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We consider the variety F of /:-dimensional linear projective sub-
spaces lying on a generic projective complete intersection S. Under
general assumptions involving k, the multidegree and the dimension
of S, we prove that F is connected, smooth, and its local deforma-
tions come from deformations of S.

Introduction. Linear varieties lying on a projective variety have been
considered in several contexts.

A classical instance, going back to Cayley [6], is that of a smooth
cubic surface. There are twenty-seven lines on such a surface, and,
as observed later, the incidence preserving permutations of this set
of lines form a group isomorphic to the Weyl group of a root system
of type E(>. It is also the monodromy group of the global family of
smooth cubics and the Galois group of the corresponding enumerative
problem (see [12]).

Similar results (involving the root system D2k+?>) hold for the k-
planes contained in a smooth 2/c-dimensional intersection of two
quadrics ([14, 16]).

Beyond the enumerative level, and besides homogeneous-rational
varieties such as Grassmannians or linear spaces lying on a smooth
quadric, a first example should be the Fano surface of lines contained
in a cubic threefold ([11]). The Abel-Jacobi map induces an isomor-
phism from the Albanese variety of the Fano surface to the inter-
mediate Jacobian of the cubic threefold and one has a global Torelli
theorem ([7, 19]).

With planes instead of lines, but generically this time, the analogous
statements hold true for cubic fivefolds ([8, 10]).

Nor should cubic fourfolds be neglected here: their varieties of
lines are irreducible symplectic projective fourfolds ([3]) which play
an important role in the proof of the global Torelli theorem ([20]).

We also mention the variety of λ -planes contained in a smooth
(2k + 1)-dimensional intersection of two quadrics: it is an Abelian
variety isomorphic with the intermediate Jacobian of the given inter-
section of quadrics ([9, 16]).
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26 CIPRIAN BORCEA

All these varieties may be realized as zero loci of sections of cer-
tain homogeneous vector bundles over Grassmannians ([1, 18]). This
circumstance makes the Schubert calculus relevant, for instance, in
computing Chern numbers; it also reduces questions about connec-
tivity, regularity, etc., as well as deformations to questions about the
cohomology of homogeneous vector bundles.

Our main concern will be to set up a general framework for a calcu-
lus with weights, such that the theorem of Bott [5] become expressive
in this context—a perspective we initially used in [4].

Specific computations enabled Wehler to deal with small deforma-
tions of Fano surfaces: he showed, namely, that all of them are in-
duced by deformations of the corresponding cubic threefolds ([21]).
This result is here extended to a large class (Theorem 5.3). Simi-
larly (Theorem 4.1), we extend (and give an alternative proof for) the
connectedness result of Barth and Van de Ven concerning lines on
hypersurfaces ([2]).

1. Varieties of fc-planes. We shall consider projective Λ -planes con-
tained in a complete intersection S = Sn{d) of dimension n and
multidegree d = (d\, . . . , dr) in the projective space P — Pn+r over
the complex field C.

Let <fp(m) denote the rath tensor power of the hyperplane line
bundle on P and let S be given as the variety of zeros Z(s) = S of
a section s e H°(P, E), where E = φr

t=ι @P{dt).
Denote by G = G(k+l, n + r+1) the Grassmann variety of projec-

tive Λ>ρlanes in P, i.e. (k+ l)-planes in Cn+r+λ, and let Γ c PxG be
the subvariety defined by the incidence relation Γ = { ( x , π ) | x e π } ,
with canonical projections:

p represents Γ as a G(k, «+r)-bundleover P and q represents Γ as
a Pk-bundle over G. Accordingly, we have isomorphisms: H°(P, E)

If 0 -> τ = τk+x -> G x C w + r + 1 -> Q = Qn+r-k -> 0 denotes the
canonical exact sequence of vector bundles over the Grassmannian
G, we have a natural identification: q*p*{?P(m) = Sm(τ*) = the rath
symmetric tensor power of the dual tautological bundle.
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Put g7 = q*p*E.
Let Φ be the isomorphism indicated above:

r
Φ: H°(P, E) ̂  H°(G, g7) = ®H°(G, Sd<(τ*)).

t=\

To s e H°(P, E), defining the variety Z(s) = S, we thus associate
G i/°(G, gr), defining the variety of zeros Z(Φ(s)) = Fk(S) = F,

which consists of all A:-planes contained in S c P.

