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Using a local product decomposition, we establish a certain class of
Blaschke cocycles with the property that a simply invariant subspace
has a single generator if and only if its cocycle is cohomologous to one
of this class. Some applications are also obtained. We show, among
other things, every simply invariant subspace is approximated by a
singly generated one as near as desired.

1. Preliminaries. Let I' be a dense subgroup of the real line R,
endowed with the discrete topology, and let K be the dual group of I'.
For each ¢ in R, e, denotes the element of K defined by e;(1) = e'¥
for any A in I'. Then the mapping from ¢ to ¢, embeds R continuously
onto a dense subgroup of K. Choose and fix a positive y in I', and let
K, be the subgroup consisting of all x in K such that x(y) = 1. Then
K may be identified measure theoretically, and almost topologically,
with K, x [0,27/y) via the mapping y + e to (,s). We assume, for
simplicity, that 2z lies in I" throughout the paper. Thus K may be
regarded as K,; x [0,1). This local product decomposition is very
useful for understanding the group K. We denote by ¢ and g; the
normalized Haar measures on K and K,,, respectively. Then do is
carried by the above mapping to the restriction of da; x dt to K, x
[0, 1).

A Borel function V' on K, x R is automorphic if V(y,t + 1) =
V(y+ey,t) fordo, x dt-a.e. (y,t) in K, x R. Every Borel function ¢
on K has the automorphic extension ¢* to K, x R by

o', 1) =0y + e, t — [2])

for each (y,?) in K;, x R, where [¢] denotes the largest integer not
exceeding ¢. Conversely, if V' is automorphic on K;,; x R, then there
is a function ¢ on K of which the automorphic extension is V, since
V' is determined by its values on K5, x [0, 1).

A function ¢ in L!(0) is analytic if its Fourier coefficients

a;(p) = /K 720 (x) do(x)
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vanish for all negative 4 in I', where x; denotes the character on K
defined by y;(x) = x(4). The Hardy space H?(g), 1 < p < oo, is
defined to be the space of all analytic functions in L?(o), and H} (o)
denotes the space of all functions ¢ in HP(g) for which ay(p) = 0.
Recall that a complex-valued function of modulus one is said to be
a unitary function. An analytic unitary function is called inner. A
function ¢ in H?(a) is outer if ¢ satisfies

log ao(p)| = /K log p(x)} da(x) > —oo.

A closed subspace M of L?(o) is simply invariant, often just called
invariant, if 91 contains strictly x;9% for any positive 4 in I'. For any
simply invariant subspace 9t of L?(g), we define

M, = ﬂ 09 and 9 = the closure of U XM,
A<O A>0

Then 9 is called to be normalized if M = M. If ¢ lies in L?(0),
then we denote by M[¢] the smallest invariant subspace containing ¢,
and ¢ is called a single generator of M[¢p]. In order for M[p] to be
simply invariant it is necessary and sufficient that

(1.1) /oolo | (x+e)|i—>—oo
. e g ¢ t 1+ t2
for g-a.e. x in K.

A cocycle is a unitary Borel function 4(x, ¢) on K x R which satisfies
the cocycle identity

(1.2) Alx,t+u) = A(x,t)A(x + e, u)

for all x in K and ¢, u in R. A cocycle is a coboundary if it has
the form w(x)w(x + e,) for some unitary function ¥ on K. Two
cocycles are called cohomologous if one is a coboundary times the
other. A one-to-one correspondence is established between normalized
invariant subspaces and cocycles (see [6; Chapter 2]).

We denote by H®(dt/(1 + %)) the space of all boundary functions
of bounded analytic functions in the upper half-plane /#. The closure
of H®(dt/(1 + t?)) in LP(dt/(1 + t?)), 0 < p < oo, is denoted by
H?(dt/(1+ t?)), where we use the ordinary metric on L?(dt/(1 + t?))
when 0 < p < 1. The class N(dt/(1 + t?)) consists of all boundary
functions of analytic functions on /# which are the quotients of two

bounded analytic functions.
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A cocycle A(x,t) on K is analytic if, by considering the restriction
to K, x R, the function of ¢, A(y,?), lies in H®(dt/(1 + t?)) for ;-
a.e. y in K,,. We say an analytic cocycle A(x,?) is a Blaschke or a
singular cocycle if the function of ¢, A(y, t), is an inner function of that
type for o;-a.e. y in K>,. It follows from (1.2) that our definitions are
equivalent to usual ones. There is a vague sense in which the Blaschke
cocycles are generic among all cocycles. Surprisingly, it happens that
every cocycle is cohomologous to a Blaschke cocycle (see [6; Theorem
26]).

Our objective in this paper is to characterize singly generated sub-
spaces in terms of Blaschke cocycles. In the next section, we introduce
a certain class of Blaschke cocycles and present some lemmas which
we shall use. After preparing some lemmas, the main theorem, Theo-
rem 3.1, is proved in §3. Applications to analyticity are presented in
84, and we close with some remarks in §5.

We refer the reader to [6] and [2; Chapter VII] for further details
of analyticity on compact abelian groups and [3] for results about
classical Hardy spaces.

The following lemma is a minor variation of known facts, so the
proof is omitted.

