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BOUNDED FUNCTIONS IN THE
LITTLE BLOCH SPACE

CHRISTOPHER J. BISHOP

We give a characterization of the bounded functions in the little
Bloch space. In particular, we characterize the Blaschke products in
the little Bloch space in terms of the distribution of their zeros, and
give an explicit example of such a Blaschke product.

1. Introduction. Let D = {|z| < 1} denote the unit disk. The little
Bloch space, %), consists of the holomorphic functions f on D such
that

Jim, 1f'(2)I(1~12]*) = 0.

Then H*®(D) N %, is a subalgebra of H*(D) (the bounded holomor-
phic functions on D), but which functions does it contain? In this note
we shall give a characterization of H*®(D) N %, in terms of the mea-
sures which arise in the canonical factorization theorem. We should
also mention that the space H*(D) N %, is sometimes called COP
(“constant on parts”) because it consists of the functions in H*(D)
which are constant on each Gleason part (except D) of the maximal
ideal space of H*°(D). For this, and other facts about %), see [2] or
[3].

A special case which has received some attention is the question of
which Blaschke products are in %,. For example, any finite Blaschke
product is in %, but the existence of infinite products in % is not
obvious. In [18] Donald Sarason constructed such a product (answer-
ing a question from [17]) from the singular inner function associ-
ated to a measure u whose indefinite integral is in A., the Zygmund
class of uniformly smooth functions (see [1], [10], [14], [15], [19] and
[22]). However, his construction does not tell us where the zeros of the
product are. Sarason poses the question of characterizing the Blaschke
products in %) in terms of the distribution of their zeros and, as a first
step, the problem of explicitly constructing the zeros of some Blaschke
product in %. Our characterization of H*(D) N %, when restricted
to Blaschke products, answers Sarason’s question and in §4 we will
use it to give an explicit example of an infinite Blaschke product in

209



210 CHRISTOPHER J. BISHOP

the little Bloch space. Our construction will be quite reminiscent of
Kahane’s construction of a function in A, ([13]).

Another construction of infinite Blaschke products in %, was given
independently by Ken Stephenson [21] and the author [6] using “cut
and paste” techniques. The idea here is to construct the image surface
of the function by identifying copies of the unit disk along certain
slits. However, as in Sarason’s example, the zeros of this Blaschke
product cannot be explicitly computed. Other constructions of inner
functions in %, have been given by Carmona, Cufi and Pommerenke
in [8] and Sundberg (personal communication). The little Bloch space
arises in several contexts, for example, in the theory of conformal
mapping (see [16]). Another example is [4], where Axler proves that
the Hankel operator H; on the Bergman space L%(D,dxdy) is compact
iff f € % (also see [5]).

To state our result we need some notation. For an interval / C T
we call

QU ={re?:e®ecr1,1-|I|<r<t}

the Carleson square with base 1. Also,

T(Q)={re:e el 1 -|I|<r<1-|I|/2}
denotes the “top half” of Q and /(Q) = |I| denotes its side length.
Given an interval I and 4 > 0 we let A/ denote the concentric interval
of length A|I|. Similarly for squares Q and AQ. Also recall the Poisson
kernel on D is given by
1—|z|?
Pz(w) = |1 —wz|?’
Given a Carleson square Q we let Py denote the Poisson kernel for
the point z at the center of the top edge of 0. Given a sequence {z,}
in D we define a positive measure v by

v =3 6,(1 - |zal)

where J, is the unit point mass at z,. Note that v is a finite measure
iff {z,,} are the zeros of some Blaschke product.

If F € H*(D) the canonical factorization theorem [11, Theorem
I1.5.5] says we can write

F(z) = AB(z)G(z)S(z)

where A is a constant of modulus 1,

H Zn— 2 |z,,|
1-2,z z,
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is a Blaschke product,

el +z .. do
G(z) = exp (/ P 108|F(e16)|2—7;)

is outer and

S(z) = exp (—/ e+ Za’l(eie))

et — z
is a singular inner function. Thus we can associate to any bounded
function F a measure u on D given by

do
du=Y08.,(1-|z,) +dl—log|F|5_=dv +do

with v supported on the interior of the disk and o supported on the
boundary. If ||F|l.c < 1 then u is positive. Also note that

(L1) |F(2)| = |B(z)lexp ( / P:(w)da(u))) .

