)+vN < J(B) < J(n)+(v+1)N
Let y = B —va; then J(n) < J(y) < J(n) + N. If J(y) > N, then
J(y—a) > 0 and J(y — a) < J(n), contradicting the minimality of
J(n). Hence y € A.

Let Dy(l) = {a € Ala; = n; (modd;) Vi and J(n) < J(a) < J(1) +
eN}. Since w(a + a) = w(a) for all « € Z" we deduce that:

(G:H)
Yw@=Y w@=Y Y w.
a€l, a€l, I=1 aeD,(l)

It follows from Lemma 2.3 that D,(/) = {t(7,J(n) + k) | 0 < k <
¢N — 1}. For each k €N, let o%) = (7, J(n) + k), s, = s(a®), Jp =
J(a(k)) =Jy+k, A, = A7, J;). By Lemma 2.3, ok = olk=1) 4 dlk U,
and s, = aflle /a;,,,. Foreach i€ {1,...n} let u; be the integer satisfy-
ing ea; = u;d;. Since oY) = 5 + ea, it follows that ea = ¥ d;, U,
and u; =#{k |1 <k <eN and 4, = i}.
We have
eEN-1

> = 35 ol o= 2 (Lm0

J=1 A=j Jj=1

" (uj = 1)
A

Jj=1
< B w1 eN —n
—sjgl(d'_*_ 5 )—8(]0-{- 3 )

J

On the other hand:

eN-1
Y Je=eNJ+ Nﬁp
k=0
Thus
eN—1
> wl@) =Y (i — Nsx)
a€D,(!) k=0
(n—1)

— &, nG v L,

=eN 3

2
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Hence

> w(e) = |K,,|N(n ; D, O

a€A,

3. Cohomology: The generic case.

a. Definitions. Let K, be the unramified extension of Q, in Q of
degree r, {, € Q a primitive p-th root of unity, Qy = K,({,) and let
7 € Gal(Q | @,({,)) denote the Frobenius automorphism. Let & be
the ring of integers of .

Let M =l.c.m.(ay,...,a,) and, for m € N*:

(3.1 Sm={(e7)eN"XZ|y>-mMs(a)};

(3.2) E,={(a;y)€EEXZ|y>—-mMs(a)},

(3.3) Apm = Qqp-algebra generated by {°Y” | (a;y) € S}
(3.4) P =ry-mM_ 1,

(3.5)  Am=Am/(P™);

(3.6) Fm = Qo-span of {t*Y? | (a;y) € Ep,}.

IfaeZ”, yeZ, we set:

p) = Ny
(3.7) Wm(ay) = J(a) + ==
REMARKS.
(3.8) Wp(a;y) >0 forall (a;y) € Sy,

(3.9) If W € Q, the set {(a; ) € Ep | Wm(a;y) = W} is finite.

If a, B € 7", there exist 6 = d(a, B) € E, A = A(a, f) € Z unique,
such that a + f = J + Aa and we set:

(3.10) 1% %y tB = YIMM S

If (a;y) and (B;¢) are two elements of S,,, 6 = d(a, B), A = Aa, B)
as above, then (4,7 + ¢ + 4) € E,,. In particular, the operation *,,
makes %), into an Q,[Y] algebra and, if we set

B Bl = w5 o A L (a €T,

then ®,, extends to an Qy[Y ]-algebra homomorphism ®,,: 4,, — %,,.
Furthermore, ®,, induces an Qy[Y]-algebra isomorphism.

(3.12) B Ay = .
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A, A, B are graded algebras with
(3.13) W (Y71%) = win(es ).

Both ®,, and ¢,, are homogeneous of degree 0.

Note. When no confusion can arise, we shall omit the subscript “m
and write * instead of x,,.

For b,ceR, b >0, let

(3.14) L(b,e)={n=>)_ A(@)t*|a eN", 4(a)€ Q,
ord A(a) > bJ(a) + c};

(3.15) L(b) =] Lb,0).

ceR

L(b) and L(b,c) are p-adic Banach spaces with the norm
(3.16) lIn|| = Supp~™“, co = ord A(a) — bJ(a).

Let

(3.17) L,,(b,c) = { =Y B(;)1*Y" | (a;7) € Em, B(a;7) € Qo

ord B(a: ) > bum(asy) + c};

(3.18) Lin(b) = | Li(b,0).

L,,(b) and L,,(b,c) are p-adic Banach spaces with the norm

(3.19)  ||llm = Sup(ay) ™, Cay = Ord B(a; y) — bw,,(e; ).
Let
(3.20) Rin(b,¢) = Qol[Y]1N Lin(b,c),
(3.21) Rn(b) = QollY11N Lin(b) = | R(b ).
ceR

The operation *,, described in (3.10) makes L,,(b) into an R,,(b)-
algebra. (3.9) ensures that this is well defined. Furthermore, if 1 €
L,,(b), the mapping & — 5 *,, £ is a continuous endomoprhism of
L,,(b). Note that L,,(b) is the completion of %, for the norm || ||.
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For each ¢ € R, there is a continuous Qg-linear map from L(b,c)
into L, (b, c) whose action on monomials is given by (3.11). This map
will again be denoted ®,,,.

Let ¢y,...,Cy be non-zero elements of F, and, for each i let ¢; be
the Teichmiiller representative of ¢; in Qg (so ¢/ = ¢;).

Let:

n
(3.22) OED I
i=1
Let {7,192, be a sequence of elements of Q,({,) such that
1
ord yp = E—_——l,
(3.23) it
ordyjzp_1 -(+1), Jj=z2L

If t“Y? is a monomial, we set
(3.24) E(:°Y7) = (9‘—"—92):“1’?, i=1,....,n—1.
d, an

Note that E;(t* « tF) = E;(t*) * t# + t* « E;(t?) so that E; acts as a
derivation on all the rings and Banach spaces which have been defined
so far.

Let

(3.25)H(t) = J’ o f(#").
(3:26)H(7) = wa” =S on( o w)
=0 i=1

(3.27) H;=E;H(t) =y (cig—jt;" - cn%tﬁf"), i=1,....,n—-1;

(3.28) H,=EH({), i=1,...n-1;
(329) D,=FE;+H,, i=1,...,n-1;

From now on we assume:

(3.30) g.cd(p,M)=g.d.c.(p,D)=1,

and we let

(3.31) sizciﬁ, i=1,...,n.
a;

Each ¢; is therefore a unit in &.
Lete = b—1/(p—1): wehave H; € L(b,—e)and H; € L,,,(b, —e) Vm.
Also,if b<p/(p - 1), H; € L(b,—e) and H; € L,,(b,—e) Vm.

b. Reduction.
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LEMMA 3.1. Let a e N", K = J(a), B = 1(a, K); then t* = u(a)t? +
Yo 1 ;’;11 Hpi., where u(c) € & is a unit and, for each i, p;, €
Oolti,..., th).

Furthermore, p; ., has unit coefficients and, if t° is any monomial of
Diq having non-zero coefficient, then

(i) J(0)=J(a) -1

(i) s(9) = s(a@).