LEMMA 1.1. Let M be a simply invariant subspace of L*(a), and let
A be the cocycle of M. Then
(i) a function ¢ in L*(o) lies in M, if and only if the function of
t, Ay, t)o* (v, ), lies in H2(dt/(1 + £2)) for o1-a.e. y in Ky, and
(ii) a function ¢ in M is a single generator of M if and only if the
function of t, A(y, t)e*(,t), is outer in H*(dt/(1+t?)) for a,-a.e. y in
Ks,.

We see from (i) of Lemma 1.1 that A4 is analytic if and only if
9, contains H2(c). Equivalently, 4 is analytic if and only if 9, is
contained in H?(o).

Let V' be a function on K3, x R such that the function of ¢, V' (y, ?),
lies in H'(dt/(1 + £?)). Then we define

(1.3) Vy,t+ ir) / V(y,s) )2 5 ds

for each r > 0. We now derive some simple properties of cocycles by
restricting them to K,,; x R.
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LEMMA 1.2. Let A be an analytic cocycle, and let I be the normal-
ized invariant subspace with cocycle A. If r > 0, then we have
(i) |A(y,t + ir)| is automorphic on K>, X R, so there is a function
v on K with 0 <v <1 for which

A, t +ir)| = v*(», 1)

on K», x R, and
(ii) if we write p*(y,t) = A(y,t)V(p,t) for any ¢ in M, then there
is a function y in M such that

w*,t) = A, OV (y,t + ir)

on Ky, X R.

Proof. (i) We see by (1.2) that the function A(y, z+1)A(y +e;, z) ™!
on K,, x # is a unitary function only of y. This implies that

|[A(,t+ir+ 1) = |A(y + e1, t + ir)|

on K5, x R. Thus (i) follows from the definition of automorphic
functions.

(ii) Observe that the function of ¢, V(y,t), lies in H?(dt/(1+13))
by (1) of Lemma 1.1. By the similar way as above we see that
AW, )V (y,t + ir) is also the automorphic extension of a function
on K. It follows from Lemma 1.1 that  lies in 9 again.

The next elementary fact will be used later.

LEMMA 1.3. Let B(z) be a Blaschke product on #, and let
{tn+isn}S2 | be the zeros of B(z), listed according to their multiplicities.
If {sn}2., is bounded and bounded away from zero, then the infinite
product

I S
H(Z) = };[l (Z— tn)2+S%
defines a meromorphic function in the complex plane C which has a
pole at each point t, + is,. Furthermore, the function u(t)B(t) on R is
an outer function in H®(dt/(1 + £2)).

Proof. Recall that the Blaschke condition is given by
o0

Y <
t2+si+1 ‘

n=1
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The hypotheses imply that, on each compact subset of C \ {¢, % is,},
there is a constant M > 0 such that

(z—th)2+52| (z—ty)2+s2 = t2+s:+1

for all n. It follows from [7; Theorem 15.6] that u(z) converges uni-
formly on each compact subset of C \ {¢, + is,}. It is also easy to see
that u(z) has a pole at each ¢, & isy; thus the first part is obtained.
For the second part, let uy and By be the Nth partial products of u
and B, respectively. Since uy(z)By(z) is analytic at z = oo, we verify
easily that uy(2)By(t) is outer in H*(dt/(1 + ¢2)). Then
o0 dt

. 1
log ux B (1)l = 1 [ loglunBy(0l1 5
—00

~l/oolo |u (t)]—dt——>—oo
=) MV

since |By(¢)] = 1. Observe that 0 < uy,; < uy <1 on R and that

lim uyBy(i) = uB(i) # 0.

It follows from the monotone convergence theorem that

o0

log [uB(¢)|
(o o]

log uB(i)| = 5 [

> —00,
1+ 2

thus u(z)B(t) is an outer function in H*®(dt/(1 + 2)).
3
2. A certain class of Blaschke cocycles. Let g be a Borel function on

K5, which takes nonnegative integral values. We call ¢ a multiplicity
function on K,, if g satisfies

1
(2.1) > a0y +en)—5 <o
n#0

for g;-a.e. y in K,,. Obviously if g lies in L!(g;), then g is a multi-
plicity function on K;,. For the remainder of this paper, we always
fix an a > 0. Let E be the Borel set in K, x # of all (v, 3 +n + ia)
for n = 0,%£1,+£2,.... By using a multiplicity function g on K,,, we
define a Borel function 4§ on E by

G, L +n+ia)=qy +en).
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Then E and 4, interpreted as a zero set E with multiplicity function
g, satisfy all properties arised from a Blaschke cocycle, that is,
i gy, % +n+ia) -
(A+n)2+a2+1

oo, and

n=—00
dp, s +n+1+ia)=§(y +e,i+n+ia)

for gi-a.e. y in K3;. Thus we can construct a Blaschke cocycle BY
whose zero set matches E, and whose multiplicity function matches §
by [5; Theorem 1 and Remark in §5]. We say that Bf is the Blaschke
cocycle induced by a multiplicity function q on K»,. Of course, B =
if ¢ = 0. The structure of By is so simple that we can describe it
easily: Let

z—ia
(2.2) g(z)= o
Then By can be written as
(2.3) By, ) =p() [] {eng(t - % —n)yat+er
n=—o00

where ¢, with |¢,| = 1 is chosen so that ¢,g(i — n) > 0, and where
p(y) is the unitary function on K, that makes B (y,0) = 1. Recall
that there is a canonical way of extending the restriction of a cocycle
to K3, X R to the cocycle on K (see [2; Chapter VII, §11]).

