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It is shown that g-plurisubharmonic functions can be approxi-
mated by piecewise smooth g-plurisubharmonic functions, and that
analytic multifunctions are intersections of analytic multifunctions
whose graphs are unions of complex analytic manifolds of the ap-
propriate dimensions.

1. Introduction. This research is an outgrowth of an attempt to an-
swer a question raised by Ted Gamelin in lectures delivered at the
University of Washington in the spring of 1986: Can an analytic mul-
tifunction on an open set W in C, whose values are subsets of C”, be
approximated from above by analytic multifunctions whose graphs are
unions of analytic disks? The question is intimately related to approx-
imating (n — 1)-plurisubharmonic functions on W x C” by functions
of the same type which are smooth enough to allow construction of
the disks.

A smooth C? function on an open set in C” is said to be g-plurisub-
harmonic (0 < g < n — 1) if its complex Hessian has at least (n — q)
non-negative eigenvalues everywhere. The concept was introduced
by Andreotti and Grauert [AG], who call these functions (g + 1)-
plurisubharmonic. A broader definition that extends the notion to
upper semicontinuous functions was given by Hunt and Murray [HM],
who also seem to be responsible for changing the index q. We will here
follow the Hunt and Murray convention to minimize confusion.

The class of g-plurisubharmonic functions is not additive for g > 0
and thus standard smoothing techniques available for plurisubhar-
monic functions do not carry over, a fact which hampered early work
on the subject. A breakthrough was achieved by Slodkowski [S1]
who was able to show that continuous g-plurisubharmonic functions
are uniform limits of functions whose second order derivatives ex-
ist almost everywhere. We will show that the approximation can be
achieved by functions which are locally the maximum of a finite num-
ber of smooth (strictly) g-plurisubharmonic functions.
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228 LUTZ BUNGART

2. The Perron method. We will describe here a general Perron
Method which is a distillation of ideas in Bremermann [B], Walsh
[W], Hunt and Murray [HW], Kalka [K], and Slodkowski [S1]. We
will use an axiomatic approach which will allow us to apply the results
of this section to several different situations in Sections 3-5.

For each bounded open set D C C” let there be given a family % (D)
of continuous real functions on D satisfying the following axioms:

(1) c + #(D) c (D) for c €R, c#(D) c #(D) forceR, ¢ > 0.

(2) If D, C D then gz(ﬁ)lﬁl C e@(ﬁl)

(3) ,2(D) C #(y + D) where Tyu(z) = u(z - y).

(4) If u,v € (D) then max(u,v) € (D) where the closure is taken
in C(D) with respect to the uniform norm.

(5) If g is a real linear function or g = |z|? then g+ #(D) Cc #(D).

Axiom (4) is stated more generally than needed for the examples in
this paper since we have future applications in mind. Axioms (1) and
(5) imply that for ¢ > 0 and x € C”,

e|lz — x|? + 2(D) c (D).

If D is a bounded open set then a subfamily .« (D) c £#(D) is ad-
missible for D relative to 2(D) if the following properties are satisfied:

(A1) c + (D) c ¥ (D) for c €R, cs/ (D) Cc & (D) for c €R, ¢ > 0.

(A2) If u,v € /(D) then max(u,v) € &/ (D) where the closure is
taken in C(D).

(A3) If D, is an open set with compact closure in D, u € % (D),
u, € (D) and

ui(x) <u(x) forxe€dD,
then the function
v(z) = { max(u(z),ui(z)), =z EP_I’_
u(z), ze D\ Dy,

belongs to W
Let D be an open set in C” and assume &/ (D) is admissible for D.
If g is any function on D with values in R U {+oc0}, we define
o/ (D,g)={u:ues/(D),u< gonD},
EY(D,g)=sup{u: uc (D, g)}.
Note that E¥ (D, g) is lower semicontinuous at points where it is finite,

and E¥ (D, g) < g on D. Using the above properties (1) through (4)
and (Al) through (A3) one can now prove a lemma, which is due to
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Walsh [W] in case &/ is the class of plurisubharmonic functions. We
also note that this is the only place where axiom (3) is explicitly used.

2.1. LEMMA. Assume D is a bounded open set in C" and s/ (D)
is admissible for D. Let q be a function on D which is either real
valued and continuous on D or real valued and continuous on 8D and
identically +o0o on D. If E¥ (D, g), as a function on D, is continuous at
points of the boundary 8D of D, then E¥ (D, g) is finite and continuous
on all of D.