Proof. If 6 € I, we can write
£

= gjg; U 4y lenVH - H eV, G j=1,...,n—1;
£ = gpe; 1o UtdnlUn 4 oo le VR o iU i=1,...,n—1.
By assumption, there are integers A;,...,4, such that a = f# +

?AidiU;, with 37 4; = 0. The result follows immediately, ex-
cept maybe for (ii): if a # B, there is an index i such that 4; > 0O;
hence a; > B; + d;. Thus (a; —d;)/a; > Bi/a; > s(B) and s(B) = s(a)
since f € A. O

LEMMA 3.2. Let Y?t* be a monomial in %#,, and let a € Z, TEN,
satisfying a ~ & + ta and J(a) = J(a) + TN. Then
n—1
Yt = (@) M 4yt S T G
i=1
where u(a) € &, is a unit and, for each i, q;,, € Fm. Furthermore,
each q; oy has unit coefficients and, if Y°t* is a monomial of q; o, with
non-zero coefficient, then wy(¢;0) = wy{a;y) — 1.

Proof. Using Lemma 3.1 we can write:
n—1
(3.32) Y71 = u(a)Y't# + 95> Hipigy,
i=1
where f is the unique element of A such that f#Za, and p; ., = Y7p;,.
Let #° be a monomial of Di With non-zero coefficient:
Lemma 3.2 (ii)= y > —mMs(J) so that p;,, € A, and equation
(3.32) is valid in 4,,.
Applying the map ®,,: 4,, — %y, to equation (3.32) we obtain the
desired result with g; ., = @ (Dig,y)- O

Let V,,(b) be the R,,(b)-vector space generated by
{y—mMs@ | o € A},
and let V,,,(b,c) = Viu(b) N Ly (b, ).
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ProPOSITION 3.1.
n—l_
Lin(b,¢) = Viu(b,c) + Y Hi* Ly(b,c +e).

i=1

Proof. Let & = 3° . \eg, A(e; 7)1*Y? € Ly (b, c). We apply Lemma
3.2 to all the monomials in ¢.
If a € Aand v > —mMs(a) we let

(333) B(v) = A(as )u(a),

where #(a) has been defined in Lemma 3.2 and the sum is taken over
the set

E(@,v)={(a;7) € Em | v = umM+y, o ~&+pa, J(a) = J(@)+uN}.

If (a,7) € E(a,v), then wy(a;y) = wy(a;v); hence by (3.9) the
sum (3.33) is finite and ord Bx(v) > bwm(a;v) + c.

Thus, for each & € A, Bg(Y)tZ = Euz— mMs() Bg(y)Y”tg is an ele-
ment of ¥;,(b,c). On the other hand, let {; = 75 Y apyeEn A V) diay
and write

(3.34) L= Y, Gy,  i=1,...,n-1
(B.v)EEm

If (a;7) € E;y we can write g oy = 3 Dj o y(&;0)2¢Y?, the sum being
taken over all (¢;0) € E,, such that w,,(&;0) = wy(a;y) — 1. Thus

(3.35) Ci(B:v) = 15" Y_ Diay(B,v)A(as7),

the sum being over the set {(a;y) € Ey, | Wm(a;y) = wm(B;v) + 1}.
This set is finite and

ord Ci(B;v) > blw,(B;v)+ 11+ c— 1% =bwn,(p;v)+c+e.

Hence the sum (3.34) is meaningful, {; € L,(b,c + e), and we can
write

- n=1
(3.36) E=D_BAY)*+Y Hi*{
7% i=1

a€A

PROPOSITION 3.2. Vp(b) NP2 H; % Liy(b) = (0).
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Proof. Let v € Vy,(b). For W € @ we let v‘") be the compo-
nent of v which is of homogeneous weight W: we can write v("") =
ZHEZ P,(Y)t*, where each P,(Y) is a Laurent polynomial in Y.

Let 1:A — A be the map described in the proof of Lemma 2.4. Let
Z=Y"M and, forae€Alet B =1(a) =a—1a (T €N):
1o = Zrtﬂ + ([a _ Z)(la—a + Zta—Za NS Zr—lza—w).

Hence we can write:

v =3 Qp(Y)tF + (1° - Z) Y Ry(1,Y),

BeA BeA
where for each B, Qp(Y) is a Laurent polynomial in Y and Rg(t,Y)
is a Laurent polynomial in Y, ¢,...,t,. Furthermore:
(i) if y € Q% and a € A, then Po(y) = 0 & Qyoy(») = 0
(i) if Y7¢° is any monomial in Ry(¢, ) with non-zero coefficient,
then J(d) > 0.
Suppose v € Ef’z‘ll H; x L,,(b): we can write

n—1
v =3 "H;x ¢,
i=1

where, for each i, {; € Qo[Y,+,4,...,,] and is of homogeneous
weight W — 1.

Let a,f € E and suppose o+ ff = 0 + ta, with d € E and 7 € N:
1 %, t/i — l‘”‘+ﬂ _ (ta+ﬁ—a + Zta+ﬂ—2a 4o Zr—lta+ﬁ—ta)(ta _ Z).
Hence we can write

H;x{;=H{i+n(t° - 2Z), with 5, € Qg [Y, %,11,---,111]-

For each i = 1,...,n, fix & € Q with &% = ¢,¢;! and let g, be the
group of d;-th roots of unity in Q.

Let s; = [ d), s = [1j_1d;. Let 0(Y,1) = ¥, 5 Qp(Y Y)t# and
suppose v(") £ 0: there exists & € A such that P,(Y) # 0; hence
there exists f = 1(a) € A such that Qp(Y) # 0. For such a fixed g let

AB)={yeA|J(y)=J(B)} and let y € Q% such that Qp(y) #0.
We claim that there exists ({y,...,{,) € [I}_, g such that

(337) ﬁ(y9u17""un)7l:05

where u; =&y, i=1,...,n
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Indeed, the coefficient of 5% in (3.37) is
Y Q0. O

y€A(B)

For each y = (y1,...,7n) €AB), Xy: (L15.- -, Cn) — LI ... {0 is a char-
acter of [T, ug.

The elements of A(B) all belong to distinct congruence classes, so
these characters are all distinct, and therefore linearly independent.
Our claim follows since Qg(y) # 0.

Let now

n
S(Y;0) =) ni—Y Rs(Y;1),
i=1 seA

u=[]E&¢)* and A= iair,- =N[4
i=1

i=1 i=1
We have:
(3.38) (s ut,. .., un) = (utf —y™™S(;uy,...,up).

The left-hand side of (3.38) is a non-zero polynomial in z,,, of degree
less than A4, while the right-hand side vanishes for any choice of ¢,

satisfying ¢ = u~'y™M, a contradiction. Hence v(") = 0. o
LEMMA 3.3. Let K be a field of arbitrary characteristic, u,...,u,
elements of K*,v,,...,vn, A positive integers; let

B=K[t,....t, , Y19,  f=(Y""** -1,

B =B/(f), hi = uit! —unty (i = 1,...,n—1); then the family {h;}""]
in any order forms a regular sequence on B.

Proof. LetI ¢ {1,...,n—1} and let 2; be the ideal of B generated by
{hi}icr- We must show that (2;: 4;) = 2; for any k ¢ I. By relabelling
we may assume that 7 = {1,...,j}, with j < n—1, and that k = j+ 1.
Accordingly, we write 2; instead of ;. Let B = K[ty,...,#,Y,Z]
and Fl = Bl/(Z)” -1,YZ - ta).