LEMMA 2.1. (i) There is a multiplication function q on K,, which
does not lie in L'(a,).

(i) Let By be the Blaschke cocycle induced by such q, and let v be
the function on K such that |B3(y,t + ir)] = v*(y,t) on Ky x R for
r > 0 (see Lemma 1.2). Then logv cannot lie in L' (o) for all r > 0.

Proof. (i) It is well-known that there is a function w on K with
0 < w < 1 such that logw does not lie in L!(g), while w satisfies (1.1)
with w in place of || (cf. [2; Chapter VII, Lemma 9.2]). Regarding
w as a function on K, x [0, 1), we define a nonnegative integral value
function g on K5, by

1
q(y) = [[—/0 logw(y, s) ds]}.

Then it is easy to see that g does not lie in L!(a,) but has the property
(2.1).



BLASCHKE COCYCLES AND GENERATORS 363

(i) Let g be the function in (2.2). Then by (2.3) we see

o0
|Bg(y,t+ir)| = H lgt—3-n+ ir)|a0+en)

n=—00

< [g(t =4 +ine®)

(t_%)2+(r_a)2 q(»)/2
N {(t—%)2+(r+a)2} ’

on K, x [0, 1) since |g(z)| < 1 on #Z. We then put

| _1y\2 — )2
/ log (t %)2+(r a)2 dt=a <0.
0 (t=5) +(r+a)

Since we have

1
/Klogv(x)da(x) = /Kzn {/0 logv(y,t)dt} do(y)

< [ ag0)doi) = .
logv does not lie in L! (o).

We now introduce nonnegative functions ¥ on K for which the
functions of ¢, u(x + ¢;), can be extended as meromorphic functions
on /#. This utility depends on the fact that they can remove the zeros
of By (x, z) by multiplying one of them.

Let f.(z) be the meromorphic function on C given by

2

(2.4) ful2) = o

Notice that 0 < f,(f) < 1 on R. It is convenient to calculate the
equation

(2.5) / " log £u(¢) dt = —2am.

—o0

Let ¢ be a multiplicity function on K>,, and let
Q=C\{3+ntio;n=0,£1,%2,...}.

It follows from Lemma 1.3 that the infinite product

(2.6) U(y,z) = ﬁ fulz — 4 = n)a0+en)
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converges uniformly on each compact subset of Q for g;-a.e. y in K5,.
We also see that U(y, z) has a pole of multiplicity g(y+e,) at %+niia.
Since f,(t — 1 — n)P0+e) is a Borel function on K,, x R for all n, so
is U(y,t). Observe that U(y,t) is automorphic on K5, x R, that is,
Uly,t+1)=U(t+e;,t) on Ky; x R. So there is a function u; on
K for which U(y,t) = u}(y,t). Thus we obtain a function u, on K
satisfying that 0 < u, < 1 and that the function of ¢, uj(y, t), can be
extended as a meromorphic function u?(y, z) which has no zeros on #
and has a pole of multiplicity g(y + e,) at each % +n+ia for g;-a.e. y
in K»,. This u,, is called the function on K induced by (fo(t—%),q9(»))
via infinite product. Of course, in this definition, we may replace f,
with another suitable function.

LEMMA 2.2. Let q be a multiplicity function on Ky,, and let B and
ug be as in above. Suppose that I is the normalized invariant subspace
with cocycle By. Then

(i) if q lies in L'(ay), then B¢ is a coboundary, equivalently M is
generated by a unitary function, and

(ii) if q does not lie in L' (ay), then logu, does not lie in L'(o) and
9M_ is generated by u,.

Proof. By Lemma 1.3, the function of ¢, B (y, t)ug(y, 1), is an outer
function in H*®(dt/(1 + t?)) for o,-a.e. y in K»,. Then we see from
Lemma 1.1 that the cocycle of M[u,], is BS. On the other hand, let
Jo be the function in (2.4). Since log £,(¢) < 0 on R, it follows from
(2.5), (2.6) and Fubini’s theorem that

(2.7) /K loguy(x)da(x)

1 x
:/K {/0 Z q(y—i—e,,)logﬂy(t-%—n)dt} doi(y)

n=—00

=/°° logﬁk(t)dt‘/K q(v)daoi(y)

—o0

— dan /K a(y)doy (»).

(i) If ¢ lies in L!(0}), then (2.7) above implies that log u, lies in
L!(c). Hence there is a unitary function y on K such that

Mlug] = Mlugly = wH?(0)
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by Szegd’s theorem. This shows also that BZ(x,?) = w(x)y(x +€) on
K x R.

(ii) Suppose g does not lie in L!(g;). Then we see by (2.7) that
log 1, does not lie in L!(o), so u, belongs to M_. It follows from the
preceding remark that M[u,] = MDi_.

We remark that if 91 # M_ in (ii), although we do not know if such
a case occurs, then M = wH?(o) for some unitary function y on K.
Thus 91 has also a single generator.

3. Singly generated subspaces. In this section, we show the converse
to Lemma 2.2 essentially holds. This enables us to characterize single
generated subspaces by means of Blaschke cocycles. The following
theorems give the details.