Proof. First we observe that the family & (D, g) is directed under
the assumptions made on g. That is, if u,v € &/ (D, g) then there is a
w € & (D, g) with

w > max(u,v).

Indeed, since max(u,v) < g on D there is a ¢ > 0 with max(u,v)+c¢ <
g, and an application of property (A2) yields the desiied w. Now let
¢ > 0 be given. We can choose finitely many w; € &/ (D, g) such that

E¥ (D, g) —max{w;} <& ondD.
By the above remark, there is then a w € &/ (D, g) with
EY(D,g)-w<eé& ondD.

Since E¥ (D, g) is assumed to be continuous at points of D, we can
find a J such that

E“ (D, g)(z) —w(z) <& ford(z,0D) < 26,
lw(z) —w(Z')| <e for|z-Z|<4,
g(z'Y< g(z)+e for|z—zZ'|<d and z,z' € D,

where d(z,dD) is the distance of z € D from dD. If u € &/ (D, g) and
u > w, then the first two inequalities imply

lu(z) — u(z")| < 2¢

if |z— z'| < 6 and z and Zz' are within 26 of dD. For given x,y € D
with |x —y| < J let

D, ={zeD:d(z,0D) > d},

u; = Ty_xu—2¢ on Dy.

Then the function v defined as in property (A3) satisfies v < g on
D. Note that u; € £#(D;) and therefore by property (A3) there is
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a? € #(D,g) with & > v and thus ¥(x) > u(y) — 2¢. Taking the
supremum over all u € &/ (D, g), u > w, gives

E'M(D-’ g)(x) ->— EEM(DZ g)(y) —2¢ for X,y € Ea IX - yl < 5:
whence the finiteness and continuity of E¥ (D, g) on D.

Recall that a function u € C(D) is called a peak function for x € 9D

if
u(x)=0 and u(z)<0 forzeD)\ {x}.

2.2. LEMMA. Assume D C C" is a bounded open set such that s/ (D)
is admissible for D and the closure of o/ (D) in C(D) contains a peak
function for every point of dD. If g is lower semicontinuous at points
of 0D then E¥ (D, g) = g on dD.

Proof (see proof of Theorem 4.1 in [B]). Let x € 9D and ¢ > 0 be
fixed, and choose 6 > 0 so that

gy)>gx)—¢ ifyeD, |y—x|<é.
Let u € &/ (D) be a peak function for x. Then there is c €R, ¢ > 0 so
that

cu(y) < gy)—gx)+e foryeD, |y—x|=>6,

and therefore v = cu + g(x) — ¢ < g on D. Since v € & (D) and
v(x) = g(x) — &, we conclude E¥ (D, g)(x) = g(x).

2.3. COROLLARY. Assume D is a bounded open set in C" such that
s/ (D) is admissible for D and s/ (D) contains a peak function for every
point of 0D. Assume further that one of the following conditions holds:

(a) g is continuous on D or

(b) g is continuous on 8D and g = +oo on D, and there is an upper
semicontinuous extension g of g|dD to D so that &/ (D, g) = & (D, g).
Then E¥ (D, g) is a continuous real valued function on D and E¥ (D, g)
=g ondD.

Proof. We have E¥ (D, g) = g on D by Lemma 2.2. Note that
in case (b), E¥ (D, g) < & with equality on D, whence E¥ (D, g) is
continuous at points of dD. Since E¥ (D, g) < g, we conclude the
same in case (a). Lemma 2.1 implies thus the continuity of E¥ (D, g)
on D.

For each open set W in C" we define #'(W) as the family of con-
tinuous function v on W such that for each open D CC W and each
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u € #(D), u + v attains its maximum on D at a point of D. For a
bounded open set D we set

Z'(D) = #'(D)n C(D).
Note that &#'(D) _may be empty. However, axioms (1) through (5) are
satisfied for &'(D), and it follows easily from the next lemma that
(D) is admissible relative to #'(D), i.e. axiom (A3) is satisfied with
&' in place of & and &. We note also that %' (D) is closed in C(D)

in the uniform norm.

2.4. LEMMA. Assume W is an open set in C" and v a continuous
Sfunction on W such that each point in W has a neighborhood U cC W

so that v|U € #'(U). Thenv € #'(W).