The mapping Z — Y ~!£ induces a ring isomorphism from B, into
B. Thus, if B; is the ideal of B; generated by {hy,...,h;,Z — 1,
YZ — t*}, we must show that (3B;:h;,,) = B, or equivalently that
hj.1 does not belong to any associated prime of %B;. Since B; has
j + 2 generators, its dimension is at least n — j. On the other hand,
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the ring B, /B; is integral over K[t;,1,...,,] (note that Y* — 4 = 0
in B;/B;). Hence dimB; = n — j. By Macaulay’s theorem [16, Ch.
VII, §8], B; is unmixed. Likewise, B, = (B, h;;) is unmixed, of
dimension n — j — 1. Let p be an associated prime of B; and suppose
that #j,; € p:p D (Bj,hj41) = Bjyy; hence dimp < n—-j -1, a

contradiction since dimp =n — j. O
Let

(3.39) R=Qt1,...,tn, Y, Y119

(3.40) fim = (y-1@aymM _ |

(3.41) R™ =R/ f(™)

(3.42) B = gmMdi _ g M =1, n—1.

For any monomial r*Y? we set:
~ ~ 1
(343)  Bulesy) = Fu(tY) = —(J (@) + N).

w,, makes R™ into a graded ring, and each h,('") is homogeneous of
weight 1.

LEMMA 3.4. Let I be a non-empty subset of {1,...,n — 1} and let
{P;}ics be a family of elements of R™ such that Yiel P,-hl(.'") =0. Then
there exists a skew-symmetric set {1; j}i jer such that P; = 3- c/ 1;, jhﬁ.m)
for each i € 1. Furthermore, if each P; is of homogeneous weight
Wm(P;) = W independent of i

(@) if W > 1, each n;; may be chosen of homogeneous weight
Wm(ni,j) = W — 1 with Minje;{ordn; ;} > ord P; forall i € I,

(b) if W < 1then P, =0 for all i € I (i.e. each n;; may be chosen
to be zero).

Proof. To simplify notation, we write A; instead of h}m). We proceed
by induction on the number of elements in /. By relabelling, we may
assume that I = {1,...,r+ 1}, r > 0. If r = 0, then P, = 0 and
hence we can assume r > 1. Let 2, be the ideal of r™ generated by
{hi}'_,; by Lemma 3.3, (%,:A,;) = %,; hence P,y € A,. Thus there
exist yy,...,y, € R™ such that

r
(3.44) P =) yihi
i=1
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Now
r r r
> (P +yibe)hi =D Pibi + (Zyihi) hy sy
i=1 i=1 i=1
r+1

=) Phi=0.
i=1

By induction hypothesis, there exists a skew-symmetric set {#; ;}
such that P; + y;ih,y = > ;_ mijhj fori=1,...,r.

We can now set 7,1, = y; and #;,41 = =y;, i = 1,...,r and the
first assertion follows.

If each P; is of homogeneous weight W > 1, in (3.44) we can
choose each y; to be of homogeneous weight W — 1. If W < 1, since
Wy (h;) = 1 both sides of equation (3.44) must be zero and the induc-
tion hypothesis shows that each P, =0, i =1,...,r + 1.

For the estimate on ord 5;; we refer the reader to [7, Lemma 3.1]
where a similar result is proved. o

The argument of Lemmas 3.5 and 3.6 is due to S. Sperber and can be
used to close a gap in the proof of directness of sum in [15, Theorem
3.9].

r
ij=1

LEMMA 3.5. Let T, = {(a;y) € (mMZ)" x Z | t*Y? € R}; then
the mapping (a; y) — (mMa; y) establishes a bijection between Sy, and
Tm. In particular, t; — t;"M (i=1,...,n) maps Ay, into a subring of

R and Ay, into a subring of R"™.

Proof. Let (a;y) € Sm and let f = mMo:
BY? = (Y~ 12)5 B yr+5(8) B=s(B)a,

s(B) = mMs(a) is an integer and, by assumption, y > —mMs(a) and
a; > s(a)a; for all i. Hence y + s(f) > 0, f; — s(B)a; > 0 Vi and
thY7 € R.

Conversely, if t*Y? is a monomial in R, then y > —s(d): this is
clearly true of the generators of R and, for any d,¢ € 7", s(6 + ¢) >
$(0) + s(¢). Thus, if (B;y) € Ty, with B = mMa, then (a;y) € S,,. O

LEMMA 3.6. Let I be a non-empty subset of {1,...,n — 1}; then the
family {H ;}cr in any order forms a regular sequence in %Z,,. More pre-
cisely, if {Pi(t,Y)}ic; is a set of non-zero elements of %, of
homogeneous weight w,,(P;) = W independent of i, and such that
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YicsHi * P = 0, then there exists a skew-symmetric set {&; ;}i jer
of elements of %, such that
1) P(t,Y) =3 Hj*&ijs
(i) each &;; has homogeneous weight wy(S; ;) = W — 1 for all
(i,j)yelxI,
(ii1) Minjel{ordéi,j} >ordP;,—1/(p — 1) foralliel.

Proof. Assume that
(3.45) > H;xP(t,Y)=0.
i€l
Applying 5;1 to equation (3.45) we obtain the following equation
in A,

(3.46) Y HP(1,Y)=0
iel
Replacing ¢; by "M (i = 1,...,n), and multiplying by 7; !, we get
(3.47) Zh P(t"™™,Y)=0.
el

Let Q;(t,Y) = P;(t™M,Y); by Lemma 3.5, Q;(t,Y) € R,, and,
if *Y? is any monomial in Q;(¢,Y) with non-zero coefficient, then
W (a;y) = W. Lemma 3.4 implies the existence of a skew—symmetric
set {1;,j}i jer of elements of Ry, such that Q;(t,Y) = 3=, n; jh ™) for
each i € I, with w,,(n; j) = W — 1 and ord 5; ; > ord P; for all z J.

If Y7 is any monomial in Q;(¢,Y) with non-zero coefficient then
(a;7) € T),,. The same is true of each hfm). Hence we may choose the
elements 7; ; so that n; ; = & ("M, Y):

(3.48) P(emM ) =38 (M Y )R,
JjerI

Therefore, letting & ;(1,Y) = Vo &t Y):

(3.49) P(t,Y) =) & ;(t,Y)H,
Jjel

Equation (3.49) is now valid in4,, and, for any monomial *Y” in
& j(t,Y) with non-zero coefficient, wy,(a;y) = Wp(mMa;y) = W — 1.
Applying ®,, to equation (3.49) yields the result. |

Using the results already attained in this section, Lemmas 3.7 and
3.8 and Theorems 3.1, 3.2, and 3.3 can be obtained with a slight
reworking of the arguments in [7, §3]. We shall therefore omit the
proofs.
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LEMMA 3.7 (see [7, Lemma 3.4)). If b <p/(p — 1), then

n—1
Ln(b,c) = Vi(b,c) + Y Hi* L(b,c +e).

i=1

LEMMA 3.8 (see [7, Lemma 3.5)). If b<p/(p — 1), then

n—1
Vin(b) N> H; x L (b) = (0).

=1

THEOREM 3.1 (see [7, Lemma 3.6)). If 1/(p —1) < b <p/(p - 1),
then
n—1
Lin(b,c) = Vi(b,c)+ Y _ Di* Ly(b,c +e).