THEOREM 3.1. Let w be a function on K with 0 < w < 1 satisfying
(1.1) with w in place of |p|, and let f, be the function in (2.4). Define
a multiplicity function q on K5, by

1
(3.1) ) = [[—ﬁ /0 logw(y, 1) dt]] .

Ifug is the function on K induced by (f,(t—%), q(»)) via infinite product,
then there is a unitary function y on K for which

Mw] = yM[u,].

We can restate Theorem 3.1, together with Lemma 2.2, in terms of
cocycles.

THEOREM 3.2. Let M be a simply invariant subspace, and let A be
the cocycle of M.. Then M is generated by one of its elements if
and only if A is cohomologous to the Blaschke cocycle B induced by
some multiplicity function q on K,,. In particular, Hg(a) has a single
generator if and only if there exists a coboundary of the form By where
q does not lie in L' (ay).

We begin with adopting a wider definition of outer functions. Let
¢ be a Borel function on K. We call ¢ an outer function on K in the
wide sense if the function of ¢, ¢(x + ¢;), is an outer function in the
class N(dt/(1 + t?)) for o-a.e. x in K. It follows, of course,

0 dt
(32) | oglpx + )l 555 < o,

—00

although not only log|¢| but also ¢ may not belong to L!(o).



366 JUN-ICHI TANAKA

LeMMA 3.3. Let w be a nonnegative function on K satisfying (3.2)
wtih w in place of |p|. Define a function p on K, by

i
p(y) =/0 logw(y,t)dt.

If p belongs to L' (o)), then there is an outer function ¢ on K in the
wide sense for which |¢p| = w.

Proof. Consider p as a function on K by p(y, t) = p(y) for each (y, t)
in K3, x[0,1). Let p = p* — p~ where p™ and p~ are positive and
negative parts of p. By Szegd’s theorem we can find outer functions
91 and ¢, in H*(0) so that |p,| = exp(—p™) and |p,| = exp(—p™).
If we put @3 = ¢i"(p2, then @3 is an outer function in the wide sense
for which |@3| = e?. Thus, by replacing w with we™”, we may assume
p=0.

Let us consider the Hilbert transform V(y,f) of logw*(y,t) on
K5, x R, explicitly

V(y,t) = lim 1 logw#(y,s);%? ds.

=0T Joc|r-si<1/e

By our assumption, we may replace (t—s)~! by (£ —s)~! — (¢ —[s])~!
in the above integral when |t — [s]]] > 1. Then we see easily that
this integral converges for g;-a.e. y in K,,;. Observe that V' (y,¢) is an
automorphic Borel function on K;, x R. Therefore there is a function
v on K for which V' (y,t) = v*(y, t) on K,, x R. This implies that the
function of ¢, v(x + ¢;), is a conjugate function of logw(x + ¢;) for
og-a.e. x in K. Thus

¢ (x) = exp{logw(x) + iv(x)}

is the function with desired properties.

LEMMA 3.4. Let w be a function as in Lemma 3.3. For each r
in R, there is an outer function ¢ on K in the wide sense for which
lp(xX)| = w(x)w(x +e)".

Proof. We notice that the function of ¢,

logw(x + ;) —logw(x + e, + &),
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belongs to L!(dt/(l + £?)) for g-a.e. x in K. Consider the Hilbert
transform v(x) of it. Then we have

.1 1
v(x)= lim — {logw(x + e5) —logw(x +es+e)}—ds
e=+0 T Jecs|<1/e —S
.1 1 1
= lim — logw(x +e5)3 —— — = ¢ ds.
e=+0 T Joc (s |s—r| §s—r S
Since (s—r)~!1—s~! = O(s72), as |s|] — oo, the above integral converges.

Thus the function
¢(x) = exp{logw(x) — logw(x + &) + iv(x)}

satisfies the desired properties.

LEMMA 3.5. Let w be a function as in Lemma 3.3, and let {a,}32 _,
be a sequence in R with the property that |a,| = O(n=?), as |n| — oco.
Then the infinite product

o0

wy(x) = H w(x + e,)*

n=—00

converges o-a.e. x in K and satisfies (3.2) with w, in place of |p)|.

Proof. We may assume that 0 < w < 1 and a, > 0 for all n. Let
f(s) = 1/(1 + s?). Then we see the Fourier transform of f,

[e.o]

7(t) = / eI f(s) ds,

-0

is equal to me~!"l. Since the convolution f* f of f and f satisfies that
(f* N (1) = n2e P = 2m /(4 + 57)) (1),

it follows from the inversion theorem that f * f(s) = 27/(4 + s%).

On the other hand, let 4(¢) = a, on [n,n + 1) for all n. There is a
constant C > O such that A(¢) < Cf(¢t) and f(s —[t]) < Cf(s—t) for
s, t in R. This yields that

(3.3) 3 ﬁ(z—n—n_)z < c/_°° h(t)f(s — 1) dt

h=—00

2nC?
4 + 52

<SC*Hfxf(s) =
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Our assumption shows that logw(x + ¢;) < 0, so we have

dt
1+

o0 o0
/ log'w]()H-e,)H_t2 / Zanlogw(x+en+e,)

- 0 p=—00

=/ logw(x + es) Z ﬁ;)—zds

- n=-—o0

> CZ/OO logw(x + e )ﬂ—ds > —o00

= oo 4+ 52
by (3.2). Simultaneously this assures the convergence of the product
w(x) since

oo

Z anlogw(x +e,) > —oo

n=-00

for g-a.e. x in K, which completes the proof.