Our characterization is in terms of the measure u. It says F is in
the little Bloch space iff adjacent Carleson squares get about the same
mass from u. More precisely, if Q is a Carleson square let Q' C Q be
a square of half the size. Then,

THEOREM 1. Suppose F is in the unit ball of H*®(D). Then F € %,
iff for every € > 0 there exist N, > 0 such that [(Q) < J implies either

(1) —/;((% > 1/e
or

wQ)  w@)
22 i~ Ty <
(2b) /(NQ)C Po(w) du(w) < e
holds.

The result says that when we look at a square one of two things
can happen. Either the box is “heavy” (gets a lot of mass from u)
or it is “light” in which case all the nearby squares get approximately
the same mass and the far away squares do not contribute much to
the value of F on Q. If F is a Blaschke product, then u = v, so our
characterization in terms on u becomes a characterization in terms of
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the distribution of zeros. In §4 we will construct a sequence of points
{zx} so that the corresponding v satisfies

(3) v (Q) - 2v(Q)] < ev(Q)

for all sufficiently small squares, and this will give a Blaschke product
in %,. Also note that a measure on T satisfies (2a) for all small squares
iff its indefinite integral is in A,. Thus the functions considered by
Sarason in [18] are not too different from “typical” functions in %.
For a given square, (2b) will always hold for a large enough N, so the
point here is that it hold uniformly for all small enough boxes. In the
course of the proof we shall see explicitly how N and ¢ depend on e.

In the next section we prove the sufficiency of our conditions and in
§3 we prove necesssity. In §4 we give an explicit example of a Blaschke
product in %,. In §5 we conclude with some remarks and questions.
I would like to thank John Garnett, Peter Jones, Don Sarason, Ken
Stephenson, Carl Sundberg, Tom Wolff and the referee for many help-
ful remarks and suggestions. The referee’s efforts, in particular, greatly
improved the clarity and accuracy of the original manuscript. This pa-
per was written during my visit to the Mathematical Sciences Research
Institute for the program on classical analysis, and it is a pleasure to
thank MSRI and the organizers for a very pleasant and exciting year.

2. Proof of sufficiency. Suppose F is holomorphic on D. We claim
that F 1is in the little Bloch space iff

(2.1) lim (max|F| —mi |F|) =0.
1(Q)—0 \T(Q) Q)
Clearly F € %, implies this condition. On the other hand, Bloch’s
theorem (e.g., [9, Theorem XII.1.4]) says that if g is holomorphic on
the unit disk and |g’(0)] = 1 then g(D) contains a disk of radius 1/72.
Applying this to F and a disk in 7(Q) shows the above condition im-
plies F € %,. Thus it suffices to show that the hypothesis of Theorem
1 implies (2.1) for F.
Fix n > 0. We will show that for every small enough square Q

)

for every z € T(Q). Let € be a positive number which we will choose
later depending only on 7 and F.
First we consider the case when Q satisfies condition (1).

‘lF(Z)I — exp (—Zn <n
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LEMMA 1. There is a universal A > 0 such that for z € T(Q),

IF(2)| < exp (—A%) .

Let
zZ—w

1—-wz

G(z,w) = —log

be the Green’s function for the unit disk and recall that

P _ (-2 - jw) _

zZ—Ww
ll_wzlz _(1_|w|2)PZ(w)

l1-wz
Also, if z € T(Q) and w € Q then

1 —

1(1-]z)(1 = Jw?) 1 = |w|
e B Ty iy gy
Thus,
log|F(z)| ZGZZ,, /P
<= G(z,zn) - / . (w)do
z,€Q

_ Q)
CZ;QI—M TR <A

This is the lemma. So if % > 1/(2¢) and ¢ is small enough, we have

exp (—Zn‘lt((QQ))) <exp(-m/e) <1,

|F(2)] < exp(~4/2¢) < 1.
This implies the desired 1nequa11ty for “heavy” squares. Now suppose
Q is a “light” square, i.e., 75! Q) < 1/(2e).

