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The resultant R(f,g) of two polynomials / and g is an irreducible
polynomial such that R(f,g) = 0 if and only if the equations / = 0
and g = 0 have one common root.

When g = f/p9 then D(f) = R(f, g) is called the discriminant
of / and the discriminant hypersurface Dp = {/ ECP, D(f) = 0} can
be identified to the discriminant of a versal deformation of the simple
hypersurface singularity Ap-\\ xp = 0. In particular, the fundamental
group π = π\(Cp\Dp) is the famous braid group and CP\DP in fact a
K(π, 1) space.

Here we prove the following.

THEOREM. m(Cp+9\RPtg) = Z.

As CP\DP can be regarded as a linear section of Cp+q\Rp,q, this
theorem shows that by a nongeneric linear section the fundamental
group may change drastically, in contrast with the case of generic
section.

Let / = xp + a\xp-χ -\ V ap and g = xq + b\Xq~x H h bq be
two monic polynomials with complex coefficients of degree p and q
respectively.

The resultant of them R(f,g) is an irreducible polynomial in the
coefficients <zz, bj such that R(f,g) = 0 if and only if the equations
/ = 0 and g = 0 have at least one common root. Explicitly, the
resultant is given by the next formula (see for instance [5], p. 136):

R(f,g)=R(a,b) =
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When g = f Ip, then D(f) = (/, g) is called the discriminant of the
polynomial / and the discriminant hypersurface Dp = {/ e Cp, D(f) =
0} has occurred several times in Singularity Theory, since it can be
identified to the discriminant of a versal deformatioin of the simple
hypersurface singularity Ap-\:xp = 0, see for instance [1], [3], [9]. In
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particular, the fundamental group π = π\(Cp\Dp) is the famous braid
group [1] (with p strings) and CP\DP is in fact a K(π91) space.

In this note we consider the analogous resultant hypersurface

and prove the following.

THEOREM. πχ{Cp+q\Rp,q) = Z.

Since CP\DP can be regarded as a linear section of Cp+q\RPiq, this
theorem shows that by a nongeneric linear section the fundamental
group may change drastically, in contrast with the case of generic sec-
tion [4].

It is also interesting to note that the complements FPΆ — Cp+q\RPΆ

have already occurred in an important topological problem [7], going
back to certain questions in Control Theory [2]. In short, consider the
space of rational real functions of the form

, x 1

Xn+

with α/, βj e R and the numerator and the denominator having no
common root. Then φ induces a continuous map Pι(C) = Cu {oo} —•
C U {oo} = Pι(C) of degree n and its restriction to the equator R u
{oo} = Sx c S2 = Pι(C) gives a map Sι —> Sι having degree r such
that -n < r < n and n - r = 0mod2. Let En-r denote the space of
these mappings with n and r fixed, with the obvious topology. Then
Segal has shown in [7] that Enj is homeomorphic to FPΆ with p+q = n
and p — q = r. He has also proved our Theorem in the special case
p = q, by a method completely different from ours.

We derive our Theorem from some basic properties of the resultant
hypersurface (which are also interesting in themselves) combined with
a deep result of Le-Saito [6] on the connectivity of the Milnor fiber of
non-isolated singularity.

LEMMA 1. R e C[a,b] is a weighted homogeneous polynomial of
degree pq with respect to the weights wt(αz) = wt(6, ) = /.

Proof. Note that the polynomial t / = xp + taxx
p~ι + + tpap

has as roots the elements tXi, where X[ are the roots of /, for any
t e C*. Then, using [5], p. 137, we get R(t f,t g) = Π, ,y(**i - 0>/) =
tPq Ylij(χi ~ yj) = tpqR(f> g), where yj are the roots of g. n
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The key remark in the proof is that the resultant hypersurface has a
smooth normalization v which can be described explicitly as follows:

i/(/, α, £) = ((x-t)fa, (x-ήgβ), where /α = x^"1 + α i * * - 2 + + α p _ i ,
^ = x^"1 +^iX^~2 + ̂ !X^"2H V βq-\- Then î  is clearly surjective
onto U M and the cardinal of a fiber v~x{f, g) is equal to the number
of common roots of the equations / = 0, g = 0, counted without
taking their multiplicities into account. Hence v is a finite morphism
which is generically one-to-one so that v is indeed a normalization for

We use v to investigate the singularities of the hypersurface RPΆ.
To do this, we first compute the differential of v at a point (ίo, «o> A)) "

= ((* " ίθ)(/α " ^ " ! ) " ί/αo, (*

Assume that ίo is n o t a r o o t f°Γ faQ and ̂ 0 simultaneously. Then
it follows that dv(to,ao,βo) is an injective linear map and its image
(which is a hyperplane in the vector space V of all the pairs (A,B),
with A,B G C[x], deg A<p—l, deg5 < q -1) is given by the equation

fao(to)B(to)-gβo(to)A(to) = O.