LEMMA 3.6. Let {a,}52 _., be a sequence in R such that

(3.4) an=0(n"*%, asl|n]— oo, and

(3.5) Y an=1

Let w and w, be as in Lemma 3.5. Then there is an outer function ¢
on K in the wide sense for which |p| = wiw~!. In particular, suppose
that w is bounded and that a,, > 0. Then there is a unitary function y
on K for which M[w] = yM[w,].

Proof. Observe that the automorphic extension logw*(y, t) lies in
L(dt/(1+¢%)) as a function of ¢ for gy-a.e. y in K,. Let V(y, t) be the
Hilbert transform of logw*(y, t) with the normalization V (y,i) = 0,
that is,

.1 1
V(y,t) = lim — logw*(y,s) { 1 n 32} ds.

e—=+0T e<|t—s|

Let % < p < 1. It then follows from Kolmogoroff’s estimate [3;
Chapter III, Theorem 2.1] that the function of ¢, V(y,t), lies in
LP(dt/(1 + t?)) for o1-a.e. y in K,,. We notice that the function of ¢,
logw*(y,t) + iV (y, ), may be extended to # analytically.

Since logw*(y,t + 1) = logw*(y + e}, 1) on K,, x R, we see that

(3.6) Viy,t+1)=V(y+e,t)=V(y,i+1)
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on K>, X R, a function only of y. We define a Borel function U(y, t)
on K, X R by

[o0]

(3.7) Up,ty= > anV(y,t+n).

n=—o0

Then we claim that the function of ¢, U(y,t), also belongs to
LP(dt/(1+1?)) for g;-a.e. y in K>,. Indeed, recall that L?(dt/(1+12))
is a complete metric space whose metric 4 is given by

a8 = [ 170 - s0p

_ 1+1¢2

for f, gin LP(dt/(1+¢%)). Since |a,|? = O(n=2), as |n| — oo, by (3.4),
it follows from (3.3) with |a,|? in place of a, that

/oolU( t)lpi< i/‘x’la Vy,t+n) dt
Y 1+27 & ) " Y 1+12

* > |an |
— D N S S
[ P e

e 2n
<C? 4 .
<cC /_OOIV(y,s)l oy ds <o

By Lemma 3.5, we see that the function of ¢, logw{(y,?), belongs
to L(dt/(1 + %)) for g;-a.e. y in K,,. From the definition (3.7) of
U(y,t), it follows that the function of ¢, U(y, t), is a conjugate function
of logw(y,t), and logw}(y,t) + iU(y,t) belongs to H?(dt/(1 + ?))
for g;-a.e. y in K>,.

On the other hand, by (3.5) and (3.6), we obtain that

Up,t+1)-Uy+e,t)=V(y,i+]1)
on K>, x R. Together with (3.6), this yields
Uy,t+ 1) =V(,t+1)=U(y +e,t) = V(y+e,t)

on K,, x R, that is, U(y,t) — V(y, t) is automorphic. So we may find
a function # on K for which

ut(y, 1) =U(y,1) = V(»,1)

on K,, x R. Therefore the function of ¢, u(x + ¢;), is a conjugate
function of logw, (x +¢;) —logw(x +¢;) for g-a.e. x in K. Thus if we
put

¢(x) = exp{logw;(x) — logw(x) + iu(x)},
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then ¢ is. the outer function on K in the wide sense such that |p| =
wyw L.

Suppose that w is bounded and a, > 0. Then w, is also bounded
and Lemma 3.5 assures that 9[w,] is simply invariant. Since

"M, (x) = exp{logw;(x) — logw(x) + iu(x)}w(x)

= p(x)w(x)
on K, it follows from Lemma 1.1 that the cocycle of M[w], coincides
with the one of e“9fw;],. Observe that logw, lies in L!(¢) if and
only if so does logw. Thus by Szegd’s theorem we conclude M[w] =
e”‘ﬂﬁ[w 1].

Now we may offer a proof of our main result stated at the beginning
of this section.

Proof of Theorem 3.1. If logw lies in L'(¢), then the function g
in (3.1) lies in L!(s). So it follows from Szegé’s theorem and (i)
of Lemma 2.2 that M[w] = 6, H?(c¢) and M[u,] = 6,H?(c) for some
unitary functions 6; and 8, on K. Thus we may assume that log w does
not lie in L!(g). We then notice that Mw] = M[w]- and M[u,] =
M[uy]- by (ii) of Lemma 2.2.

If we define a function p; on K, by

1
Py = - /0 logw(y, 1) dt,

then it follows from Lemma 3.3 that there is an outer function ¢ on
K in the wide sense for which |p| = w exp(p;), where p; is regarded
as a function on K = K;, x [0,1). Hence we can choose a unitary
function y; on K such that

(3.8) Mw] = v Mlexp(—p1)]-

Define a meromorphic function g, on # by

z4

T 28 ¥ 4o

Since z* + 4a* = {(t — a)? + o2} {(t + a)? + 02}, g.(z) has a pole of
multiplicity 1 at z = a(£1 + i) in #. Easy calculation shows that

/ log g () dt = —4ar.