LEMMA 2. If% < 1/e and Q is small enough then u(T(Q)) =0
(i.e., T(Q) contains no zeros of F).

Suppose not. Let Q;, Q> C Q be the two disjoint Carleson squares
with side length /(Q)/2. Then by (2a)

%I(Q) S u(T(Q) = m(Q) — m(Q1) — u(Q2) < el(Q).

This is a contradiction, proving Lemma 2.
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Let k be a large integer (to be chosen later depending on 7). Fix a
point z € T(Q). If Q is small enough, the zeros of F can be split into
two subsets, {z,} = {z}} U {z2} which satisfy

|2~ 23] > 25(1 - |2I)

|z 22| <2%(1—|z]) and 1-|z2| <27%(1—|23))
for all n. This is because if Q is a square with T(Q) adjacent to T(Q)
then (2a) implies

1Q) . Q)

1 1
10 = (Q)+8<2 +8<
Thus Lemma 2 applies to Q as well as Q. If ke < 1/(2¢) we can iterate
this argument k times to obtain the above splitting. (If necessary,
choose &; < 1/(2v’k) and assume 2%/(Q) is less than the corresponding
0, given by Theorem 1.)

We let # denote the 22k disjoint Carleson squares of side length
2-k1(Q) and lying inside 2¥Q. Let “a ~ b” mean that |a — b| is small
(i.e., less than /4). Then if & is large enough and /(Q) is small enough
we have

—log|F ()| = 3" G(z, z) /Pz(w) do

m/ Pz(w)dz/(w)+/Pz('w) do
/ Pr(w) du(w / P (w
- ~ i9y14(Q)
_Z/ P, (w) d/u(w)er/InTPZ(e 5 4
ﬂ(Q) i0 1(Q)
/PZ )do = 2nl(Q)
The first “~” holds because with k large, /(Q) small and z and w as
above,

ey _ 2
(2.2) G(z,w) = —%log (1 @ :fl_)gzljﬂzlm ))
1 —|z?
|1 —wz|?

(1 - fw]) = P-(w)(1 - |w]).

(Here a ~ b means a/b is close to 1.) The second one holds because
of (2b), and the third because the Poisson kernel P, is almost constant
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on each Q; if k is large enough. The fourth holds because the integral
of P, over the complement of 2XQ is small. Thus if /(Q) is small
enough (depending only on F and 7),

oo (648

for z € T(Q). This completes the proof of sufficiency.

3. Proof of necessity. Now we come to the less obvious direction;
proving that the conditions in Theorem 1 are necessary. Fix an F €
H>(D)N%, and assume || F || < 1. We will need the following lemma.

LEMMA 3. Given ¢ > O there exits ﬁ (5 > 0 such that if (Q) <6
and |F(z)| < B for some z € T(Q) then & ,(Q ) > 1/e.

This lemma is the key step in the proof of Theorem 1. It is like a
converse to Lemma 1 of the previous section, but is slightly harder to
prove. Note, for example, that it can fail if F is not in little Bloch
(e.g., take disjoint Carleson squares {Q;} with /(Q;) — 0 and place a
zero just above each box). To prove the lemma, divide the measure u
into two measures u; and u, supported in %Q and %QC respectively,
and let F; and F, be the corresponding factorization of F. Suppose
z € T(Q). We will show that given 1 > 0 there is a f > 0 such that
|F(z)| < B implies |F;(z)| < n. Given this, we deduce the lemma as
follows. For z € T(Q) and w, z, € Q we have

— |zl C
< .
=iz’ P(w) < =[]

Therefore if n < exp(—2C/e),

G(z,zy) < C

2Cle < —logn < —log|Fi(2)|= > G(z,zx)+ [ P.(w)do

2,€10 i
c #(Q)
< du<2c8%)
IE=F [ e (7]

as desired.

