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We construct a counterexample to settle simultaneously the follow-
ing questions all in the negative: (1) Is a regular subdirect product of
simple artinian rings unit-regular? (2) If R is a regular ring such that
every nonzero ideal of R contains a nonzero ideal of bounded index,
is R unit-regular? (3) Is a regular ring with a Hausdorff family of
pseudo-rank functions unit-regular? (4) If R is a regular ring which
contains no infinite direct sum of nonzero pairwise isomorphic right
ideals, is R unit-regular? (5) Is a regular Schur ring unit-regular?

In [1] Goodearl proposed a list of open problems on regular rings.
Some involve potential sufficient conditions for a regular ring to be
unit-regular. The primary aim of this paper is to construct a coun-
terexample for the questions 6, 7, 8, 9 (second part) and 11 in Good-
earΓs book.

Among others the sixth question asks: Is a regular subdirect product
of simple artinian rings always unit-regularΊ In [4] Tyukavkin has
shown that any regular algebra over an uncountable field, which is
a subdirect product of countably many simple artinian rings, is unit-
regular. Recently, Goodearl and Menal [2] have generalized this result
by showing that any regular algebra over an uncountable field, which
has no uncountable direct sums of nonzero right or left ideals, must
be unit-regular; in particular, any regular algebra over an uncountable
field, which has a rank function, is unit-regular. In this paper we shall
construct an example of a regular ring which is a subdirect product of
countably many simple artinian rings but is not unit-regular.

Let F be a countable field, F[t] the ring of polynomials over F
in an indeterminate t, and F{t) the quotient field of F[t]. Define
an exponential valuation d on F(t) by dr{t) = +oo if r{t) = 0 and
dr(t) = n if r{t) = tnf(t)/g(t) where n is an integer and f(t), g(t) e
F[t] with t \ f(t)g(t). Let V be the valuation ring associated with
d, namely, V = {r(ή e F(t)\dr(t) > 0}. Note that F[t], F(t) and V
are all countable. Consequently, V is a countable-dimensional vector
space over F.
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Let VQ, v\9..., υn,... be a basis of V over F. First, we may assume
that dVi Φ dVj for i φ j . Suppose that n is the least integer such
that dvn = dvi for some i < n. Choose αf G F so that f«/^/ —
αz G ί F ; then 9(vΛ - α, v, ) > <9t>/. If <9(̂ « - α/V/) = <9^ for some
j < n, then d(vn - α/V/ - CLJVJ) > dVj for some αy G /\ Continuing
this process we get a t^ such that dv'n φ dVi for all i < n and that
{vo,vu...,vn_uυ'n} spans the same subspace as {vQ9υ\9...9vn-\9vn}
does. Next, we assume, by reordering, that dv0 < dvi < dv2 < •••.
For v = akvk + α ^ + 1 ^ + 1 H with ak Φ 0, we see that dv = dvk.
Since Vo9v\9V2,... span the whole space V, we must have dvo = 0,
dv\ = 1, 9^2 = 2 and so on.

We begin by constructing a ring which is similar to that in Bergman's
example [1; Example 4.26]. Let S be the set of those x G E = End/r(F)
such that (JC - ά)tnV = 0 for some a G .F(ί) and some nonnegative
integer n. As in [1; p. 47] we observe that a depends only on JC, that
is, for each x e S there is a unique element φx G <F(ί) such that
(x - ^Jc)ίwK = 0 for some n > 0. Also, it can be verified that S
is an F-subalgebra of E containing F[t] and that φ is an F-algebra
map of S onto F{t). In addition, ker^ is a regular ideal of S and
S/kQvφ ~ F{t), and therefore S is a regular ring. However, S is not
unit-regular because of the existence of t G S which is injective but
not surjective on V.

Let us fix a basis VQ, V\9 V2, . . . of F over F with 9^w = n for all n.
Then vn, vn+\,... form a basis of tn V over F . Let πn be the projection
of V onto the subspace spanned by Vo,V\,...9vn with kernel ί " + I F .
Consider the matrix of a G 5 with respect to the basis VQ9V\9V2, ....
Certainly, it is column-finite. That is, for any m > 0 there exists « > 0
such that (1 - πn)aπm = 0. Also, it is row-finite: for any m > 0 there
exists n > 0 such that both (a - p α ^ F = 0 and (φά)tnV C ί m + 1 F ,
consequently, a(tnV) c ί m + 1 F and π w α ( l - πΛ) = 0.

Set W = *S x Π^=o πk^πk a n d write elements of W as sequences
w = (w_i,Wo,Wi,...) where tt;_i G 5 and wk G ^Eπ^ for A: > 0.
Let i? be the set of elements w G W satisfying the following two
conditions: (i) for any m > 0 there exists n > 0 such that ^ π m =
W-\πm for all A: > n\ (ii) for any m > 0 there exists « > 0 such that
^mtί;A: = πmw-ι for all k >n. It is clear that i? is an F-subspace of
W. To show that R is a ring, we consider any w, w G i? and m > 0.
There exists « > 0 such that wkπm = W-\πm for all fc > n. Now
because w_i G 5 is column-finite, w_\πm = %jW-\nm for some 7 > 0.
Also, there exists n1 > 0 such that w^πy = U-\Uj for all /: > n1. Then
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ukwkπm = ukw-xπm = ukπjW-ιπm = U-\πjW-Xπm = U-\W-\πm for
all k > max{n, n'}. Similarly, we can show that there exists n" >
0 such that πmukwk = πmU-\W-\ for all k > n". Thus, uw G R.
Therefore R is an F-subalgebra of W.