=1

THEOREM 3.2 (see [7, Lemma 3.10]). Let I be a non-empty subset
of {1,...,n— 1} and assume that 1/(p — 1) < b <p/(p — 1); if {&;}ier
is a set of elements of L, (b, c) such that 3 ,.; D; *&; = 0, then there
exists a skew-symmetric set {n; j}i jcr in Ln(b,c + e) such that &; =
Y- jer Djxmij for all i € 1. In particular, the family {D;}"" in any
order forms a regular sequence on the R,,(b)-module L,,(b,c).

THEOREM 3.3 (see [7, Lemma 3.11)). If 1/(p— 1)< b <p/(p—1),
then
n—1
Vin(6) N D; % Ly(b) = (0).

=1

d. A Comparison Theorem.
We now undertake to compare reduction modulo

n-1 n—1
Z H;x L, (b,c+e) (respectively Z D;* Ly(b,c+ e))

i=1 i=1

with reduction modulo E;’z—ll H; * Ly, (b,c+ e) studied in §2.
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Fix & € L,,(b, c). Using Theorem 3.1, Lemma 3.8, and Proposition
3.1 we write:

n—1
(3.50) E=v+> Di*li, v EVn(b,c), {i € L(b,c+e);

i=1

n—1
(3.51) =T+ Y Hixli, U €Vu(b,c), {i € Lm(b,c+e);

i=1
n—1

(3.52) E=T+ Y Hi*l;,  TEVn(bc), [ €Lmnb,c+e).
i=1

LEMMA 3.9. Let &,v,(1,...,80—1 bg as in (3.50); then in (3.51~) v
satisfies v —v € V,,(b,c+e) and each {; can be chosen so that {; — {; €
L,,(b,c+ 2e).

Proof.

i=1

n-1 n—1 n—1
Y Dix{i=Y Hix{i=)Y Eli€Ln(b,c+e).
i=1 i=1

By Lemma 3.8, there exist v’ € V;,(b,c +e) and {} € L,,(b,c + 2e),
i=1,...,n—1, such that

n—1 n—1
Y Eli=v'+) H;*l.
i=1 i=1

Hence

n—1
E=v+v'+ ) Hi*x(i+{)
i=1
andwemayset17=1)+v’,Z,-=C,+C§,i=1,...,n—1. O
In the rest of this section we fix b= 1/(p — 1) (so e = 1).
LeMMA 3.10. For each i € {1,...,n — 1} there exist
I'i€ Ln(p/(p—1),0) and G;€ Ln(p/(p-1),0)
such that H; = H; » G; + T';. Furthermore, G; is invertible and Gi‘1 €
Lm(p/(p - 1),0).

Proof. By definition,
d d; pig 1dy
H; =Y p'y (Cﬁ’ —tf % = =1 d")
1=0 di an

(recall that ¢/ = c;, and therefore ¢} = 7).
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Let
o0 o0 pI
- { é_ é / ! pld; ! é{_ _dﬁ D’ p'd,
Fz—pr[ai (ai)p]cf’t,- pr[an o) |
=0 1=0
Then -
Hi= Y 0'n| (et = @t | +T.
/=0
If we set
) p'—1
— N7 -
Gi=1+Y 75'np" Y (eit?y (entdy?' =1,
=1 =0

then formally: H; = H,G; +T;.
Since di/a; € Q and (p, M) = 1 we have

pl
ord [@— (Z—k) ] >1 forallk=1,...,n.
k

Hence both I'; and G; are elements of L(p/(p — 1),0). G, is of the
form G, =1- Za,-ZO Cat; such a series is invertible in L(p/(p — 1), 0),
with inverse G;' = 1+ 3-52(X, 50 Cat®)’.

Now apply ®@,,: L(p/(p — 1)) — Lu(p/(p — 1)) 0o

LEMMA 3.11. Let &,7,C4,...,Cn1 be as in (3.51); then in (3.52) ¥
satisfies U —v € Vyy(p/(p — 1),c + 1) and each {; can be chosen so that

Ei"Gi*ZiELm<—p—,C+2>.

p—1
Proof. We construct a sequence (£®), v®), Cg") yeees Cr(:l—)l)VEN with
) p ) p
4 ELm<p_ 1,c+1/), vW e Vm(p— 1,c+v),

v D
Cz( )eLm<p_1,C+V+l>

by letting &0 = ¢, v(0) = 7, CEO) = ; and the following recursion.
Given &) € L,,(p/(p — 1),c + v) we can write, using Lemma 3.8:

n—1
= ) P
f(u)—v(y)"f‘zfli*ciy, 'U(V)eLm<p_1,C+V),

i=1

() p
&’ eLm<p_1,c+1/+1>.
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By Lemma 3.10,

n—1
(3.53) V=00 L STH x G+ () +E0FD, with
i=1

E+D) I‘*C eLm< p1c+1/+1)

Let s € N. Writing equation (3.53) for 0 < v < s and adding yields,
after cancellations:

s n—1 s
&= va - Zﬁi * Z Gy # () 4 El+D),

Lettmg s — 00, Yu_ov®¥) converges to T € Vu(p/(p — 1),¢),

S _o ") converges to {; € L(p/(p — 1),¢ + 1) and E6+D) converges
to zero. 0

THEOREM 3.4. Let £ € L, (p/(p — 1),¢); if we express & in the form
E=T+ Z;’z‘ll H; + C; on the one hand, with v € Viy(p/(p — 1),¢), {; €
Lu,(p/(p—1),c+1) and if we express & in the form & = v+Z;’;11 D;x¢{;
on the other hand, withv € V,,(p/(p — 1),¢), {; € L,(p/(p — 1),c+ 1),
thenv —v € Vyu(p/(p — 1), ¢+ 1) and ¢; and ; may be chosen so that
(i—Gi*{; € Lm(p/(p —1),c+2) for all i.

Proof. This is a consequence of Lemmas 3.9 and 3.11. O

4. Specialization. In order to obtain estimates for the exponential
sum (0.4), we need to specialize the spaces L,,(b,c) by setting Y =y
for some y € Q*. We first observe that elements of L, (b,c) are
convergent for ord¢; > —b/d; and ordY > —Nb/mM. Furthermore,
if we fix Y = y withordy > —Nb/mM, the resulting series in ¢y,..., t,
are convergent for ¢; satisfying ord¢; > (mM/d;N)ordy.

Throughout this section, we assume that (p, M) = 1 = (p, D) and
(p-1)<b<p/(p-

For o € 7" we let

(4.1) w(a) = J(a) — Ns(a).

For x € QF, let

(4.2) L(x;b,c) { = > A(a)* | A(e) € Q,
a€E

ord A(a) > bw(a) — s(a) - ord x + c};
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(4.3) L(x;b) = |J L(x,b,¢);
ceR

(4.4) V = Qp-span of {t* | a € Z};

(4.5) V(x;b,c) =V NL(x,b,c).

