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THE WAVE FRONT SET AND
THE ASYMPTOTIC SUPPORT FOR p-ADIC GROUPS

T O M A S Z P R Z E B I N D A

We prove that for p-adic groups the notion of the wave front set of
a representation coincides with the notion of the asymptotic support.

1. The wave front sets of finite sums of homogeneous distributions.

Let Ω be a p-adic field of characteristic zero, with valuation | |. Let g
be a finite dimensional vector space over Ω. Fix a non-trivial character
/ of the additive group Ω, and a non-degenerate symmetric bilinear
form β on g with values in Ω.

For / e Q°(g) (compactly supported, locally constant functions on
g) define a Fourier Transform by

(1.1) f(Y)= [χ(β(Y9X)MX)dX (7 eg).

Here dX is a Haar measure on the additive group of g (normalized so
that the formula (/) ̂  (x) = f(—x) holds). Then / —• / is a bijective
mapping of Q°(g) onto itself (see [Hal] or [W, p. 107]). If T is a
distribution g then its Fourier transform f is given by

(1.2) f(f) = T(f) (/eQ°(g)).

Let n = dimΩ(g). For / e Q°(g) define

(1.3) fλ(X) = \λ\~nf{λ-χX) (X e g, λ e Ωx).

Fix an open subgroup Λ of Ωx with [Ωx: Λ] < oo.

DEFINITION 1.4. A distribution T on g is Λ-homogeneous of degree
deC if

T(fλ) = \λ\dT(f) (/GQ°°(g), AeA).

Notice that

(1.5) ( Λ Γ = |λΓ(/);ι-. (/eCc°°(g), Aef f) ,

so that if T is Λ-homogeneous of degree d then T is a Λ-homogeneous
of degree —n — d. Clearly if T is a function:

T(f)= ίτ(X)f(X)dX,
Jo
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then T is Λ-homogeneous of degree d iff for any λ e Λ,

T(λX)dX = \λ\dT(X)dX.

The reader may safely focus on the case Λ = Ωx. In order to justify
the generality of Definition 1.4 we mention that a distribution homo-
geneous with respect to a quasicharacter of Ωx is Λ-homogeneous for
a suitable Λ (see for example [G-G-PS, Ch. II]).

By fixing a base of g we can identify it with Ωn and use the norm

(1.6) \(λ,λ2r ,λn)\ = mM{\λι\Λλ2\r ,\λn\}.

The following simple fact will be used later.

LEMMA 1.7. Let F and V be open-compact subsets ofg. Then there
is δ > 0 such that for any λ e Ω with \λ\ < δ the following inclusion
holds:

λF + V C F.

It is known that any compactly supported distribution on g has a
locally constant function as a Fourier Transform.

We are going to use (1.2) to analyze the singularities of T near zero.

DEFINITION 1.8 ([He] §2). A distribution T on g is Λ-smooth at
Yo £ g\{0} if there is an open neighborhood W of 0 and an open
neighborhood V of Yo such that for any / e C™{W) there is N > 0
for which λ e Λ and |λ| > N imply

(fT)~(λY) = Q for any YeV.

The complement of the set of Λ-smooth points of T in g\{0} is called
the A-wave front set of T at zero and is denoted WF^(Γ).

The function (fT) ~, (1.9), is sometimes called a localized Fourier
Transform of T (because supp(/Γ) c suρρ(/)). Of course this func-
tion can be expressed in terms of the convolution

(1.10) {fT) ~ = / * f, where for I J e g ,

/ * f (X) = f(Lχh Lχf{Y) = f(X - Y).

Using (1.10) and the notion of a lattice in g [W, p. 28] we rephrase
the Definition 1.8. For a subset U c g, let fu denote the characteristic
function of U.
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LEMMA 1.11. Let T be a distribution on g and let V be an open-
compact subset o/g\{0}. Then the following conditions on V are equiv-
alent:

(a) VnWF]l(T) is empty.
(b) There is a lattice U in g and a constant c > 0, such that

fu * T(λY) = 0 forλeA, \λ\ >c,YeV.

(c) There is a lattice W in g and for any constant 1 > ε > 0 a
constant cε > 0 such that for any f e C£°(W),

(*) (fγT)-(λY) = 0 forλ9yeK\λ\>ce, e < | y | < l , r e K .

Proof. Clearly (*) implies (a). The equivalence of (a) and (b) was
shown by Heifetz [He, Lemma 2.2] . We shall recall his proof to see
that (b) implies (*). Let W be the lattice dual to U9 f e C^°(W)9 and
let F = - supp/. Lemma 1.7 applied to the sets F and V provides a
constant δ > 0. Put cε = max{δ~ιe~ι,c}. Since by (1.5) supp(/7)^ =
γ~ι supp/ we see that (under the assumptions of (*))

The reader may compare this proof with [H6, 8.1.1] to see that the
analogous argument in the classical situation is more complex.