-0

8a(2)

We then define a multiplicity function ¢; on K5, by

a1(y) = H”I——M(J’)H .

dan
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Since 4ang; < p; < 4an(q; + 1) and g; does not lie in L!(¢) as a
function on K, it follows from Lemma 3.3 that there is a unitary
function ¥, on K such that

(3.9) Mlexp(—p1)] = vrM[exp(—4ang;)].
We next put

1 —n+l1 |
an = —m/_n log g.(t — 5)dt.
Then we see easily the sequence {a,}32_ ., with a, > O satisfies the
conditions (3.4) and (3.5) in Lemma 3.6. Since } ;> a,q1(x + e,)
does not belong to L'(c), there is a unitary function w3 on K for
which

(3.10) Mexp(—4anrq;)] = w3;M lexp (—4a7z i anq(x + e,,))} .

n=—o0

Let v be the function on K induced by (g,(f — %), q1(y)) via infinite
product. Then we see that 0 < v < 1 on K and that the function of ¢,
v*#(y, t), may be extended to /# as a meromorphic function v*(y, z),
which has a pole of multiplicity ¢;(y + e,) at z = (3 £ @) + n + ic
and has no zeros on #Z for g;-a.e. y in K,. Let B be the Blaschke
cocycle determined by the property that the function of z, B(y, z), in
# has a zero of multiplicity q(y +e,) at z = ( £ @) + n + ia and
has no zeros elsewhere. Then it can be seen by Lemmas 1.1 and 1.3
that the cocycle of M[v], is B. On the other hand, it follows from the
definition of v that

1 0 1
/ologv(y,t)dt= > ql(y+en)/0 log go(t — 5 — 1) dt

n=-00
(o ¢]

= —4an Z anq1(y + én).

n=-—00

From this fact we see also logv does not lie in L!(g). Therefore it
follows from Lemma 3.3 that there is a unitary function y4 on K for
which

(3.11) m [exp (—4a7t f: anq(x + e,,))} = yM[v].

n=—00

Let f, be the function in (2.4), and let u#; be the function on K
induced by (fo(t — 3 — @) fu(t — 1 + @), q1(»)) via infinite product.



372 JUN-ICHI TANAKA

Then we see easily that 0 < u; < 1 on K and logu; does not lie in
L'(0) by the same way as the proof of Lemma 2.2. Since MM[u;]; has
the same Blaschke cocycle as 9[v], has, we thus obtain

(3.12) Mv] = M[u,].
Let u be the function on K induced by (f,(t — 1), ¢)(»)) via infinite
product. It follows from Lemma 3.4 that there are outer functions

@, and ¢, in the wide sense so that |¢,(x)| = u(x)u(x +e,)~! and
l92(x)] = u(x)u(x —e,)~! on K. Observe that

U (x) = u(x + ey, )u(x — e,),
and logu does not lie in L'(g). Then we see that there is a unitary
function w5 on K such that

(3.13) Mu;] = wsMu’].
It is easy to see that the cocycle of M[u?], is ng]. Let g be the
multiplicity function on K given by (3.1). Then we have

2q1(y) <q(y) < 2q:(y) + 1,
from the definition of ¢;. So if ¢, = ¢ — 2q,, then g, becomes a mul-
tiplicity function on Kj,. By (i) of Lemma 2.2, BZ is a coboundary.
If u, is the function on K induced by (f,(t — 1), ¢(¥)) via infinite
product, then the cocycle of M[u,], is By by (ii) of Lemma 2.2. Thus
we may choose a unitary function yg on K for which

(3.14) M[u?] = weIMuy].
Define the unitary function ¥ on K by

Y =Y 1Yo3Wa¥syse.

It then follows from the equalities from (3.8) to (3.14) that M[w] =
wM[u,]. This completes the proof.

Proof of Theorem 3.2. Suppose that 9t has a single generator ¢.
Then we may assume that 0 < ¢ < 1 by Szeg6’s theorem. It follows
from Theorem 3.1 that there are a unitary function ¥ on K and a
multiplicity function g on K;, so that 9t = y9M[u,] where u, denotes
the function on K induced by (f,(t — %),q(y)) via infinite product.
Thus Lemma 2.2 shows that the cocycle A of 97t, is cohomologous
to By. Converse is a consequence of Lemma 2.2, so the proof is
complete.

4. Applications. We first ask under what conditions a Blaschke cocy-
cle B is cohomologous to the one B induced by a multiplicity function
g on K5,
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THEOREM 4.1. Let B be a Blaschke cocycle which has no zeros on
K>, x{Im z > r} for somer > 0. Then there is a multiplicity function q
on Ky such that B is cohomologous to By. Consequently, the invariant
subspace with cocycle B is singly generated.