Let d(f, g) be the greatest common divisor of the polynomials / and
g. The above computation gives us the next

COROLLARY 2. The point (/, g) is nonsingular on the hypersurface
RP,q if and only ifdegd{f, g) = 1.

Proof. Use the fact that a point (/, g) e Rp,q is nonsingular if and
only if v~x{f,g) consists of one point, say y, and the corresponding
germ v\ (Cp+q,y) —> (Rp9q, (/, g)) is an isomorphism. D

We have also the more general result.

PROPOSITION 3. Assume that d(f, g) = {x -1\) . . . (x - ts) is a prod-
uct ofs linear distinct factors. Then the germ (Rp,q9 (/, g)) consists of
s smooth hypersurface germs passing through (/, g) with normal cross-
ings.

Proof. In this case the fiber v~ι(f g) consists of s points, say yk with
k = l , . . . ,s. Moreover, the germs ^ ( O 7 ^ " 1 , ; ; ; ) -> {Rp^\f,g)) c

, (/, g)) induced by v are all imbeddings and Hi = im(i//) are pre-
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cisely the (smooth) irreducible components of the germ (RPiQ, (/, g)).
The corresponding tangent spaces are Tk = T^fg^Hk\ f(tk)B(tk) -
g(tk)A(tk) = 0 for K- 1,...\s and f = f/d(f g), g = g/d{f g). The
condition of normal crossing in this case means that codim(f]k=lίS Tk)
= s.

But this intersection corresponds to the kernel of the following lin-
ear map. T:V ~ Cp+q -> C[x]/(d(f,g)) ^ Cs such that the kth
component of T(A,B) is just the evaluation on tk of (/ B-~g -A), for
k = l,...9s. It is easy to check that T is a surjective map and hence
codim(f\=1 s Tk) = codim(ker T) = s.

COROLLARY 4. The hypersurface RPiQ has only normal crossings sin-
gularities in codimension 1 and hence πι{CpJrq\RPΆ) = Z.

Proof. The singularities of RPiQ which are not normal crossings (as
described in Proposition 3) lie in the image of the map

with fa, gβ having a meaning similar to fa9 gβ. But dim(im τ) < p+q-
3 = dim RPΆ — 2 which proves the first assertion above. Next consider
the fibration F -> CP^\RP^ -+ C* with F = F~ι(l) = {(fg) e
Cp+q;R(fg) = 1}. Using the weighted homogeneity of R given by
Lemma 1, we can identify this fibration with the Milnor fibration
of the hypersurface singularity (RPyq,(xp,yq)). It follows by [6] that

= 0 and hence we get an isomorphism

) = z

This ends the proof of this corollary as well as giving a more precise
version of our Theorem above.

REMARK 5. There is a natural C-action on Cp+q leaving the resultant
hypersurface RPiQ invariant. Namely we define the translation of an
element (fg) by the complex number λ to be the element (fλ,gλ)
where

fλ= ]\{χ-χι-λ\ gλ=
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with xι (resp. yj) being the roots of/ (resp. g). Since the hyperplane
a\ = 0 is clearly transversal to all the C-orbits, it follows that

RP,Q = RP,« X C W i t h RP,Q = RP,Q Π ia\ = 0 >

The first non-trivial case of a resultant hypersurface is for p = q =
2. Then JJ2,2 is just the Whitney umbrella W\ b2 - b\a2 = s, with
b2 — b2 - a2y called also a Doo-surface singularity for a pinch point.
It follows that C4\i?2,2 = (C3\W) x C and the homotopy groups of
C3\W can be derived from the Milnor fibration F^ -• C3\W -> C*
associated to the D^ -singularity [8]. It is known that Foo has the
homotopy type of the 2-sphere S2 and hence

k k

In particular C4\i?2,2 is not a K(Z, 1) space, since Π2(C4\i?2,2) = Z
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