Proof. This is essentially the proof of Lemma 2.7 in [HW]. Assume
v ¢ Z#'(W). Then there is an open D cC W and a function u € #(D)
so that v + u does not attain its maximum M on D at any point of
dD. Choose ¢ > 0 so that the function w defined on D by

w(z) = v(z) + u(z) + ¢|z|?

also satisfies w < M on &D. Then w assumes its maximum on D at
a point x € D. Let U cC W be a neighborhood of x so that v|U €
2'(U). Since axiom (2) is satisfied by %', we may assume that U is a
small ball around x with closure contained in D. Since &(|z|?—|z—x|?)
is an affine function, we have u + &(|z|> — |z — x|?) € (D). Thus

w—¢lz—x?P=v+u+e(z|? -z -x?
assumes it maximum on U at a point y € 80U,
wy)—ely —x*>w(z)-elz-x|?, zel.
Evaluating at z = x gives the contradiction w(y) > w(x).
The above proof also yields the following lemma (see Proposition

1.1 of [S1]).

2.5. LEMMA. Let W be an open subset of C" and v a continuous
Sfunction on W such that v ¢ #'(W). Then there exists x € W, a ball
B(x,r) of radius r > 0 with closure contained in W, an ¢ > 0 and an

f € P(B(x,r)) such that

S(x)+v(x)=0,
f(z)+v(z) < —elz—x|> on B(x,r).
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Proof. Using the construction of the last proof with B(x,r) = U

and

f(2) = u(z) +e(2)* - |z = x*) — w(x),
we have f(x) + v(x) = 0. Since w assumes its maximum on B(x,r)
at x, we have w(z) < w(x) which can be re-written as f(z) + v(z) <
—e|z — x|%.

We define now & = 2" (this is the construction made in [K]), i.e.
for an open set W in C", #(W) is the family of continuous functions
u on W such that for each open D cC W and each v € #'(D), u+ v
attains its maximum on D at a point of 8 D. Further,

#(D) = #(D)n D(D).
We obviously have
P (D) c #(D).
In particular, the function E¥ (D, g) of Corollary 2.3 belongs to #(D).

In Section 4, we will investigate conditions under which Z(D) is dense
in 2(D).
2.6. LEMMA. With the notation and assumptions of Corollary 2.3,

let Dy be the set of points z € D for which E¥ (D, g)(z) < g(z). Then,

l.'f‘Dl 7é ®’ . _ _
~E¥(D, 8)ID, € #'(Dy).

Proof. (The proof given here is an adaptation of the proof of The-
orem 6.8 in [S1].) Assume —E< (D, g) does not belong to #'(D,). By
Lemma 2.5 there are x € D, and a ball B(x,r) with closure contained

in Dy, an ¢ > 0 and f € L#(B(x,r)) such that for z € B(x,r)

f(x)=E*(D, g)(x),

f(z) SE”(D,g)(z) —elz - x|*.
Choose J > 0 so that E¥(D, g) 4+ J < g on B(x,r) and 25 < er?. Let
u € o/ (D) be such that on D

u<EYD,g)<u+d/2
and define
iz = { 1) z €D\ B(x,)
BT max(u(z), f(z) +6), z e B(x,r).
For |z — x| = r we have
f(z2)+6 < E*(D,g)(z) + 6 —er* <u(z) + 36 —er? < u(z),
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whence u; belongs to the closure of &/ (D) in C(D) by axiom (A3).
Let 1, € &/ (D) approximate u; to within 6/2 on D. By axioms (A1)
we can achieve #; < u;. By the choice of 4, we have on B(x,r)

f(z2)+06 <EY(D,g)+6 —¢|z — zo|> < g(2).

Thus #,, and hence #,, is dominated by g on D_._Therefore i1, is one
of the functions used to form the envelope E¥ (D, g). But

u(x) < E¥(D, g)(x) = f(x) < f(x) +0
whence u,(x) = f(x) + J and

mx)>u(x)—d/2=f(x)+0—-0/2
= E¥(D, g)(x) +d/2 > E¥(D, g)(x),

a contradiction.

3. The Dirichlet problem. The Dirichlet problem has essentially
been solved by Corollary 2.3. We need only find a condition on D
which will imply the assumptions made in (b) of that corollary.

3.1. THEOREM. Let D be a bounded open set in C". Assume o/ (D) C
P(D) is admissible for D and &/ (D) contains a peak function for every
point of dD. Assume further that #'(D) also contains a peak function
Jor every point of 8 D. Then for every continuous function g on 0D there
is a unique function w € P (D) such that w|dD = g and —w € &' (D).