REMARK 1.1. The rank of g7 is Σr

t=ι ( ι

k ) , and we expect F to
be non-empty for dim G - rk IP > 0, i.e. for

( A Q ) (k + 1)(ΛI + r - k) - ^ ί ^,
\ AC

This will presently be seen to be true, provided S is not a quadric,
in which case the assumption n > Ik is needed. Note that, if S is
neither a quadric, nor a linear space, condition (Ao) already implies
n>2k.

2. Dimension and smoothness in the generic case. Let V = H°(P, E)
and consider the subvariety / c G x V defined by: / = {{s, n)\s\π =
0}, with projections:

a represents / as a sub-vector-bundle of G x V -> G, which shows
that / is smooth, while /? is proper and the fibre over s G V is
precisely Z(Φ(s)).

Confirming our Remark 1.1, we have:

PROPOSITION 2.1.7/ dim G - rk g7 > 0, jff w onto, provided n>2k
in the case ofquadrics.

Proof. If we find a A:-plane π in S, with S smooth along π , and
such that the normal bundle Nπ/S has Hι(π, Nπ/s) = 0, the propo-
sition will follow from Kodaira's criterion for stability of compact
submanifolds [15].

We consider the exact sequence:

(1) θ-+Nπ/s^Nπ/p
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We have:

n+r-k

Nπ/P = and

t=ι

Let π be given by xk+\ = = xn+r = 0, for homogeneous coor-
dinates (x0: - " : xn+r), so that s e H°(P, E), s\π = 0 will be given
by r homogeneous polynomials (s\, . . . , 5r) of the form

n+r

(2)

where

(3)

μ = ( μ 0 , ... , μ k ) , x μ = x g - - - x k

k , \ μ \ = μ o + --- + μ k = d t - l

and every monomial in rt contains a product XiXj with i > j > k.
Since we may suppose n > 2k, the condition that S be smooth

along π is satisfied for generic s. (For example, the following matrix
of partial derivatives

dst

(*) eπ
i>k+\

may be produced:

0

0

ί/,-1

0...0 x

_ i

d-\
0

0 0

0

d'1{xd

X,

We represent a global section of Nπ/P by a matrix

a — (a

so that the map H°(Nπ/P) Λ H°(NS/P\π) induced from (1) is de-
scribed by

(4)
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Looking at monomial coefficients in (4) and using (3), one obtains
that σ is a surjection if and only if the linear system (with indeter-
minates α/y)

(5) Σ *ij'<i%u) = o>
j<k<i

ί = l , . . . , r , v = (i/0, . . . , uk)9 |i/| = rf/

where

^ 0 ) = ̂ - ( 0 , . . . , 1, 0, . . . , 0) and c{

t

ι)

MJ) = 0 for u(j) improper

has maximal rank, namely Σr

t=χ {dt^k) = rk f7 = i?.
For generic s, this is actually the case. To see it, consider the lexi-

cographic order on the set of column-indices {(/, j)\0 < j < k < i <
n + r} and look at the RxR matrix given by the first R columns. Its
determinant is a polynomial in c^μ , with \μ\ = dt - 1. It is not dif-
ficult to check that this polynomial is different from zero. Consider,
for example, the lexicographic order on the set of indices (/, /, μ)
affecting the coefficients c\^μ. Now order the monomials in the ex-
pression of the above determinant according to the rule: m\ > πi2 if
the smallest index (i, t, μ) for which c^μ occurs in ni\ with expo-
nent p\ and in m-i with exponent pi φ P\, we have p\ > Pi- The
greatest monomial in this ordering will have perforce coefficient 1 or
- 1 , since in each row, the choice of c^μ entering this monomial is
prescribed.

Thus, for generic s, S is smooth along π and Hι(π, Nπ/$) = 0.

COROLLARY 2.2. The projective k-planes contained in a generic
complete intersection Sn(d) of dimension n and multidegree d =
(d\,...,dr) in Pn+r define a smooth subvariety Fjc(Sn(d)) of
G(k + 1, n + r + 1) of codimension Σr

t==ι (dt^k) > provided that

(k+ \){n + r-k) > Σr

t=ι (d>+k) and Sn(d) is not quadric, in which last
case n >2k is required.

REMARK 2.3. The variety of lines F\{Sn(3)) of a cubic hypersurface
Sn(3) c Pw +i is smooth if the cubic is smooth, but in general, the
smoothness of Sn(d) does not imply that of Fk(Sn(d)) (cf. [12], [18]).