Proof. We let F(y,t) be a function on K;; X R defined by
F(y,t) = B(y,t +ir),

where B(y,t + ir) is given by (1.3) with B in place of V. Then the
hypothesis implies that the function of ¢, F(y,t), is an outer function
in H®(dt/(1 + t2)) for g;-a.e. y in K,,. Observe that B(y,)F(y,1) is
automorphic on Kj,; x R. Then, together with (i) of Lemma 1.2, there
are two functions w and v on K whose automorphic extensions w* and
v¥ satisfy |F(y, )| = w*(y,t) and B(y,)F(y,t) = v#(y,t) on K, x R.
Since 0 < w < 1 on K, it follows from Theorem 3.1 and Lemma
2.2 that there is a unitary function ¥; on K such that the cocycle of
yiMw]y = My w); is By for some multiplicity function g on Kj,.
By (ii) of Lemma 1.1 we see that the function of ¢, B3 (y, t)(w w)* (v, 1),
is an outer function in H*(dt/(1 + t?)) for o;-a.e. y in K,,. Then the
zeros of F(y, z){(vyw)*(y,z)} ! exactly match zeros of BZ(y,z) on
K27z X 7.

On the other hand, since w = |v|, if we put ¥ = v(w,w)~!, then ¥
is a unitary function on K. Since

By, tyy*(y,1) = By, t)o* (v, ){(waw)*(», )} !
= B(y,t)By, h)F (v, ){(viw)*(», 1)} !
=Fy,){(viw)*(y,0)}~!

on K>; x R. Thus we have By (x,t) = w(xX)w(x +e)B(y,t) on K x R.
The last assertion follows from Theorem 3.2.

We can strengthen the conclusion of [6; Theorem 26] which is one
of the most important features of cocycles.

THEOREM 4.2. Every cocycle is cohomologous to a Blaschke cocycle
B with the property that the function of z, B(x, z), on # has no zeros
on {0 < Imz < a}, so B(x,z) may be extended to {—a < Imz},
analytically, for g-a.e. x in K.

Proof. 1t follows from [6; Theorem 26] that every cocycle is coho-
mologous to some Blaschke cocycle B;. By restricting B; to K>, X R,
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we denote by E; the set of all zeros of B;(y, z) in K5, X R, and §,(y, z)
denotes the multiplicity of zero at (y, z) in E;. Define

E,={(y,z)€E;;0<Imz < a},

and let §,(y, x) be the restriction of §; to E,. Then by [S; Theorem 1
and §5] there is a Blaschke cocycle B, whose zero set and multiplicity
match E, and §,. Observe that B; = B, B, is also a Blaschke cocycle
which has no zeros on Kj; X {0 < Imz < a}. On the other hand, it
follows from Theorem 4.1 that B, is cohomologous to By for some
multiplicity function g on K5, which has zeros only on line {Im z =
a}. Since B; is cohomologous to By B3, the Blaschke cocycle B = By B
is the desired one.
Let ¢ be a function in H!(c). For each r > 0, we define

(x)—1/°° (X + ) — dt
(Pr _ﬂ _oo¢ tt2+r2 ’

which is an analogue of (1.3). We notice that ¢, also lies in H!(o) by
Lemma 1.1. Recall that an inner function f(z) on the unit disc is a
Blaschke product if and only if

.1 [7 i0 _

}1_1)1}57; _nloglf(re )| dé =0
(see [3; Chapter II, Theorem 2.4]). Similar characterization also holds
in the case of # ([1]). Strange to say, suchlike does not hold in the
almost periodic setting.

THEOREM 4.3. There is an inner function y in H*(a) which has the
Jollowing properties:
(i) the function of z, w(x + e;), is a Blaschke product on # for
o-a.e. x in K, and
(ii) forallr > 0,

/K log | (x)| da(x) = —o.

Proof. Let g be a multiplicity function on K,, which does not lie
in L'(g}), and let B{ be the Blaschke cocycle induced by ¢q. If 9 is
the invariant subspace with cocycle BS, then 9t is contained in H?(o)
by Lemma 1.1. Choose and fix a bounded function ¢ in 9. We may
assume ¢ has no weight at infinity, that is, x;¢ does not lie in H?(o)
for each negative A in I'. Then we have

o* (v, 1) = B3, )V (,1)
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on K, X R, where the function of ¢, V(y,1), lies in H®(dt/(1 + 12))
for gi-a.e. y in Kj,. Let V(y,t + i) be the function defined by (1.3)
with » = 1. It then follows from (ii) of Lemma 1.2 that there is a
function 6 im 9t such that

0*(v,1) = B30, OV (y, 1 + 1)

on K, x R. Notice that the inner part of the function of z, 6%(y, z),
is a Blaschke product on /#. By Theorem 3.2, the cocycle of IM[0]+
is cohomologous to the Blaschke cocycle By for some multiplicity
function ¢; on K,,. This implies that there is a unitary function ¥ on
K so that BS (x,t)y(x + e)y(x) is the cocycle of M[6], which is the
conjugate of some Blaschke cocycle. From this fact we see easily v is
an inner function satisfying the property (i).

On the other hand, since the function of ¢, BJ(y, t)y*(y,t), is inner
in H*(dt/(1+1?)) for g1-a.e. y in K,,, we have |(Byy*) (v, t+ir)| < 1
on K5, x R, especially on K, x [0, 1). Since

wi(v,t) = Ba, t + in)(Boy )y, t + ir),

it follows from (ii) of Lemma 2.1 that

/K log |y»(x)| do(x)
1
=/ /log]t//#(y,l+ir)|d01(J’)dt
K, JO

1
<[ [ toglB; 0,1+ inldoyv)di = oo,

Ky JO

this completes the proof.

We finally show that every invariant subspace contains a singly gen-
erated one as close as we please.