Proof. We set g(z) = oo for z € D. As before, we let &/ (D, g) be
the collection of functions in .« (D) whose boundary values are every-
where less than g. We will show that the upper envelope E¥ (D, g) of
&/ (D, g) is the desired solution w. Let gy be any continuous extension
of g|0D to D. Define g for z € D by

—&(z) = sup{v(z): v € #'(D),v|0D < —go}
= Eg”(D’—gO)-

Since '(D) is admissible (relative to #'(D)) and contains a peak
function for every point of 8 D, Corollary 2.3 implies that — g is con-
tinuous, and g|dD = g|dD. Since #'(D) is closed in C(D), —& be-
longs to &'(D) and hence u — & will attain its maximum on D at a
point of 8D for every u € (D). In particular, we obtain

u—2<0onD, uev(D,g).
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Therefore ¢ is a continuous extension of g to D with &/ (D,g) =
s/ (D, g). Corollary 2.3 implies now that w = E¥ (D, g) is a continu-
ous extension of g|dD to D. By construction, w € & (D) c (D) and
by Lemma 2.6, ~w € #'(D). To prove uniqueness, let @ € #(D) be
any extension of g|dD to D so that - € %'(D). By the definition of
53(5), w — W and W — w must attain their maximum at points of 8 D.

Since both functions vanish on 9D, this implies w = w.

The question naturally arises whether the hypotheses in Theorem

3.1 are satisfied when D = B(x,r), a ball. If #(D) # & then axiom

(1) implies 0 € #(D). By axiom (5), (D) will then contain all
real linear functions, which provides peak functions for B(x,r). To
conclude the same for /(D) we need 0 € #'(D), which is equivalent
to the following:

(6) If D is a bounded open subset of C" then the functions in P (D)
assume their maximum at points of 6 D.

3.2. ProprosITION. If axiom (6) above holds and if the real linear

functions belong to &/ ((B(x,r)) then Theorem 3.1 is valid for D =
B(x,r).

We will next discuss what these results mean in terms of g-plurisub-
harmonic functions. As mentioned in the introduction, we will use
the Hunt and Murray [HM] definition of an upper semicontinuous
g-plurisubharmonic function (see also [S1}). Unless otherwise stated,
we will assume 0 < g < n— 1. For each bounded open set D in C” let
CPSH, (D) be the family of continuous functions on D which are g-
plurisubharmonic on D. Then CPSH, (D) satisfies axioms (1) through
(5) of Section 2, (see [HM] or Proposition 1.2 in [S1]).

Let £, (D) = CPSH, (D) and define as in [K] (except that we restrict
ourselves here to continuous functions)

ﬁn—q—l(ﬁ) = 33(5(5)

Then Theorem 3.1 yields unique solutions to the Dirichlet problem in
F(D)N~- ~,,_q_1 (D) under appropriate conditions on D (see Theorem
3.7 below). We believe that this is what Kalka established in [K] even
though some of his formulations are flawed as noted in [S1].

For our further discussion we will need to refer to the following
property of g-plurisubharmonic functions.
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3.3. PROPERTY (Theorem 5.1 of [S1).). If u is q-plurisubharmonic
and v is r-plurisubharmonic on D then u+v is (q +r)-plurisubharmonic
on D.

3.4. CorOLLARY. If %, (D) = CPSHy(D) then
(D) = CPSH,_,_(D).

Proof. 1t follows readily from the definition of g-plurisubharmonic
functions that % (D) C #,_,_((D) (e.g., see Proposition 1.1 in [S1]).
By Property 3.3, the sum of a g-plurisubharmonic function and a
(n — g — 1)-plurisubharmonic function is (n — 1)-plurisubharmonic
and thus satisfies the Maximum Principle (see Lemma 2.7 of [HW]).
The definition of & (D) implies now #,_,_;(D) C Z;(D).

3.5. DEerFINITION. A bounded domain D in C” is said to have an
r-pseudoconvex barrier at a boundary point x € 4D if there are a
neighborhood U of x and a peak function for x in CPSH,(D N U).

Recall that 9D is strictly r-pseudoconvex at x € 9D if there are a
neighborhood V' of x and a C? strictly r-plurisubharmonic function p
in V so that

VnD={zeV:p(z)<O0}.
Then, for any neighborhood U of x with compact closure in V,
p — €|z — x|* will be a peak function for x in CPSH,(DNU) if ¢
is small.

3.6. LEMMA. If D is a bounded domain in C" then there is a peak
function in CPSH, (D) for every point x € 8D for which there is an r-
pseudoconvex barrier. In particular this is true for every x € D where
0D is strictly r-pseudoconvex.