We will now prove the claim. Fix f > 0 and assume |F(z)| < B
for some z € T(Q). We will show that |Fi(z)| < n(f) < B¢ for some
C > 0. We start by setting Q = 16Q and letting [ be the base of Q.
Fix e €  and for n =0, 1,2, ... consider the points

wa = (1-27*7"1(Q))e’.
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Clearly |F>(w,)| — 1, but how quickly? We claim that if z € ZQ° then

Z— Wy “

1 —w,z|~

Z~ Wy
I—U_)n_]Z

and
Pw,,(z) < an,,_l(Z)

for some 0 < a < 1. To see the first inequality square both sides and
use the inequality x®* < 1 - a(l — x), 0 < x < 1 to reduce to showing

Using the equality following Lemma 1 this reduces to

( 1 = |w,|?
1- Iwn—l |2>
When /(Q) is small the first term is close to 1/2 and the second term
is less than wy — w, 1’ 1(0)/32

w-a < Tgys <
which gives the desired inequality. The proof for P, (z) is similar.
Thus using (1.1) we obtain

[F2(wn)| 2 |[F(wy—-1)]*

1 - u_]nz
1 - Wy-12

<a<l.

1+

Let 7 > 0 (to be chosen below depending only on ) and let J be so
small that 1 —|z| < ¢ implies |F'(z)|(1 —|z|) <« 7. Then |F(w,)| < t+
|F(wy-1)| and if 7 < B then |F(wg)| < 2. Now suppose |Fj(wp)| >
2¢/B. Then |F>(wg)| < /B. Now choose k so that

|Fy(wi)| < VB, |Ea(wp)] = V8.
Then for j = 1,2,..., the preceding estimates give
|Fa(wies ) 2 B3, |F(wier )] < VB +( + D)1,
Taking j > (log3)/|loga| and 7 < \/B/(j + 1) gives

|Fi(wii )l < (VB + (G + D) /(B7@) <283,

Thus we have proved that either | F\ (wg)| < 2v/B or |Fy(wy)| < 28'/3
for some n > 0. This argument works for any ¢/ € I so we have
proven there exists a set E C 274Q whose radial projection is all of
I and such that |F;(z)|] < 28'/3 on E. A variant of Hall’s lemma
(see [7]) implies the harmonic measure of such an E in D\E with
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respect to the point z is bounded away from O (independently of E
and z € T(Q)). Since log|Fj| is subharmonic this gives

log|F()| < C (mgxloglFH) < Clog(28'/3).

This implies the desired inequality, and completes the proof of Lem-
ma 3.

We can now start the proof of necessity. Consider a Carleson square
Q and assume (1) of Theorem 1 does not hold, i.e.,

u#(Q)

B2 < 1/e.

Q)

By Lemma 3 |F| > f on T(Q). Given an N > 0 we let F; and
F, denote the factorization of F corresponding to NQ and (NQ)*¢
respectively. Using (2.2) one sees that to prove (2b), it suffices to
show |F5(z)| > 1 — Ce for some small C > 0 and z € T(Q). Let
n = Ce. Now choose an integer k and positive number 7 such that
(with a as above)

(1-m" < B/4,  kt<p/2.

Let N = 2k+4 Now suppose zy € T(Q) satisfies |F3(zo)] < 1 — 7.
We will obtain a contradiction. Choose J so small that 1 — |z| < 2k§
implies |F'(z)|(1 — |z|) < 7. For 0 < j < k define points {w;} by

arg(wy) = arg(z), 1 —|wg| = 25(1 —|zo)).
Then arguing as in Lemma 3 gives
|F(we)| =2 B —kt> B2,
|Fa(wi)] < (1 -1 < g/4.