THEOREM 4.4. Suppose that K is separable, and that M is a sim-
ply invariant subspace of L*(a). Then there is a sequence {9,}>, of
bounded functions in MM with same arguments such that

@) o1l 2 lg2| 2 o3| 2 -+,
(i1) Mp(] C Mp2] € Mps] C---C M, and
(iii) 9 = the closure of lim,_,o, M[,].

Proof. If M # M_, then there is nothing to prove since M = wH?(o)
for some unitary function y on K; thus we assume that 9t = 91_. By
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Theorem 4.2, we may also assume the cocycle of 9, is B, where B
is a Blaschke cocycle whose zeros lie in K x {Im z > a}. Perhaps, B
might be 1, so M = H}(g). We let E be the set of all zeros of B(y, z)
in Ky, x %, and §(y, z) denotes the multiplicity of zero at (y, z) in E.

Observe that 97 is contained in HZ (o) and that some bounded func-
tion ¢; in 9 has no weight at infinity. We denote by E; and §; the
set of all zeros of ¢,(y, z) in K5, x {Imz > o} and the multiplicity
of zero at (y, z) in E;, respectively. Since ¢, lies in 9, E; contains
E and 4, > ¢ on E. Since E; and 4, satisfy the properties arisen
from a Blaschke cocycle, it follows from [S; Theorem 1] that there is
a Blaschke cocycle B; whose zeros, together with their multiplicities,
match E; and §,. We put qo’f(y, t)= By, t)V(y,t) on Ky, x R. Then
the function of ¢, V(y, 1), lies in H*(dt/(1 + %)) for g;-a.e. y in K.
By (ii) of Lemma 1.2, we may choose a bounded function ¢ in 9 for
which

o' (v, 1) = Bi(y, )V (y,1 + ia)

on K,, x R. Observe that the function of z, ¢*(y, z), has no zeros on
{0 <Imz < a} for gi-a.e. y in K»,.

We next define

Fo={(y,z) €eEj;an <Imz <a(n+ 1)} \E,
forn =1,2,3,.... We then write
Fo(v) ={.1; +1is;);j =1,2,3,...},

listed according to their multiplicities §; — §. Since {s;} is bounded
and bounded away from zero, it follows from Lemma 1.3 that the
product
T (=)
U,(y,t) = ——
w(¥51) £10—0V+ﬁ
converges for g;-a.e. y in K,,. We, of course, consider U, (y,t) = 1 if
F.(y) i1s empty. Furthermore, since K is separable, similarly as in the
proof of [5; Lemma], we see that U,(y,?) is measurable on K,, X R.
Since U,(y,t) is automorphic, we can find a function u, on K for
which Uy,(y, 1) = u?(y,t) on K>, x R.

Define analytic functions ¢, on K by

On = Uy Un@.

Then since 0 < u, < 1 on K, {¢,} is a sequence of bounded functions
with the same arguments and satisfies the property (1).
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Let B, be the cocycle of M[p,].. Then the conjugate cocycle B,
of B, is a Blaschke cocycle with the property that the zero set of
B,(y,z) in K3; X {a < Imz < an} and their multiplicities match the
restrictions of E and § to K, x {a < Imz < an}. We then see that
B,B,. and B, B are analytic for all n. Hence the property (ii) follows.

On the other hand, it can be easily seen that the normalization of
the closure of lim,_,., M[¢,] has the cocycle B, the cocycle of Mi,.
Since 9 = Mi_, we obtain the property (iii), this completes the proof.

5. Remarks. Let ¢ be a multiplicity function on K,,. We then
denote by By the Blaschke cocycle induced by g as usual.

(a) The following question is interesting and probably difficult: Is
every cocycle cohomologous to some Bg? By virtue of Theorem 3.2,
this is equivalent to the old problem of whether every simple invariant
subspace is generated by one of its elements (see [6; Chapter 5, §4]).
Experimental evidence seems to indicate that the answer would be
negative.

(b) Let ¢ be a nonnull function in H*(g). Then the cocycle of
IM[g], is cohomologous to some By by Theorem 3.2. This assures the
existence of an inner function which has exactly the zeros of ¢ and BJ
together. In other words, by adding zeros on the line {Im z = a}, the
zero set of any analytic function becomes the one of an inner function.
This observation as well as Theorem 4.1 implies information to a
problem posed by Helson:

When does the zeros of a Blaschke cocycle coincide with the zeros of
some analytic function?

(c) Similarly as in the proof of Theorem 4.3, we can show the
following

PROPOSITION 5.1. Let M be the simply invariant subspace with co-
cycle BZ. Suppose that q does not lie in L'(a;). Then, for every ¢ in
M, we have

/K log|¢,(x)] do(x) = —co
for all r > 0.

We remark that 9t contains many unitary functions (see [6; The-
orem 16]). If ¢ is continuous on K, so is ¢,. It then follows from
Arens’ theorem [2; Chapter VII, Theorem 9.4] that 9t has no contin-
uous functions other than the null function.
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(c) The next proposition is an analogue of Theorem 4.4, and two
proofs are quite similar.

PROPOSITION 5.2. Let K and 9 be as in Theorem 4.4. Then there

is a sequence {y,}> | of unitary functions in I such that

(i) wiH?*(6) C y,H?*(0) C w3H?*(6) C --- C M, and
(ii) 9 = the closure of lim,_o W, H?*(0).
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