Proof. If u € CPSH,(DNVU) is a peak function for x € D then
#t = max(u, —¢) belongs to CPSH, (D) for small ¢ and clearly # is a
peak function for x.

If we specialize Theorem 3.1 now to g-plurisubharmonic functions,
we recover a proof of the existence and uniqueness of the solution
to the Dirichlet problem for g-plurisubharmonic functions on certain
strictly r-pseudoconvex domains. But first we consider an example.

Let D C C? be defined by

D={z=(z1,22): p(z) = —=Rezy + |z;|* = |22)* < 0,]z| < 1}.
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Then D is a bounded domain with a 1-pseudoconvex barrier at every
point of 9D. Let g be a continuous function on § D with a strict max-
imum value of 0 at 0. We claim there is no function u € CPSH(D)
with u|0D = g. If there were such a function u, then u is not
constant and therefore does not assume its maximum value of 0 on
D. Therefore u is bounded away from O on the compact subset
{z: Imz; = 0,0 <Rez < },|z2| = 1} of D. Since u is subharmonic
on the disks

Ae={z:z1=¢]|z|<3}ccD, 0<e<jy,

it must be bounded away from 0 by the same constant on each of these
disks. But
0erc |J A

0<e<1/2
and u(0) = 0, a contradiction. However, for any continuous function
h on 8D, there are functions v € CPSH;(D) with v|0D = h. To
see this, let & be any continuous extension of 4 to D and set #(D) =
CPSH; (D). Then v = EZ(D, h) provides such a function by Corollary
2.3. If h = —g, then this solution does not belong to — CPSH(D) for
any extension / as we have argued above.

We are now ready to state a general Dirichlet problem for g-plurisub-
harmonic functions. For g = r, the existence part of the following the-
orem is due to Hunt and Murray [HM]. The uniqueness was shown
by Slodkowski in [S1], where one also finds a general formulation of
the theorem (Theorem 5.6 in [S1], which contains what appears to be
a misprint as the above example shows).

3.7. THEOREM. Let D be a bounded domain in C" with the property
that each point on the boundary of D admits an r-pseudoconvex barrier,
where 0 < r < n — 1. Then for every continuous real valued function
g on D and every q withr < q < n—r — 1 there exists a unique
u € CPSHy(D) so that —u € CPSH,,_,_(D) and u|dD = g.

Proof. Let #(D) = CPSHy(D). Corollary 3.4 yields #,(D) =
CPSH,_,_ (D). The conditions on r and ¢ imply r < g as well as
r<n-gq—1 and thus

CPSH, (D) c %#,(D) N, (D).

Since Lemma 3.6 guarantees now peak functions for every x € 9D in
Z,(D) and in (D), Theorem 3.1 can be applied.
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4. Piecewise smooth approximations on strictly g-pseudoconvex do-
mains. We start out with the axiomatic setting of Section 2.

4.1. THEOREM 4.1. Assume D is a bounded open set in C" and
& (D) c #(D) is admissible for D. If the closure of & (D) in C(D)
contains a peak function for every point of 8D, then </ (D) is dense in
Z(D).

Proof. Recall that #(D) = #"(D). Let g € #(D). By Corollary
2.3, E¥ (D, g) is continuous and agrees with g on D. Assume that

D, ={zeD: E*(D,g)(z) < g(2)}

is not empty. Then g and E¥ (D, g) agree on 0D,. By Lemma 2.6,
—E“(D, g) € #'(D,). Thus, by the definition of #(D,), g—E* (D, g)
assumes its maximum on D; at points of Dy, i.e.,

g—EY(D,g) <0 onD,.

This is a contradiction to the definition of D;,. Thus D; = & and
g =E“(D,g) e (D).

In trying to approximate g-plurisubharmonic functions by functions
from a subclass exhibiting some smoothness properties, the only oper-
ation one can work with for g > 0 is that of taking suprema. A subclass
of relatively smooth functions that is closed under taking maxima, is
the class of piecewise smooth functions.

4.2. DEFINITION. A function defined on an open set in C” is called
piecewise smooth (strictly) g-plurisubharmonic if in some neighbor-
hood of every point in its domain it is the maximum of a finite number
of C? (strictly) g-plurisubharmonic functions.

For a bounded open set D in C”, let #,(D) be the collection of
functions on D which are the restrictions to D of functions that are
piecewise smooth g-plurisubharmonic in some neighborhood of D. It
is clear that axioms (1) through (5) of §2, and also properties (Al)-
(A3), are satisfied with # = & = Z,.