Lemma 1.11 has the following immediate

COROLLARY 1.12. The wave front set WF^(Γ) contains the set A of
those Y e g\{0} satisfying the condition that for any lattice U c g and
any constant c> 0 there isλeλ with \λ\ > c such that fυ * f(λY) Φ 0.

Clearly Lemma 1.11 implies that

(1.13) WF^(Γ)cΛ suppf.

Also, since for any lattice U c g the support of fu f is compact, the
wave front set of T is the same as that associated to the truncation Tu
of T at infinity, defined by Tu = T-fcT. Therefore we have another

COROLLARY 1.14. The wave front set WF^(Γ) is contained in the
set Bf the intersection of all Λ supp Tu, where U varies over all lattices
in g.
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Next we define a p-adic analog of the classical notion of an asymp-
totic cone (see [Ho, 8.1.7]). For any subset E of g\{0} define its
Λ-asymptotic cone to be the set

(1.15) ACΛ(£) = (limΛ/Z/IΛ/eA, lim λ, = 0, ZJE
[j+oo j-*oo

By a Λ-conical subset of g we will mean a subset closed under multi-
plication by elements of Λ. Then ACΛ(£") is a closed Λ-conical subset
of g.

THEOREM 1.16. For any distribution T ong define the sets A and B
as in Corollaries 1.12 and 1.14 respectively. Then

(1.17) A C WF°(Γ) C ί C ACΛ(suppf).

Moreover all these sets (1.17) coincide ifT is K-homogeneous.

Proof. Only the last inclusion in (1.17) remains to be verified. It is
obvious, however, if we realize that for any lattice U in g the support
of Tu is contained in the intersection of the support of T with the
complement of U in g.

LEMMA 1.18. For any finite sequence of real numbers d\ < d2 <
- - < dr and a sequence a\,a2,...,ar of complex numbers define the
function

F(x) = a{x
dι + a2x

dl + + arx
dr (x > 0).

Then either F is identically equal to zero or F has at most r - 1 zeros.

We omit the elementary proof.

THEOREM 1.19. Let T\,T2,...,Tr be A-homogeneous distributions
on g of degrees d\ < d2 < < dr respectively. Put T = Tχ + T2-i h
Tr. then

7 = 1

Proof. Since the wave front set of a finite sum of distributions is
clearly contained in the union of the wave front sets of the summands,
it will suffice to verify the inclusion

(1.20) WF°(Γ)D(JWF°(7)) .
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Take V disjoint with WF°A(T) as in Lemma 1.11 (a). Then by (c)

(1.21) Q

for / e C?{W), λ e A, γ e A, |y| > ce, e < \γ\ < 1, 7 e V.

Choose ε > 0 so that there are at least r elements in the set (ε, 1] Π
{\ϊ\ \y Ξ A}. Then Lemma 1.18 implies that each summand in (1.21)
is zero. D

2. P-adic wave front sets of group representation. Let G be a con-

nected, reductive Ω-group and G the subgroup of all Ω-rational points
in G. Then G with its usual topology is a locally compact, totally dis-
connected, unimodular group. Let g be the Lie algebra of G. Then g
is a vector space over Ω of finite dimension and G operates on g by
means of the adjoint representation. Assume that the form β in (1.1)
is G-invariant.

Let π be an irreducible admissible representation of G and

be its character.
Let N be the set of all elements of g which are nilpotent. Then N is

the union of a finite number of G-orbits which are called the nilpotent
orbits. For all this see [Hal], [Ha2]. Harish-Chandra [He 1, p. 180]
has shown that one can choose an open neighborhood U of zero in g
and, for each nilpotent orbit O, a complex constant CQ such that

(2.1) θπ(exp(X)) = 5 > o / * o W {X e U).
o

Here μo is a Radon measure on g given by

μo(f) = f
JG/G

/(Ad* Xo) dg* (f e C~(g))

where Xo e O and Go is the stabilizer of Xo in G (see [R]).
It follows from Theorem 1 in [R], that μo is a Ωx-homogeneous

distribution on g of degree d = -« + dimo(O)/2. Therefore, via state-
ment (1.5), μo is a homogeneous distribution of degree -dim^(O)/2.

Let π be an admissible representation of G of finite length. Put

T = θ π exp.

Then (2.1) implies that

7=1
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where the T/s are homogeneous distributions on g of degrees dj (j =
l,2, . . . , r) . Explicitly

άimO/2=-dj

Retain the above notation. Then Theorem 1.19 implies the following

THEOREM 2.2. Let π be an admissible representation of G of finite
length. Then

WF°(Γ) = (Jsupp7).
7=1

The left hand side of the first equation may be thought of as the
wave front set of the representation π (see [H], [He]) and the right
hand side as the asymptotic support (see [B-V]) of π. Recall also [He,
Theorem 3.4] that for π unitary WF^(Γ) coincides with the wave front
set of π defined by the trace class operators. A statement analogous
to Theorem 2.2 for the real reductive Lie groups was conjectured in
[B-V] (and should hold via the inverse of the Lefschetz principle).
Theorem 1.19 is true in the real case and its proof is equally easy.
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