This implies |Fj(wy )| > 2, a contradiction (since [Fj| < |F| < 1). Thus
|F>(20)| > 1 — 1 and so (2b) must hold with N = 2¥+4 and J as above.
Next, we will show that

u(Q)
)

for any z € T(Q) and from this (2a) follows. First we prove

wQ)
Zn@

+log|F(z)|| <&

< —log|F(z)| +e.
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Let n be an integer (to be chosen below depending on ¢) and let #
be the collection of 2” disjoint Carleson squares in Q of side length
r = 27"](Q). Let R denote the union of these small squares. Since
|[F| > p on T(Q), it is larger than /2 on Q\R if Q is small enough
(since F is in %y). Thus u(Q) = u(R). If O is even smaller we can
conclude |F(z)| ~ |F(zp)| for all z € Q\R and zy € T(Q) and that F
has no zeros in 2"Q N {|z| < 1 — r}. Thus using (2.2) as we did in §2,
we see that by first taking » large enough and then /(Q) small enough
we get

'/ w) + log|F(zp)|| < ¢/4

for zo € T(Q) and z € Q\R. Set I = (1 +27"/2)I (I is the base of Q)
and note that

/P,ee(w —>1-27"2

for w € R. Hence if 27%/2 < ¢/(8|log B)),

u(Q)  u(R) 1 do
10 ~ 110 S(I*ZH/Z)Z(Q){R{/I'RM( 5}
< (14277 ,(g)‘ [ Poow) di
1 422 ”/2/
= Pre"
< l—ﬂ(—loglF(ZO)l +e/4)

- 2n
|
< e log [F(zo)| + e.

To prove the other direction we take N so that (2b) is satisfied
with g/4, and increase n (if necessary) so that 27/2 > N. Let [ =
(1 —2""/2)]. Then if e € I,

[ Bestw)dutw) = [ Pstw)dutw)| </,
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Thus for small enough Q,
HQ) _ uR) 1
16 = 1) 2 1@ e, P55 )

- —/~ U ”m’““”‘“‘} =

> V'M ( / Pyos(w)d (w)+8/4)
_nl-n/2
N 1 2

- 2n
1
> —Elog|F(zo)| —¢.

(—log|F(z0)| — &/4—¢/4)

This completes the proof of Theorem 1.

4. The example. In this section we will use Theorem 1 to explicitly
construct a Blaschke product in %;. Let K; < K; < --- be a sequence
of integers and set

6o =m/8, 0,41 = 6,/K,.
Now consider the Carleson squares {Q7} given by
QF={re”:1-60,<r<1,j0,<0<(j+1)0,}.

The whole collection is called & and the squares of size 8, are denoted
by %,. To each Q € # we associate an integer N(Q). For Q € & we
let N(Q) = 0. To define it for later generations we assume each K, is
of the form
Kyn=ky+(kn+1)+3=2(k,+2)

for integers k,. For a square Q € %, with N(Q) = j we label the
K, (n+ 1)% generation squares contained in Q so that k, of them get
the number j — 1, k,, + 1 get the number j + 1 and 3 get j . They are
arranged so that the two outside boxes get j’s and the third j separates
the block of (j — 1)’s from the (j + 1)’s. See Figure 1. We have done
this so that when we are finished, any two adjacent squares have labels
differing by at most 1. (Q; € %, and Q; € &, are called adjacent if
01NQ, # D and |n—m| < 1.) We now define {z,} by placing a point
on the top edge of any Q such that N(Q) = 0.

Claim. There is a sequence {K,} such that the corresponding se-

quence {z,} forms the zeros of a Blaschke product in %.
We will show that if Q € &, and Q’ € %, satisfies Q' C Q then

(4.1) l 7o ‘ < a‘l‘((g))
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ol s+ 5 | 3-1]... ] 5-1] 3

| —— —
kn+l k

FIGURE 1

if /(Q) is small enough. We then use it to verify the hypotheses of
Theorem 1.
We can do this because the ratio 5‘—((0%) has a very nice interpretation.