3. Weights. In what follows, we take dim G > rk % (and n > 2k
for quadrics), and assume the complete intersection S = Sn(d) to be
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such that the codimension of F — Fk(S) in G — G(k + 1, n + r + 1)
be precisely rk I?. Generically, this is the case (Corollary 2.2).

Let Jf denote the sheaf of ideals defining F on G.
The Koszul complex of (the section of I? = q*p*E defining) JF

gives, for any holomorphic vector bundle M on G, spectral sequences:

(6)

V ' " J

q>0.

If M is a homogeneous vector bundle, we may use the theorem
of Bott [5, Th. IV ; ] for dealing with the groups on the left. To this
purpose, we use the following description of the Grassmann manifold
G{k+\9n + r+\):

SL(w + r + 1, C), which is the universal cover of A\x\{Pn+r) =
PGL(n + r + l , C), has Lie algebra sl(n + r + l , C) = {A = (α z 7 ) | t r^ =
0} . Take as Cartan subalgebra h = {A\aij = 0 for / ̂  7} . This gives
root spaces LZJ = C E[j (i Φ j) where Efj has zeros everywhere
except the (i 9 j) entry.

The Killing form identifies the corresponding roots αZJ with En —
Ejj (i Φ j) so that the root system An+r may be viewed as embedded
in a euclidean space with orthonormal basis βι = En, i = 1 ? ,
n + r + 1, the roots being represented by vectors a orthogonal to
e\Λ V enΛ.r+\ and of square-norm (a, a) = 2 (cf. [36, p. 64]).

Put as = as+\iS = es+\ — es. {α^s = 1, . . . , n + r] gives a basis of
the root system An+r.

If £4+1 denotes the subgroup of SL(n + r + 1, C) consisting of
the transformations which preserve the linear space {xk+2 = =
x^+r+i = 0} c C^ + r + ι with coordinates (xi, . . . , xn+r+\) > the Lie
algebra ι^+1 of Uk+Ϊ will contain /z, all the negative roots (αZ 7, / <
j) and all positive roots not involving ak+ϊ when expressed in terms
of the given basis.

We have G(fc+1, n + r+1) = SL(n + r + l , C)/Uk+X , which is the
description we shall use.

Let us now investigate the weights associated to various homoge-
neous vector bundles over G = G(k + 1, n + r + 1).

Such a bundle is defined by a holomorphic representation /?: £4 + 1

—• GL(7V, C) and the weights are taken with respect to h .
(a) Consider first the tautological bundle τ over G. It corresponds
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to the natural representation of Uk+X on the invariant subspace {xk+2

Let βs denote the weight characterized by

(βs, ott) = 0 for tφ s and (βs , as) = \{as , as) = 1.

An elementary computation then gives the weights of
τ * + i : h — ~β\ > h = β\ - βi, •.. , ^+i = βk ~ βk+\-

(b) The line bundle det(τ£+ 1), which gives the Plϋcker embedding
of G(k 4- 1, n + r + 1), has therefore associated weight: βk+\.

(c) The tangent bundle of G: ΘQ is given by the adjoint representa-
tion of E/fc+i on ύ[n + r + 1, C)/M^+I Consequently, its weights are
precisely the positive roots involving α^+i in their expression, namely
OLij , / > /C + 1 > j .

(d) g7* = 0 ^ = 1 ^ ( τ ^ j ) * and (a) immediately gives that its
weights are of the form:

fc+i

Σciiti = {a2 - ax)βx + (a3 - a2)β2 + + (α^+i - <*k)fik - ak+γβk+x

with at e N, Σ^ϊ at = dm for some m<r.
We now draw up a table of scalar products of positive roots and var-

ious weights, which will be relevant in estimating indices of weights.
δ is half the sum of all positive roots.
ω = Σ ^ CLiti, ai G Z (motivated by (d) above and the spectral

sequences (6)).
1 <m <k.

We anticipate here the type of reasoning to be used in the sequel.
Given a homogeneous vector bundle over G, defined by a representa-
tion Uk+χ —• GL(7V, C), we first produce a filtration with consecutive
quotients corresponding to irreducible representations of Uk+X. Such
an irreducible representation determines a highest weight, say p. This
p has to be one of the weights of the original representation and fur-
ther satisfy (p, as) > 0 for all s Φ k + 1.