Let a: R -• YYkLonkEπk be the projection (w-ι,wo,wu...) h->
(^o,^i,...)• Given any w G kerα, 1^ = 0 for all k > 0. For any
m > 0 we have W-\πm = w ^ m = 0 for some k. Hence, W-\ = 0 and
so w = 0. Thus α is injective. If wk G πkEπk, k = 0,1, . . . , n, then
w = (O,wo,Wi,...,wn,O,...) G i? and αw = (wQ9wχ9...9wn909...).
In other words, 0 ^ o

 πk^πk ^ α ^

Let β: R -> S be the projection (w_i,^o ? ^i ? •) •-• ̂ - i For x G
5, set w = (JC,π o xπ o ,πi^πi , . . . ) eW. Let m > 0. Sincex is column-
finite, there exists n > 0 such that (1 -πk)xπm = 0 for all k > n. Then
wk7tm = κkxπkitm = ^kxτtm = *7Γm = W-\Km for all fc > max{m,«}.
Similarly, there exists «' > 0 such that ^ m ^ = πm'W-\ for all k>nf.
Thus w e R and /??# = x. Hence, /? is surjective.

It remains to show that R is regular. But since R/kerβ ~ 5 is
regular, it suffices to show the regularity of ker β. Let w G kevβ. For
each m > 0 there exist nm>0 such that ^ ^ π m = πmwk = 0 for all /: >
rtm. Without loss of generality, we may assume that 0 < no < n\ < .
For 0 < k < no, choose uk G nkEπk such that wkukwk = wk. For
nm <k < «m+i, we have wk G (1 - πm)πkEπk(ί - π m ) , and so choose
Wfc G (1 - πm)nkEπk{\ - πm) such that wkukwk = tu^. Thus w =
(O,wo,W!,...) G Ŵ  and lί wiί; = w. Moreover, ukπm = πmw^ = 0 for
all k > nm by construction. Hence, ueR and so w G ker/?. Therefore,
ker /? is regular, and so R is regular. On the other hand, S, which is not
unit-regular, is a homomorphic image of R. Consequently, R cannot
be unit-regular.

Thus, we have constructed a regular ring R which is not unit-regular.
Since 0£L O

 πk^πk QaRQ Π?Lo πkEπk> where a is a monomorphism
and nkEπk ~ Mk{F), R is a subdirect product of simple artinian rings.
This settles Question 6 in the negative.

A ring R is said to be of bounded index if there exists a positive
integer n such that xn = 0 for all nilpotent elements x in i?. The
seventh question is: IfR is a regular ring such that every nonzero two-
sided ideal ofR contains a nonzero two-sided ideal of bounded index,
is R unit-regularΊ This question is in fact equivalent to Question
6. Instead of showing this, one can verify easily that the example
constructed above satisfies the condition of this question. Let / be
a nonzero two-sided ideal of αi?. Let w = (WQ9WUW2,...) G / with
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wn ψ 0 for some n > 0. Since 0 ^ o

 πk^πk Q a& a n d KnEπn is
simple, it follows that / contains a nonzero two-sided ideal isomorphic
to πnEπn which is clearly of bounded index. This gives a negative
answer to Question 7.

A pseudo-rank function on a regular ring R is a map N : R —• [0,1]
such that (a) N{1) = 1, (b) N{xy) < min{N(x), N(y)} for all x,yeR,
(c) N{e+f) = N(e)+N(f) for all orthogonal idempotents eJeR. If,
in addition, JV(.x) = 0 only if x = 0, TV is called a rank function on iϊ.
The set of all pseudo-rank functions on R is denoted by P(i?). Given
a family X c P(i£), we use ker(X) to denote the kernel of X, namely,
ker(X) = {x e R\N(x) = 0 for all N e X}. Since all simple artinian
rings have rank functions [1; Corollary 16.6], then ΣkLo(lβk+ι)Nk
defines a rank function on Π ί t U ^ O H ' where Nk is a rank function
on M^F). Thus any regular subdirect product R of Yl^LoM^F) has
a rank function and hence ker(P(i?)) = 0. Therefore we have obtained
a counterexample to the eighth question: IfR is a regular ring such
that ker(P(i?)) = 0, is R unit-regularΊ Since a regular ring with a
rank function contains no infinite direct sums of nonzero pairwise
isomorphic right or left ideals [1; Proposition 16.11], the second part
of Question 9 is also settled: IfR is a regular ring which contains no
infinite direct sums of nonzero pairwise isomorphic right ideals, is R
unit-regularΊ Finally, a regular ring with a rank function satisfies the
hypothesis of Question 11 [3; Theorem 5]: Let Rbea regular ring, and
assume that whenever x, y e R such that xy = yx and xR + yR = R,
then Rx + Ry = R. Is R unit-regulafl Thus our example also provides
a negative answer to this question.

Acknowledgment. This is a revised version of our original paper.
The referee pointed out that the technique of D. V. Tyukavkin in [4;
proof of Theorem 2] which was not known to us then can streamline
our proof considerably. He also indicated the existence of rank func-
tion in our example which enables us to settle Questions 8, 9 (second
part) and 11 also in the negative.
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