4.3. DEerFINITION. A domain D in C” is said to have piecewise
smooth strictly g-pseudoconvex boundary if every point x € 9D has a
neighborhood V' with a piecewise smooth strictly g-plurisubharmonic
function p defined on V' such that

DNV ={zeV,p(z)<0}.
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4.4. ProrosITION. If the domain D in_ C”" has piecewise smooth

strictly q-pseudoconvex boundary then %,(D) contains a peak function
for every boundary point of D.

Proof. Let x € 8D and let V' and p be as in the above definition.
Let U be a neighborhood of x which is relatively compact in V. Then

po=p—elz—x?

is strictly g-plurisubharmonic on U and bounded away from 0 on
dU N D for small ¢ > 0. Thus, if § > 0 and

-0 > max_ po(z),
zedUND

then max(py, —d) is in %, (D) and peaks at x.

We can therefore apply Theorem 4.1 to a domain D with piecewise
smooth strictly g-pseudoconvex boundary and obtain:

4.5. THEOREM. Assume D is a bounded domain in C" and </ (D) C
Z,(D) is admissible for D. If the closure of s/ (D) in C(D) contains a
peak function for every point of 0D, then </ (D) is dense in CPSH, (D)
in the uniform norm.

As an immediate consequence we have

4.6. THEOREM. Let D be a bounded domain in C" with piece-
wise smooth strictly q-pseudoconvex boundary. Then every function in
CPSH, (D) is the uniform limit on D of a sequence of functions each of
which is piecewise smooth q-plurisubharmonic on some neighborhood
of D.

Another immediate consequence is a Runge type theorem. For an
open set U let us denote by CPSH,(U) the family of continuous g-
plurisubharmonic functions on U, and by &, (U) the piecewise smooth
functions in CPSH,(U). For a compact set K, APSH,(K) will denote
the subset of C(K) of functions obtained by restrictions of functions
in CPSH,(U) where U runs through a neighborhood basis of K. For
a bounded domain D,

CPSH, (D) = C(D) N CPSH, (D).
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4.7. THEOREM. Let W be an open subset of C" and ¢ € Py (W).
Assume K = {z € W: ¢(z) < 0} is compact in W. Then Fy(W) is
dense in APSH,(K). If, in addition, ¢ is strictly q-plurisubharmonic on
W, then Z,(W) is dense in CPSH,(D), where D = {z € W: ¢(z) < 0}.

Proof. We establish first the second part of the theorem under mod-
ified assumptions. Assume ¢ — &|z|> € &, (W) for small ¢ > 0 and let
D be a union of connected components of {z € W: ¢(z) < 0} such
that D is compact in W. Let

s (D) = #,(W)[D.

Then &/ (D) is admissible for D (satisfies axioms (A1)-(A3)). Also,
for x € 8D, we have

ox = ¢ —¢&|z — x|> € ¥ (D).

Since ¢, is a peak function for x, Theorem 4.5 applies, showing that
F,(W) is dense in CPSH, (D).

We shall now prove the first part of the theorem. Let U be a neigh-
borhood of K which has compact closure in W. Choose ¢ > 0 such
that

={zeW:¢p(z)<e}nUccU,

and then select ¢ > 0 so that ¢(|z|*> + 1) < ¢ on U. Define
po=09+c(z]*+1) —e.

Then ¢ € #;(W), and also gy—¢'|z|*> € %, (W) for small ¢'. Therefore
Z,(W) is dense in CPSH,(Dy), where

Dy={zeW:9o(z) <0}nUccU

by what we have already proven. Note that K ¢ Dy ¢ U. Since U
was arbitrary, this shows %, (W) is dense in APSH,(K).

Now back to the second part of the theorem. Let W’ be a neigh-
borhood of K with compact closure in W and set

={zeW:p(z)<e}nW

where ¢’ > 0 is chosen so small that K’ is compact in W’'. On W',
— &|z|? will be g-plurisubharmonic for small ¢ > 0, whence (W)
1s dense in CPSHq( ) by what we have shown already. In particular,
APSH,(K") is dense in CPSH, (D) and, repeating the proof of the first
part of the theorem with U ¢ W', #,(W) is dense in APSH,(K’).

Note that the smoothness assumption on ¢ in Theorem 4.7 can
be dropped. If only ¢ € CPSH,(W) then ¢, = ¢ — &|z — x| can
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be approximated uniformly on a neighborhood of D by functions in
Z,(W) by Theorem 5.3 of the next section. Thus ¢, € o (D) and the
above proof goes through with obvious modifications.