In our computations p will be either of type ω or ω +

In order to obtain the vanishing of HS(G, p), it will suffice either
to ascertain the singularity of the weight p + δ or to prove: s <
index(/? + δ).

In this context, the main feature of our table of products is that
(<xt9m, P + δ) increases by 1 when t increases by 1, except the last
step for p = ω + α w + r + 1 ? m (m < k+ 1).
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TABLE 1

ap

Oίm-l

aq

Oil,k + l

Oίt,m

<*t.p

Conditions

p φ m - 1, m

P <k

k+I<q < n + r

t> k+ 1

t>k+\

t>k+1>p

pφm

δ

1

1

1

1

t-k-l

t-m

t-p

ω

ap+\ - ap

am - am-\

am+\ - am

0

-fljfc + l

-am

-ap

°<-n+r+\ ,m

0

-1

1

q< n + r 0

q = n + r 1

t<n + r+ 1 0

/ = n + r + 1 1

t <n + r+\ 1

/ = n + r + 1 2

/< n + r + 1 0

/ = n + r + 1 1

p <k 0

/? = A: - 1

0

m < k 0

m = k- I

0

1

1

2

0

1

0

1

Note also that for 1 <p < k+l, {<*k+2,p> P+$) < (ak+2,P-\»
since (α^-i, p) > 0.

4. Connectedness, Suppose

(Ai)

F is connected if and only if H°(0F) = C.
We have Hs{G,f\s%*) => H°{0F); therefore the vanishing of

HS(G, /\s &*) for s > 0 will imply the connectedness of F.
According to our method, described at the end of §3, we examine

HS(G, p)9 with p an irreducible representation of ί7^+1 with highest
weight (again denoted p) among the weights of f\s IP*. Thus p =
ω = Σki=l CLiti and we know (see Table 1):

(1) ak+{ >ak>">aq>0;
(2) p + δ is either singular or of index u(n + r - k), 1 < u < k

(u = k+\ is excluded because rk % < dim G).
Suppose therefore s = u(n + r - k).
For p + δ to have index s, we must have (at fP , p + δ) > 0 for

p = 1, ... 9 k+l —u in particular: % + i _ w < u.
Now remember that p is a weight of f\s IP*, thus a sum of s

weights of g7*, each weight counted at most as many times as the
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dimension of its eigenspace. There are (multiplicities included)
Σίw=i (?mu-\X) w e ights involving only ί, , / > k + 1 - u. Adding
any other weight increases some a} 9 j < k + 1 - u thus we must
not add more than u(k + \ - u) such weights. This will be clearly
impossible if n satisfies the following conditions:

(?u-ϊ ) r-k)=s
m-\ ^

with u running from 1 to k.

Now, use (repeatedly) the formula:

dm + ήf\ J (dm + q -

Λ
(

to show that if some dm > 3, or at least two degrees in d are > 2,
then (CM), 1 < u < k, is a consequence of our assumption (Ai).
Note that (Ci) reads: n > 2k.

We have therefore:

THEOREM 4.1. Let S = Sn(d\, . . . , dr) be a complete intersection
in Pn+r and F = Fk(S) its variety ofprojective k-planes. Suppose

m=\

or, in case S is a quadric, suppose n > Ik.
Then F is connected.

REMARK 4.2. For a smooth quadric S = S2k(2) > ̂ ( S ) consists of
two isomorphic (hermitian symmetric) connected components.

This should rather be viewed as the exception which confirms the
rule: S2k(2) is a homogeneous (hermitian symmetric) space (of rank
one) in its own right, and the generating k-planes of the two families
in Fk(S) correspond to Schubert cycles which are not homologically
equivalent.

REMARK 4.3. There is a simple formula for the canonical bundle
of F = Fk(Sn(d)), when smooth.

Let ^ G ( I ) denote the positive generator of Pic(G), restricting to
(fF{\) on F.

Set

Then KF=0F{K).
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5. Deformations. In this section we assume that F = Fk{Sn{d)) has
the "right" codimension and dimension at least two:

(A2) άimF = dim G - rk r > 2.

Our purpose is to produce conditions on (n, d, k) which ensure
the completeness of the natural deformation of F, parametrized by
a neighborhood of the section Φ(s) £ H°(G, %) defining F. No-
tice that the family of complete intersections to which Sn(d) belongs
(parametrized by a neighbourhood of s e H°(P, E) = H°(G9 %), i.e.
the "same" base) is itself complete (see [4], [17], [21]).