L(x;b) is a Banach space with the norm

(4.6) [|€]lx = Supp~©, ¢, =ord A(a) — bw(a)+ s(a)ord x.
a€E

We equip L(x;b,c) with an Qq-algebra structure in the following
way: if a, § € E, there exist § € E, 4 € N unique such that a + 8 =
0 + Aa and we set:

4.7) 1 th = X0,

If n =3 ,cpB(a)t* is an element of L(x;b,c’'), then & — nxisa
continuous mapping from L(x; b, c) into L(x;b,c + c'). Note that H;
and H; (as defined in (3.27) and (3.28) respectively) can be viewed
as elements of L(x;b,0) and that H;, H;, and D; act continuously on
L(x;b,c) for any c € R. Given x € Q, ordx™ > —Nb, we fix y € Q*
with yM = x. Let Ly, (b,c)’, Lyy(b), Vim(b,c), L(x;b,c)', L(x;b), V'
be defined as their unprimed counterparts, with the difference that
the coefficients are allowed to lie in Qf = Qy(y). We can define an
Q)-linear specialization map

Sy: Lm(b) — L(x™; b)
by sending Y into y. S) is continuous of norm 1 and is surjective,

sending V,,,(b)’ onto V' and D; % L,,(b)' onto D; x L(x™,b)’ for all i.
Indeed, there is an Qj-linear section

(4.8) T ZA(a)t" - Z x™Ms(@) y—mMs(a) s

a€FE a€E

ProprosITION 4.1. Ker(Sy | L(b,c)') = (Y —y)Lm(b,c —ordy).
In particular, L, (b)'/(Y —y)Lm(b) = L(x™;b)".

Proof. Let & = E(a;y)GEm A(a; y)t*Y? € L,y(b,c) and assume that
Sy(&)=0.
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For each a € E we must have 3,5 _ 1/ A(@; 7)y? = 0. Multiply-
ing by y"Ms(®) we obtain }_, ., A(e; 7 — mMs(a))t’ = 0. Thus

&=). [EA(CW — mMs(a))(Y? —yy)] YymMs@ o~ (y — p)&' | with

a€E *y>0
= Z [ZA oy — I’I’lMS Z Y/Iy)' —A-1 ]YmMs(a)
a€E “9>0 A=0
¢ € L,(b,c—ordy) sinceordy > —-Nb/mM. 0

It follows from Theorem 3.2 that the operators D;, i = 1,...,
n — 1, acting on the R,,(b)-module L,,(b) (respectively the R,,(b)'-
module L,,(b)") form a completely secant family ([3, §9, n° 5, Propo-
sition 5]). In other words, the associated Koszul complexes are acyclic:
if

H,({D;}7=!, Lm(b)) [respectively H,({D;}", Lm(b)")]

=12

is the u-th homology group of the corresponding complex, then:

(4.9) H.({D;}]Z II,L 5)=0, u=21
(4.10) H({D}i Lm(0)) =0,  u21.

LEMMA 4.1. (Y —y) is not a zero divisor in Ly (b)'/ 37~ Di*Ly(b)'.

Proof. Let & € L,,(b)' and assume that

n—1

(4.11) (Y-»)E=)_Di*li, (i€ Lm(b).

i=1
By Theorem 3.1, we can write

n—1
(4.12) E=v+) Dixni, v EVn(b), n; € Ln(b).

i=1
Thus (4.11), (4.12), and Theorem 3.3 imply (Y — y)v = 0; hence
v=0. ]

THEOREM 4.1.
(i) Hy({D:i}iZ I,L(xm b)'

y=0 forall u > 1,
(i) Ho({D:}}5, L(x™, b)) —N*
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Proof. (i) Let D, = Y —y. As a consequence of Lemma 4.1, the
family {D;}"_, forms a regular sequence on the R,,(b)’-module L,,(b)’".
In particular,

(4.13) H.({Di}}_;,Lm(b)") =0 forall u> 1.

Using [11, Ch. 8, Theorem 4] and Proposition 4.1, for all x > O there
is an Qj-linear isomorphism.
(4.14) H,({Di}/=1 Lm(b)') = Hy({D;}1=, L(x™; b))
(i1) S, maps Vy,(b,c) onto V(x™;b,c)' and D; x L,,(b,c + €)' onto
D+ L(x™;b,c+e) foralli=1,...,n—1.
Hence using Theorems 3.1 and 3.3:
n—1
(4.15) L(x™;b,c) =V (x™;b,c)' +>_ Di* L(x™;b,c+e).
i=1
Now
n—1
Ho({D:}1=), L(x™;b)') = L(x™;b)'/ Y _ D; * L(x™; b)'. O

i=1
ProrosITION 4.2. L(x;b,c) =V (x;b,c) + E;’;ll D;x L(x;b,c+e).

Proof. Let n = ) g A(a)t* be an element of L(x;b,c). Assume
that, for any a € E such that A(a) # 0, s(a) is equal to some value s
independent of «, and let & = y=M5T,(n).

Let ¢ = s - ordx; & = Y cpA(@)t?Y M5 is an element of
Ly(b,c +cs) and, by Theorem 3.1, there exist v = 30, % Py(Y)tP €
Vi(b,c+cs) and §; € Ly(b,c+cs+e) such that & = v+ 37! D;+{;. For
each g € Z, write Pp(Y) = Ey Pg ,Y? and, foreach i = 1,...,n -1,

C: = Z(a;y) Ci,a,yta Y7,
For/eN, 0</ < M we let:

P,B,[(Y) = E P/g’yY
y+Ms=l (mod M)
Lu= Y. Giapt?Y?,  i=1,..,n-1

y+Ms=l (mod M)

Note that if 1*Y? is any monomial in D; * {;; with non-zero coeffi-
cient, then again y + Ms =/ (mod M). Thus, if [ # 0:

n—1
Y P (Y)+ > Dixliy=0
i=1

BeA
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Applying Theorem 3.3, Pp ,(Y) = Oforall 8 € A and we may choose
each {;, to be zero. Therefore:

n-—1
&= Ppo(M)tP + " Dix .

BeA i=1

Certainly yMSPg o(Y) € Q for all § € A and yM5S, (¢, ) has its coef-
ficients in Qg for all i = 1,...,n — 1. Hence

n—1
ne V(x;b,c)+ZD,- * L(x;b,c +e).
i=1

Now observe that if o € E, s(a) can assume only a finite set of
values. Finally, directness of sum follows from (4.15). O

COROLLARY 4.1.
H,({D}=},L(x™;0)) =0 forall p> 1.

i=1>°

u) Ho({Di}- 1‘,L< b)) = V.
Proof. (i) follows from Theorem 4.1 and the fact that

H,({D:i}12)', L(x™; b)) = Hu({Di}1o)', L(x™; b)) ®q, X
(ii) follows from Proposition 4.2 and the fact that

Ho({D;}?=}, L(x b))=L(x’”;b)/niD,~*L(xm;b). O

i=1>
i=1

5. The Frobenius map. We first review some of the definitions and
results in [7, §4] concerning the lifting of characters. Let

E(z) =exp (f:o %I;)
j=

be the Artin-Hasse exponential series. For s € N* U {oo}, fix y50 €
Q,({,) satisfying

ord ——L— and iﬁo—o
75,0'—p_1 .=0pj - Y

and let 6, be the splitting function
(5.1) 05(z) = E(75,02).
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Let
—_]:_1-——}3-<S+-~1—-—1-) if s € N*,
(5.2) a,=1{7? 1 p 4
e if § = 0.
p—1
As a power series in z:
o0
(5.3) 0s(z)=>_ B2,
=0
with
ord B,(s) >lag,; foralll>0.
(5.4) I
BI(S)=—Jifig for0<I<p-1.