Let
k41 kn

Dn = K, ’ dn = 7(;
and consider the random walk on the integers which at time # steps
to the right with probability p, and to the left with probability g,. A
sample path will be denoted w and its position at time n by w(n).
Since p, > g, this random walk has a drift to the right. Define the
“Green’s function”

<DPn

G(x,y, j) = expected number of visits to y starting at x at time j.

Then observe that for Q € %,

wQ)

'ITQ—)' = COG(N(Q)’ 03 n)
where ¢y > 0 is some normalizing constant. We introduce the random
walk notation only for convenience. It expresses exactly what we need,
and the arguments seem more intuitive when stated about random
walks than about Carleson squares.

If the sequence K| = K, = --- is constant then there is a simple,

explicit formula for G(x,y) and the desired estimate will follow from
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this formula and a few simple observations. We also need the follow-
ing notation:

F,.(x,y, j) = probability of first being at y at time j + k,
starting at x at time j,

F(x,y,J) = Fe(x,,])
k>0

= probability of eventually hitting y,
starting at x at time j.

For j > 0 we let G/(x,y), F{(x,y) and FJ(x,y) denote the same
functions but for the time invariant walk corresponding to p = pj,
q = q;. If p > q are fixed and the corresponding Green’s function is
G then it is known that

G(x,y)z{(p—q)“, ifx<y,

v—a) '(a/p), ifx>y.

F(x,y) = (p - q)G(x,y) .

This formula is proved in [20, P1.5] under the assumption that
p +q = 1 (one merely solves the difference equation satisfied by G,
ie., G(x,y) = pG(x — 1,y) + gG(x + 1,y)). For p + g < 1 the same
proof shows G has the same form except possible for a multiplicative
constant and in [20, E3.1] that constant is shown to be 1. (Alterna-
tively, one can see that the Green’s function for the pair {p, ¢} with
p+q < 1, must be G/(p + q) where G is the Green’s function for the
pair {p/(p +9),9/(p + q)}.)

Next we wish to see that if {K,,} grows slowly enough, then G(0, 0, 0)
is finite (and hence that {z,} are the zeros of a Blaschke product).
First consider the time invariant walk with p = 1/3 and ¢ = 1/6, i.e.,
6 = K| = K, = ---. There is a time 7} at which the probability of
finding a sample walk to the left of 100 is less then 1/100. Now change
the walk by taking K,, = 8 for n > 7. The number of expected returns
to zero now increases, but only slightly. This is because a walk w with
w(T;) < 100 is expected to return to zero at most (3/8 —1/4)~1 =8
times and a walk with w(77) > 100 is expected to return at most
8(2/3)190 times. Thus the expected number of returns to zero after
time T for the new walk is at most 8/100+8(2/3)1%0 < 1/2. Similarly,
we take K, = 10 for n > T,, where T, is chosen so large that the



222 CHRISTOPHER J. BISHOP

expected number of returns to zero after time 75 is less than 1/4.
Continuing in the obvious way we obtain a sequence {K,} tending to
infinity, but such that the expected number of returns to zero is finite.
Thus {z,} are the zeros of a Blaschke product.

Now we turn to proving (4.1). Using the above formulas and some
obvious inequalities,

G(x = 1,0,/) > G(x,0,/) =Y Fr(x,x = 1,/)G(x = 1,0, j + k)
k=1

> G(x IOJZ (x,x—1,j)
=G(x —IOJ)F( x-1,J)
> G(x - 1,0, /)F/(x,x — 1)

T .
=G(x -1 < = -1
(¥ =1,0.)) 0 = Gl = 1,0, )7

ZG(x—l,O,j)(l—%) .

J

Similarly,
G(x,0,j+1)>G(x,0,))
+(1-pj —4;)G(x,0,j + 1)
. 2
> q;G(x,0,j+ 1)+ p; (1 -
K1
+(1~p;—-q;)G(x,0,j+1)
2
(1—E>G(x 0,j+1).