5. Piecewise smooth approximation on open sets. On an open set W
in C" we will approximate arbitrary g-plurisubharmonic functions by
functions of the class %, (W) of piecewise smooth g-plurisubharmonic
functions. We shall start by extending the definition of strict g-pluri-
subharmonicity to upper semicontinuous functions.

5.1. DEFINITION. An upper semicontinuous function u (with values
in [—o00,00)) on an open set W in C” is called strictly g-plurisubhar-
monic if for every x € W there is a neighborhood of x in W where
u — &|z|? is g-plurisubharmonic for small & > 0.

If u is piecewise smooth, then this definition agrees with the one
previously given. For suppose

u=max{u;: 1 <i<s}

on a neighborhood U of a point x where u; are C? plurisubharmonic.
Without loss of generality, we may assume that x belongs to the closure
of
U={zeU: u(z) > u(2),1<j<s5,j #1)

for each i, 1 < i <s. (Shrink U and omit the u; for which this is not
true.) If now u — ¢|z|? is g-plurisubharmonic on U then the Hessian
of u; = u has n — g eigenvalues > ¢ at every point of U; and hence at
X € Ui.

5.2. LEMMA. Assume u is a continuous strictly q-plurisubharmonic
function on the open set W in C" and let x € W. Then for a given ball
B(x,r) with closure in W and given ¢ > 0 there is an open neigh-
borhood Ny of x contained in B(x,r) and a continuous strictly q-
plurisubharmonic function u, on W such that u, € %;(Nx) and

U<uy<u+eée on Ny, u=1uyx onW)\N;.

Proof. Choose a ¢ > 0 with ¢r? < ¢ and so that the function v
defined by
v(z) = u(z) = clz — x|* + cr?

is g-plurisubharmonic on B(x,r). By Theorem 4.6, we can approxi-
mate v on B(x,r) to within ¢r?/2 by a function ¥ which is piecewise

smooth g-plurisubharmonic in a neighborhood of B(x,r), and we can
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arrange ¥ < v on B(x,r). By adding a small multiple of |z|? to 7 we
obtain a piecewise smooth strictly g-plurisubharmonic ¥ with

U(z) < v(z) = u(z), |z —x|=r,
b(z) <v(z) Su(z)+cr* <u(z)+e, |z—x|<r,
¥(x) > v(x) —cr?/2 = u(x) + cr?/2.
Thus
u(z), ZGW\B(X,V),
Ux(z) = .
max(u(z),9(z)), zé€ B(x,r),
defines a g-plurisubharmonic function on W with the desired proper-
ties, where Ny = {z € W: u,(z) > u(z)}.

5.3. THEOREM. Assume u is a continuous strictly q-plurisubharmonic
function on the open set W in C" and g a continuous function such
that u < g on W. Then there is a strictly q-plurisubharmonic function
i€ Py(W) withu < &t < g. In particular, there is a monotone decreas-
ing sequence of strictly g-plurisubharmonic u, € #,(W) that converges
to u uniformly on W.

Proof. For each x € W choose a ball B(x,r) of radius r < 1 with
closure in W. Let 2¢, > 0 be a lower bound for g — u on B(x,r) and
construct u, and Ny as in the lemma (with ¢ = ¢,). Since the N, have
small diameter as x approaches the boundary of W, we can select a

locally finite subcover {Ny,:i=1,2...} of W. Define
7t = sup{uy,:i>1}.

In a neighborhood of any point x € W only the finitely many u,,
with x € Ny, need to be used in the sup. Thus @t € F (W), and
by construction ¥ < # < g. To obtain the sequence u,, pick uy €
Z,(W) with u < up < u+ 1 and then u, inductively so that u < u, <
min(u,_,u+ 1/n).

A closer look at the proof shows that one can insure that the lower
bound for the positive eigenvalues of the Hessians of the approxi-
mating functions does not deviate much from the amount of strict
g-pseudoconvexity (as measured by the ¢ in Definition 5.1) of the
approximated functions. A more delicate problem is that of approx-
imating continuous, but not necessarily strictly, g-plurisubharmonic
functions, and the extension of these results to complex manifolds.
Let us mention here only that on a bounded domain D, every contin-
uous g-plurisubharmonic function # can be approximated uniformly



242 LUTZ BUNGART

by functions in %, (D) by applying Theorem 5.3 to u + ¢|z|*>. On an
arbitrary open set we have the following:

5.4. COrROLLARY. Let W be an open set in C" and u a continuous
q-plurisubharmonic function on W then there is a monotone decreasing
sequence u, € Z;(W) that converges to u uniformly on compacta.