Al
In particular:

(5.5) ordBl(s)zi,-—i—T for0<I/<p-1.
For a fixed choice of s, we can choose ;o so that
(5.6) 0s(t) = 6(t) whenever t =1,

where 0 is the additive character of F, chosen in (0.5). Let
F () = TI7, 6s(citf);
G(t) =TT/ F7 ().

As a consequence of [7, §4], for all m > O:

(58) Sn(7. 700 = 3 (

€7, “i=

(5.7)

n

z;“f”'“”f’f/’) G)G(t9)---G(T™™).
1

Clearly, F(t) € L(ras;1,0) and G(t) € L(&rag4,0).
Let p € N', 0 < p; < r. We define elements p@ = p, p/ =
p, ..., pV¥) = p satisfying:
(59) pp* = p) =0 (modr),
0<p¥ <,
For each of the Banach spaces which have been defined, we indicate

by the subscript “p” the subspace where all monomials * have zero
coefficient unless a € Z(?). Thus, for example,

Ly, p(b,¢)
={&=Y B(es )Y € Ln(b,0) | Blasy) = 0if a ¢ EW}.

i=1,...,m j=0,..,/.
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Let X =YM, If a e Z) we set

ta/l” if L 1<i<nm;
(5.10) w(t) ={ o Lsisn
0, otherwise.

(5.11)  wx (%)
B { Xs(e)=psB)gf  if 3B € E() such that w(a) = pw(B);

0, otherwise.

(5.12) V(1) = Sy 0 wx (1%).

v defines a continuous Qo-linear map y: L,(b/p,c) — Ly (b,c); wx
defines a continuous R, (b)-linear map wx: L, ,(b/p,c) — Ly, (b,c);
¥ defines a continuous Qp-linear map y,: L,(x;b/p,c)— Ly (x?;b,¢).
For all m > 0 the following diagram is commutative:

Ly(b/p) =" Ly ,(b/p) —2— L,(x™;b/p) ®q, @

(5.13) l" lwm lx//xm®id
m Sy
Ly(B) —2" Lympy(b) —2— Ly(x?";b)®q, QU
Let:
/ — .
Vy = Wxaw ©Wyyp2 00 Wx,
(5.14) t
Wy = Wxap O Wygp2 © 0 O Yy
(5.15) { Fi(t,X) =[¢p(F(t")]" € L, (a541,0), 0<j</—1;
Go(t, X) = ¢1(G(1)).

If b < pa,,, we define maps

. /
F:Ly(b,c) — Ly(bjg,c) =EU% Lo(bjg,c) X Ly(b,c);

*Go(2,.X)
—_—

/
(5.16) Fr: Lip(b,6) = Liy(b/2.0) Lip(b/2.0) 225 L, (b0

*Go(4,x)
_—

/7
Fr: Lp(x;b,¢) = Ly(x;b/q,¢) Ly(x;b/g,¢) 22 Ly(x9;b,0).

By [12, §9], & (respectively Fy, respectively %) is a completely
continuous Qq-linear map (respectively R;(b)-linear, respectively Q-

linear).
Let 6 be the operator defined on 1 + TQ[[T1]] by
(5.17) g(ry = £

g(qT)



EXPONENTIAL SUMS AND p-ADIC ESTIMATES 267

If x € Qj is the Teichmiiller lifting of X € F,, it follows from Corol-
lary 1.1 that

(5.18) L(f,7:,0,p, T) V" =det(I - TF)?"".
We now fix the choice of constants in (3.23) by setting
L
(5.19) yj = g_’ =1,
0, if j >s.

Let F(t") = exp H(t) (H(t) has been defined in (3.26)).
We recall ([7, (4.22)]) that

F(1)
F(t) = g H
(5.20) Ii @)
G =LW
F(19)
As operators on L(0):
(5.21) D, = F(l 5o F B, i=1,..,n—1,

On the other hand, F = ¥/ oG(¢") maps L(0) into itself, and it follows
from (5.20) that

(5.22) F =

ow” o F(t
oY F(t).

Since w/ o E; = qE; o y/ for all i, we deduce:
(5.23) FoDi=qD;oF, i=1,...,n-1,

¢

and this last equation is now valid in L(b) C L(0). Using (5.13) and
the definition of ¢,, we deduce:

(5.24) {9‘3(°Di=qD,~09},
. FxoD;=qD;o%.
Let
(5.25) { Wxn,p = Lm,p(b)/ YDy % Ly y();
Wip=Ly(x;b)/ Z;:ll D; x Ly(x;b).

As a consequence of (5.24), % acts on the Koszul complex
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K({{D; }l 1 »Lp(x;b)). Specifically, there is a commutative diagram:

0"’L/1(X§b) e L,,(x;b)(”Tl) hndi s Lp(X;b) - Wyp—0
(5.26) g1z gz "7 [ |7
n—1
0— Ly(x%b) — - — Lp(x9; ) — . Ly(x%;b) — Wya ), — 0

Corollary 4.1 implies that both rows of diagram (5.26) are exact.
Therefore, taking the alternating product of the Fredholm determi-
nants, we obtain

(5.27) det(] — T%)"™" = det(] — TF ).
For j >0 let
T =y o FV(t");
(5.28) ) = Wy o [¥Ej(8, X);
G = Y o [¥Fj (1, %)),
F maps Ly p0(b,c) into Ly ,(b,c), while FY) maps
Ly (x?';b,¢) into Ly (x5 b, ¢). If we set:
(5.29) DYV =E;+HY, i=1,..,n—1;j=0,...,/,
then, as above,

(5.30) ) oDl(j) =le(j+1) o).
Hence: ‘ N |
(5.31) { 5 o DY = pD*V 0 7,
g ODI(J) pD§J+1)'
Let
(5.32) { W)(({,Z’ = LP’,P(”(Z?)/ E:‘:ll D,( * Lp, p(n(b)
W) = Ly (673 6)/ 15! DY+ Ly (27’3 0)

37X(j ) and 9;0 ) define quotient maps:
(Thowts -
T WY — W,
With these notations, W)((,//;) = Wxap, Wx({;) = W, and the following
factorizations hold:

(5.33)

=  —=(/-1 —(1) _==(0
(5.34) {9)(—7(){ ) ---0.7&)07&);
) (/-1 =) =0
Fx=FF o--r0F T oF .
We now fix:
(5.35) s = 00; b=_-2_
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PROPOSITION 5.1. (i) Let CO(Y) = (C§)(Y)) be the matrix of
7Y W)(({/)) - W)(({;” with respect to the bases {Y M5 | o € A}
of W)(({l)) and {Y-Mp"'s(@ge | o € K,,(,m} of W}{;l) respectively; then
for any a € me and f € Kpum, Cgi (Y) is analytic in the disk
{ylordy > -N/Mp/(p — 1)}.

(ii) Let x € Q% with ord x = 0 and let AV) = (47 (x)) be the matrix
of F 7w ,, — W, j,,“) with respect to the bases {t* | a € Apm} of WX’}
and {t" | a € pr } of Wx(’pH) respectively, then for any a € A y and
Be Ap!“)aordAﬂ,a( ) = (pw(B) —w(a))/(p - 1).

Proof. (1) Ifac Zp(ﬁ-l), then

Y_pJMS(a)ta e ij( 1 —w (a))

p—1"p-1
so that

() (v ~p' Ms(a) a (P —w(a)
FINY )€ L, (p——_l,—————p_l .