By our earlier remarks, this means if Q € %, and Q' C Q is in %4,
then

@) @)
Q) Q)

) G(x,0,j+1)

< CIG(N(Q),0,n) = G(N(Q),0,n + 1)

< C'G(N(Q)a O’ n) - G(N(Q)s 05 n+ 1)'
+C|G(N(Q),0,n +1) = G(N(Q'),0,n + 1)|
4c _4CuQ)
which is the desired inequality, (4.1), if K}, is large enough (i.e., if /(Q)
is small enough). We now wish to estimate u(Q) for all small squares.
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Fix Q and choose n so that t?,, <lQ)<6,-. Qhoose 0 € &, so that
Q overlaps at least half of Q and let N = N(Q) and K = K. Note
that if Q € %, U %, hits Q, then |N — N(Q)| < 5. Thus,

WOz Y wo
0€%.1,0CQ

_CY mQ) )
> (1-%) & 21015

N

and

W< Y @+ Y wuT©)
Q€%,1,0NQ#0 0€%,,0NQ#
) A
<(1+8) (A)((Q)+21(Q)/K ; 7(0)n0)

<(1+%) %6 " )+ M

If N > 5 then the sum over %, is zero and so we get
(1 3 C) ©(Q) < Q) < (1 + C) ©(Q)

1(0) ~ Q) 1(0)
as required. If N < 5 then u(Q) = ¢¢G(N,0,n) > CKI(Q) and the
sum over %, is bounded by 3/(Q). Thus the inequality above is still
true (with a slightly larger C). If we fix ¢ in the statement of Theorem 1
then taking K large enough (hence /(Q) small enough) in the inequality

above shows that either (1) or (2a) must hold. To get (2b), observe
that since K, > K; = 6, arguing as above gives

#(6Q) < 2(1 +2/K)°w(Q) < 124(Q)

and so

[ Powyduwy<yc [ disiw,0)? duw)
(671Q)C k:n 6k+lQ\6kQ

<CY 6 H*urtlgy<cdy 3k <c3.
k=n k=n

This completes the proof that our example is in the little Bloch space.
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5. Remarks. First of all, it might be useful to point out that just
because d u satisfies the conditions in Theorem 1, the individual mea-
sures dv, dA, and log |F|d6/2n need not. In other words, F € H®(D)
N %, does not imply that its Blaschke, singular inner or outer factors
are in %,. This was first observed by Harold Shapiro in [19] (also see
(1.

Greg Hungerford [12] has recently proven the following: if E is the
singular set of an infinite Blaschke product in %, (the accumulation
set of its zeros on T) then the Hausdorff dimension of E is 1. The
main idea is to use Lemma 3 to show there exists an # > 0 so that if
Q is small enough and |B(z)| < 5 for some z € T(Q) then there is a
disjoint collection of subsquares {Q;} such that |B(z;)| < n for some
z; € T(Q)), [(Q)) < B and 1(Q)) > al(Q), where B = 0(/(Q)) as
/(Q) — 0 and « is independent of Q. From this one can deduce the
result. A similar, but simpler, argument shows that if B is a Blaschke
product in % then for any ¢ > 0 there is a 6 > O such that |B(z)| =0
and 1 —|z| < 6 imply

En{em: io_ 2

—l<e(l—|z } # <.
| <e =z
I do not know if this has been previously observed.
Finally, note that if z; is a zero of a Blaschke product B, then

(1—1zjPIB'(z)l =[]

k#j

B is called interpolating if the right hand side is bounded away from

zero independently of j, so if B is in the little Bloch space it is defi-

nitely not interpolating, since the left hand side goes to zero uniformly

as |z;| — 1. It is conjectured that every Blaschke product can be uni-

formly approximated by interpolating Blaschke products, but if this

were to fail a Blaschke product in %, might be a good candidate for

a counterexample. Can the Blaschke product constructed in §4 be
uniformly approximated by interpolating Blaschke products?

e

Zk—-Zj
I—ZjZk
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