Proof. Choose ug € Z, (W) with u + |z|?> < ug < u+|z|> + 1 and
then u, € #;(W) inductively so that

u+|z|?/n < up < min(u,_y,u+ (|z|> + 1)/n).

Theorem 5.3 and Corollary 5.4 can also be established in the ax-
iomatic setting of §2 if %#(D) satisfies axioms (1) through (5) and
(A3) with &# = 2. If strict functions in Z(W) are defined analo-
gously to strictly g-plurisubharmonic functions, then approximation
of functions in Z(W) by functions in (W) is obtained by the same
methods.

6. A characterization of k-maximum sets. Recall that an open set
W in C” is g-pseudoconvex if the function v defined by

v(z) = —log(dist(z,dW))

is g-plurisubharmonic outside some compact subset K of W. If M >
v(z) for z € K then

u(z) = max(v(z), M) + | z|?

defines a strictly g-plurisubharmonic exhaustion function u on W,
1.e. the sets {z € W: u(z) < c} are compact in W for ¢ € R. An
application of Theorem 5.3 yields now:

6.1. CorROLLARY. If W is a q-pseudoconvex open subset of C" then
there is a piecewise smooth strictly q-plurisubharmonic exhaustion func-
tion on W.

More generally, if U C W are open in C” then U is said to be
g-pseudoconvex in W if

u(z) = —log(dist(z,0U N W))

is g-plurisubharmonic for z € U near U N W. Let Uy C U be an
open set with Uy N W > U N W so that u is g-plurisubharmonic
on Uy. By Theorem 5.3 applied to u + |z|?, there is thus a piecewise
smooth strictly g-plurisubharmonic function v on Uy with v(z) — oo



q-PLURISUBHARMONIC FUNCTIONS 243

as z — OUNW. In the following we say that a relatively closed subset
Y of W is the union of complex manifolds if each point x € Y has a
neighborhood V, with a complex submanifold of V; passing through
x and entirely contained in Y.

6.2. LEMMA. If U C W are open subsets of C" and U is q-pseudo-
convex in W then X = W\U is the intersection of a decreasing sequence
of relatively closed subsets X,, of W each of which is the union of
complex manifolds of dimension n — q — 1.

Proof. Let Uy and v be as described before the lemma. By Sard’s
theorem, there is a strictly increasing sequence of real numbers ¢, —
0o, such that in a neighborhood of each point of

Yn={z€Uy: v(z) =cm}

v is the maximum of a finite number of C? strictly g-plurisubharmonic
functions with non-varnishing gradient. By a theorem of Basener
(Proposition 6 in [Ba]), there is then for each z;, € Y,, a complex
manifold of dimension n — g — 1 passing through z, and lying entirely
in {z € Uy: v(z) > cm} U {z9}. Therefore

Xm=W\UU{ze Uy:v(z)>cm}
have the desired property.

A locally closed subset E of C” is a k-maximum set if the polyno-
mials have the local maximum modulus property on L N E for every
affine subspace L of codimension k in C” (see [S2]). It is not difficult
to show that an example is any locally closed set which is the union
of a family of analytic sets of pure dimension k + 1. Thus the sets
X of the above lemma are (n — ¢ — 2)-maximum sets. Since any
(n —g —2)-maximum set X can be obtained as W\ U as in the lemma
(Theorem 4.2 of [S2]), we have the following:

6.3. COoROLLARY. X isa k-maximum set in C" if and only if it can be
written as an intersection of a decreasing sequence X, of k-maximum
sets each of which is a union of complex manifolds of dimensions k + 1.

Let D be an open subset of C* and assume K is an upper semicon-
tinuous set function whose values K(z) are compact subsets of C™.
Set

X ={(z,w): ze D,w € K(z2)},
W =DxC", U=(DxC"\X.
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K is an analytic multifunction if X is a (kK — 1)-maximum set or equiv-
alently, by what we mentioned above, if U is (m — 1)-pseudoconvex
in D x C™ (see [S2]). The construction for Corollary 6.3 then gives:

6.4. COROLLARY. An analytic multifunction K on D C CK as de-
scribed above can be written as the intersection of a decreasing sequence
of analytic multifunctions K, whose graphs X,, are unions of complex
manifolds of dimension k.
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