Using Theorem 3.1, we may write
(5.36) F (Y P M@y
n—1
Z C(J) ‘PH]MS(/’)Z/}—#-ZDEHI) *{i(1,Y).
ﬂGA,,um =1
with
p  pw(f)—w(a)
p-1"  p-1
. b —w(e)
Cl(t7Y) GLP”I <p_ 1 p— 1 + 1)

(ii) Applying the map S, to equation (5.36) and multiplying by
x?’5(®) we obtain:

(5.37) D12y = Z C y)xP'ste)=p " s(B)¢h

BEA/,JH)

and

CYL(Y) € Ry (

n—1
+3 DIV« (e, y).

i=1
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Since Zx(j ) is defined over Qy, Proposition 4.2 shows that in fact
C;,’L)I(y)xl”““)“l’“'s(/’) € Q) and we may write:

(5.38) A(ﬂj’)a(x) = Cé{i(y)xp/s(a)—piﬂs(ﬂ)‘
The estimates now follow from the fact that

J+1 w —-w !
Cﬂ,a(y)eL(xp ;pfl’p (f,)_l (a)) N Q.

THEOREM 5.1. Let p = (p1,...,pn) € I", 0 < p; < r and suppose
that p=0orp =1 (modr); let #(T) =] 5 (1- q¥)T). Then the

Newton polygon of L(f,®, p, T) lies over the Newton polygon of 2, (T).
Proof. Let 9 be the completion of the maximal unramified exten-

sion of Q, in Q. For x € 9 ({,) satisfying ordx > 0 and 7(x) = x?
we can define

(5.39) hwl) - w9 =y,
by sending & = ) g A()t* € Ly(x?;b,¢) into
&) = Y T (A(w)t* € Ly(x;b,0).

a€E®)

Certainly,
(D %, L(x?;b)) C D; ¥, L(x;b) for all i,

so that 7! is defined on the quotient. Let x € Qj with x? = x and
let

(5.40) Fl =110 70,

If p =1 (modr), then pU) = p for all j € N and .7/ is a v~ !-semi-
linear map and a completely continuous endomorphism of L,(x;b)
over Q; = Q,({p). If we let

(5.41) Fo=tloTV
then:
(5.42) Fr=(T).

It follows from [8, Lemma 7.1] that the Newton polygon of
detg,(I — T x) can be obtained from that of detq (I — T?;) by
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reducing both ordinates and abscissae by the factor 1// and inter-
preting the ordinates as normalized so that ordg = 1. If x € QF is the
Teichmiiller representative of X € F,, we let & (x) = (#,(x)) be
the matrix of F/: W, , — W, over Q; with respect to the basis

{t*"a€ Zp}. By Proposition 5.1:

(5.43) ord 7 o(x) > 5’—“’%)?“1‘”& for all a, f € A,.

We fix an integral basis { ’71'}1’/; , of Qo over Q; with the property

that {7;}/_, is a basis of F, over F,. In particular, if ® € Qo, @ =
él w;N;, w; € Qy, then ord w = Inf ;< ,{ord w;}. Write:

(5.44) Femit) =3 3 (B, ) (a,i))n;tb.

' is an Q,-linear endomorphism of W, , with matrix

o' = (B, ]), (e )]
with respect to the basis {#;t* | a € Z,,, 1 <i< /}. Furthermore:

ord </ (B, ), (@, i) > ‘—’3”—(/3;)—_"—1“’@ for all , j.

We now proceed as in [8, §7]:

o
detq,(I - TF,) =1+ m;T’,

j=1
where @ = /NI ki and m; is (up to sign) the sum of the
J x j principal minors of the matrix .&/’. Thus, ord m; is greater than
or equal to the minimum of all j-fold sums }~/_, w(B), in which
{(Bu),in}]_, is a set of j distinct elements in {(B,1) | B € Zp, 1<i<
O

ProrosSITION 5.2. For each o € me, let o/ € Z,,<,-+l> and & € 7" be
the unique elements such that 0 <6, <p -1 and

v X . .
p(% - s(a')%) - <g—’ —s(a)%) =d; foralli
1 ! ! 1
Le;}f‘(j) = (Cl(g{(l(Y)) be the matrix of?(){): W)(({/)) - W/\(,{;l).
en:

(i) ord CY),(0) = Zel@)-wl) — 5> 5,
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(i) If B # o then
~ w(f) —w
ord Y (0) > "————-—(ﬁ ) 1 (@)
provided one of the following conditions holds:
(a) B and o lie in distinct congruence classes;

(b) B ~ o' and s(B) # s(a);
(©) B~d, s(B)=s('), w(B) <w(a).

Proof. To simplify notation, we shall assume that j = 0. For each
[ € N we write B, instead of Bl(°°) in (5.3). For a € N" let

b

) cf"'/d'Ba,_/di, if d; | a; for all i;
otherwise.

(5.45) B(a) = { 0

By (5.4), ordB(a) > J(a)/(p — 1), and by (5.5), ord B(a) =
J(@)/(p-1),if a;/d; <p -1 forall i.

With these notations:
{ F(t") =Y ene Bla)1%,

(5.46)
Fo(t, X) = Lo Laen Bla+ da)te Y.

Leta € Zp:

(547) !g/\ﬁO)(Y—Ms(a)ta)
= Z Z B(n + Aa)YMS(OH"?)—PMS(G)—Ms(a)+AMta,
AeN

where the inner sum is indexed by the set
{(n,0) € E® x E?) | 5; + Aa; =0 modd;, w(a+ ) =pw(a)}.
Let
p \ ) O
fGLp <It—1',c>, é——- Z A(a, )’)t Y?.
(a,y)EE,
If we write .
"
E=) Ep()F+) Hi+(,
peA =1
we saw in the proof of Proposition 3.1 that the coefficient of Y ~?#/s(8)
in Ep(Y) is ) u(a)A(@;y), where the sum is indexed by the set
{(@;v) € EXN|-pMs(B)=upM +7y, &~ B+ pa,
J(@)=J(B) + na, n €N},
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and where each u(@) is a unit in &. Thus, if we write

n—1
(548)  FO(Y M) = 37 Cpa(NY PO 1 5 TH] 5
Bea, i=1
then the constant coefficient of Cjg,(Y) is
(5.49) Cpo(0)=> u(o)B(u+Aa),
where the sum is indexed by the set S(8,a) of all (n,0,1) € E® x
E(") x N satisfying;
[ ps(B) —s(a) +s(a+n)—ps(a)+A+pu=0
o~ B+ ua, UEN
(5.50) { J(@)=J(B)+ ua
wijle+n) =pwij(o) Lj=1,...,n
L i +Aa; =0 modd, i=1,...,n

Let (n,0,4) € S(B,a). If 0 ~ f+ pua and J(o) = J(B) + na for
some x4 € N, then necessarily s(¢) < s(f) + u. On the other hand,
s(a+n) > s(a) + s(n). Hence:

0=ps(B) —s(a) +s(a+n) —ps(a) +A+pu
>s(a+n)—s(a)+A>s(n)+4i>0.