A sufficient condition for completeness is the vanishing of
HX(G,&® JF) and Hι(F, ΘG\F). This is a general result for va-
rieties defined by sections in a vector bundle (see [21]).

We look therefore at the spectral sequences (6) abutting to the above
two groups.

(5.1) Take first HS{G, ^ ® f\s &*), s > 1.
We obtain vanishing conditions for these groups as we did for

Hs(G9/\sgr) in §4.
Let D = maxi<m<r(flfm). Filtering and taking highest weights will

produce as above weights p = ω = Σ ^ / α/ί, , with (ap, p) > 0 for
P < k.

Since p is the sum of a weight ω' of % and a weight ω" of f\s %*,
adding ω1 to ω" = Σf^ 1 a!(ti decreases some of its coefficients a",
diminishing their sum by at most D.

This means that our sufficient conditions (Cu), 1 < u < k, for
the vanishing of HS(G, f\s If*), 5 > 1, become, by the same type of
reasoning, sufficient conditions (Cf), 1 < w < k, for the vanishing
of i/ 5 (G, r ® /\s^*), once we add D to the left hand side of each
inequality:

(Cj?) Σ (dmu-ϊ l)+u(k+l-u)+D<u(n + r- k).

(5.2) Consider now HS+\G, ΘG ® Λ"^*) > ̂  > 0. For ^ = 0, we
have Hι(G, ΘQ) = 0, because G is rigid [5]. Suppose s > 1.

Again, using a filtration (actually, the representations we are deal-
ing with are all completely reducible) and successive quotients cor-
responding to irreducible representations of Uk+X, we find that the
highest weight p associated to such a representation is necessarily of
the form p = ω + at,m, with ω = X)^ 1 aiU a weight of /\s If*,
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t > k + 1 > m (cf. §3 (c)), and further conditions: (/?, aq) > 0 for
all q Φ k + 1, which imply in particular t = n + r + I.

Take therefore p = ω + oίn+r+\ ,m (m < k + I) and consider the
series of integers: (p + δ, &t,p) vv̂ ith p < k+ί fixed and t increasing
from k + 2 to n + r+1. If p + δ is non-singular, this series of non-
zero integers will keep the same sign, except possibly at the last step
t = n + r+l, when it might "jump" precisely over zero (see Table 1).

Now let p decrease from k + 1 to 1 and notice the relations of
the starting values in each series:

(p + δ, ak+2,k+\) <(p + δ, ak+2,k) < - - < (p + δ , ak+2tι).

This means that we might encounter non-vanishing cohomology
HS+X{G, p) at most for s + 1 or s a multiple of n + r - k, say
u(n + r — k) (u < k + 1 by our assumption rk I? < dim G - 2).

For the coefficients α, in ω = Σ^i aiU •> w e have either:
(1) α^+1 > ak > > d\ for m — k + 1, or
(2) ak+{ > > am+{; amΛ.x + \ > am > am_x > > a{ for

m < k.
Since ω is a weight of /\s ^ * , it appears that (Q;) above is a

sufficient condition for the vanishing of HsJrX(G, p).
Now, one may verify that the combination of (A2) and (Cf) above

implies (Cf) for 1 <u<k.
First, suppose dm>2, which is no restriction of generality. Making

use of the identity (7) in §4 and the fact that the right hand side in
(7) clearly increases with q , the following implications obtain:

(i) If k > 2, (A2) => (Cf) as soon as Σ,m=M - 1) > 3J3 + 2,
i.e. dφ(2), (2 ,2) , (3), (2,3) and for n > 6 also for d = (2, 3).

(ii) If u > 1, (C£+1) => (Cf) for Σ m = i ( 4 - 1) > 0 + 6, i.e.
<//(2), (2,2) , (3).

Finally, for d = (2), (2 ,2) , (3) or (2, 3), a direct check shows

that (A2)&(Cf)^(Cf);

Summing-up, we obtain:

THEOREM 5.3. Let S = Sn(d\, ... , dr) be a complete intersection
in Pn+r and suppose that its variety of k-planes F = Fk(S) satisfies

(A2)

If n > 2k + D, where D = maxi<w< r(dfw), then every small deforma-
tion of F is induced by a {small) deformation of S.
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