We conclude that s(a + 1) = s(a), s(o) = s(B)+u, A =0, s(n) = 0.
Furthermore, since o and f are elements of E, s(g) < 1 and s(f8) < 1;
hence 4 = 0. Thus

(5.51) Cpal0) =) u(o)B(n),

where the sum is indexed by the set 7(f,a) of all (7,0) € E® x E(*)
which satisfy

((s(a+ 1) =s(a)

s(n) =

s(o) =s(B)
(5.52) {o~B,

J(o)=J(B)

w;j(a+n)=pw;;(g) foralli,j
L 7, =0 modd; for all i.
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Let (n,0) € T(B,a): there is an index / such that ; = 0 and s(a) =
s(a + 1) = oy/a; and, by Remark 1.1, s(g) = g;/a;. Hence:

(5.53) p<§é —s(a)%) _ <Z— —s(a)z_;) - %’_ —y;eN foralli.

By assumption:
! a; a; a;

Y _sanH ) - _sta)® ) =5, ;
(5.54) p(di s(a)di) (di s(a)di) J;eN foralli.
by Lemma 2.8, s(a') = o}/a; and we deduce from (5.53) and (5.54)
that ;
Pgi———(alg ez foralli= 1,...,n.
!

Since g.c.d.(g1,.-.,82) = 1 and (p,M) = 1, this implies g, =
o) mod gj; but ¢ and o are elements of E(P): ¢,/g, <1, o}/g <
and g; = o) modr. Hence g; = o; and s(o) = s(o’). (5.53) and (5.54)
now imply p(o; — o)) =0 modd; for all i; since (p, D) = 1 we deduce
o' ~ o ~ B. In particular, T(f,a) = & if # and & lie in distinct con-
gruence classes, or if s(8) # s(¢/). Furthermore, since s(c) = s(f),
(5.53) yields

(5.55) p(% —s(ﬁ)fl—;) - (z—l —s(a)%) —¢g el foralli.
Suppose f # o': by Lemma 2.8 there exists an index j such thate; < 0
or alternatively an index k such that ¢, > p — 1.

If ¢; < 0, (5.53) and (5.54) imply p(g;/d; — Bj/d;) = v —¢; > 0,
hence g; > f; and therefore a; > B;+d;; but J(o) = J(B), hence there
exists an index m such that S, > o, + d,,. Subtracting (5.53) from
(5.54) then yields &, — v, > p; hence ¢, > p — 1. Now subtracting

(5.54) from (5.55) we obtain

'
p(g’ﬁ“%m>=3m_5m>0,
m m

hence 8, > o,. If B ~ o, this last inequality implies that 8; > o}
for all i (Lemma 2.3) and therefore w(f) > w(cd') since s(f) = s(a’).
Thus, if 8 ~ o, B # o, s(B) = s(a’), and w(f) < w(a') the set
T(B,a) is empty and Cjg ,(0) = 0.

Suppose finally that 8 = o'. Since J(a) = J(), if 0 # o there is
an index i such that o, > g; + d;; but this implies J; — v; > p in (5.53)
and (5.54); hence J; > p, a contradiction. Hence ¢ = o' and the set
T(d/,a) contains the single element (7,a’) with n = (d,d},...,0,d,).
In particular, ord C o o(0) = Y%, 6;.
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Summarizing:
(i) ord Cora(0) = (pw(a’) — w(a))/(p — 1);
(ii) if B # o then Cp ,(0) = 0 whenever one of the following holds:
(a) B and < lie in distinct congruence classes;
(b) B ~ o' and s(B) # s(a);
() B ~d, s(B) =s(d), and w(B) < w(a).
The proposition now follows from the fact that, by (5.36) and The-
orem 3.4:

(5.56) Cﬂ,a(Y)—fﬁ’a(Y)eRp(pliI’Pw(ﬁ)——lw(a)+l>

Va,f€A. O

Let 7 be a uniformizer of Q,({,) and let #’ be a root of ZM? — 7 in
Q. If 7 is the completion of the maximal unramified extension of Q,
in Q, we let 9 =9 (n’') and we extend 7 to J by setting 7(n') = n'.

Let 2U)(Y) be the matrix of 7 : W/\(,{/)) — W/‘(,{;” with respect to
the bases {nW(@Y-P's@e | o € me} of W/\(,{/)) and {a@B)Y-P's(B)¢B |
pe mel)} of W)(({;-l).

For x € QF, with ordx = 0, let also & ()(x) be the matrix of
FU), W) — WD with respect to the bases {n%(®)¢* | a € Z,,m} of
W) and {x@B)eh | B € Ao} of WU,

By Proposition 5.2, the following estimates hold:

(ord%;7)(0) > w(B) for all (, B) € Ay X Bpuun;

ord #7)(0) = w(a!) for all a € Au;

Z,(0) =0 if § and a satisfy condition (a),

L (b), or (c) of Proposition 5.2 (ii).

( ord.sa/lfg(x) >w(p) forall (a, B) € Ay X Ajuen;
ord%(,{i(x) =w(a/) foralla€e Zl,(j);

ordMﬂ(Q (x) >w(B) if B and « satisfy condition (a),

{ (b), or (c) of Proposition 5.2 (ii).
If a €A, we let Z(a) = w(a) + w(a!) + - + w(a”~D) and, for fixed
p, we let

(5.57) 4

(5.58) |

Z(T) = [] 1 -p*@T) € Q[T1.
aEZ,,

LetQ = /NH:L] k;.



276 MICHEL CARPENTIER

THEOREM 5.2. The Newton polygon of L(f,©, p,T) lies below the
Newton polygon of %Z,(T) and their endpoints coincide at (0,0) and

(Q,Q(n - 1)/2).

Proof. Let R = NTJ._, k; = dimg (W ,). We can write

R
detq,(I - TF x | Wx,) =1+ my(Y)T",

i=1

and by Proposition 5.1 each m;(Y) is analytic in the disk {y | ordy >
—Np/Mq(p — 1)}. If y satisfies ordy = 0, by the maximum modulus
theorem, ord(m;(y)) < ord(m;(0)). Observe that if o, € A satisfy
a~ B, s(a) = s(B) and w(a) £ w(B), then w(c') < w(p’). Thus,
using (5.57), we can order the elements of Zp(,-) for each j, 0 < j <
/ —1, so that the matrices Z/)(0) are simultaneously upper triangular,
with diagonal entries {"50553,),&(,)(0) | a € Zp} and ord E;”Of({z,),a(,) 0) =
w(a+1)). Hence for each i, 1 < i < R, ord(m;(0)) is the infimum of
all the i-fold sums ) Z(«), where o runs over a subset of i distinct
elements of Z,,. This establishes the first assertion. By Lemma 2.9,
Ean,, w(a) = R(n—1)/2 for any p. Hence ord mp(0) = /R(n—1)/2.

On the other hand, estimates (5.58) imply that, for all j, 0 < j <
/-1

ord(det(x)) = Y w(a).

a€h,(j)

The second assertion follows. |

COROLLARY 5.1. Ifp = 1 (modr), the endpoints of the Newton poly-
gons of L(/,0, p,T) and of #,(T) coincide.

THEOREM 5.3. If p = 1| (modr), (or p = (0,...,0)), and pg; =
g (modk;g;) for all i,j € {1,...,n}, the Newton polygons of
L(/,8,p,T) and of #,(T) coincide.

Proof. Under our assumptions, the permutation o — o' of Lemma
2.8 is the identity on A,. Using the estimates (5.58), the remainder of
the proof is identical to that of [15, Theorem 5.46]. O

REMARK. Theorem 5.3 holds in particular when p = 1 (mod M D).
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