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Let E be a uniformly convex and uniformly smooth complex
Banach space. We prove that every onto isometry 7 on H*(E)
is of the form

(TF)(z) =T (F(1(2)))  (FEH®(E),|z|<1),

where .7 is an isometry from E onto £ and ¢ is a conformal map
of the unit disc onto itself.

1. Introduction. Let H* denote the set of all bounded analytic
functions in the open unit disc with the norm || f]jec = supj;<; [/(2)].
Since H* is a semi-simple commutative Banach algebra, the Gelfand
transform (f — 7 ) is an isometry from H* onto a subalgebra M
of C(Y) where Y is the maximal ideal space of H*. One can show
[L-R-W]:

To every extreme point L of the unit ball (H*®)* there corresponds
a complex number o of absolute value 1 and a point y € Y (indeed,
y is an element in the Choquet boundary of Y) such that

Lf=af(y) (fe€H™).

Using this result, K. deLeeuw, W. Rudin and J. Wermer ([L-R-W];
also see [N]) proved that every linear isometry 7" of H* onto H
is of the form

(T)(z2)=af((z)) (feH®,|zl<1),

where « is a complex number of absolute value 1 and ¢ is a con-
formal mapping of the unit disc onto itself. If E is a complex Ba-
nach space, then H*(FE) denotes the set of all E-valued bounded
analytic functions defined on the open unit disk A. We will show
that there is a linear isometry from H(FE) onto a subspace M of
C((Y, weak* topology) x(U, norm topology)) where U is the unit
ball of E*. M. Cambern [C1] proved that: If E is a finite dimen-
sional complex Hilbert space, then

to every extreme point L of the unit ball of (H*®)* there corresponds
a point y in the Choquet boundary B C Y of H*® and a point e* in
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the unit sphere of E* such that
L(F)=F-(y) (FeH>(E)

where F,-(z) = (F(z), e*). Using this result, he proved that if E is
a finite dimensional Hilbert space, then every isometry 7" of H®(E)
onto H®(E) is of the form

(TF)(z2) =5 (F(¢(2))) (FeH®(E),|z|<1),

where 7 is an isometry from E onto E, and ¢ is a conformal map
of the unit disc onto itself. (In [C2], he also proved that if E is a
finite dimensional complex Banach space which does not split, then
the conclusion of the above result is still true.)

In §2, we study the extreme points of the unit ball of H*(E)*. We
prove that if E is uniformly convex and uniformly smooth, then for
each point y € B and each point e* in the unit sphere of E*,

L, »~(F)=F-(y)

is an extreme point of the unit ball of H*(E)*. Moreover, if {Lyd , e;}
converges to a nonzero element in the weak* topology, then {y,} con-
verges (in the weak* topology). In §3, we use these results to show if
T is an isometry from H*(E) onto H*°(E), then

(1) there exist a complex number a of absolute value 1 and a
conformal mapping ¢ of the unit disc onto itself such that for any
he H® andany Fe H*(E) T(h-F)=a-hot-T(F),

(i1) T maps the set of all constant functions onto itself.
Hence, there exists an isometry 7 from E onto E such that

(TF)(z) =9 (F((z))) (FeH>®E),|z|<1).
The author wishes to thank Professor J. E. Jamison for his valuable

discussions concerning these results.

2. Extreme points in H*°(E)*. Let E be a complex Banach space
and let X be the Hausdorff space

(Y, weak* topology) x (U, norm topology)

(where Y is the maximal ideal space of H*® and U is the closed unit
ball of E*). For each F € H®(E), let F be a function on X which
is defined by

~

F(y’ 8*) = <Fe" s J’)
(Note: F,- € H® is defined by F,-(z) = (F(z), e*).)
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LEMMA 1. Foreach F € H*(E), F is a continuous function on X .
Moreover, the mapping S: F — F is a linear isometry from H®(E)
into C(X).

Proof. Suppose that {(y;, e})} converges to (¥, e*). Then

~

[F(v, e") = F(va, €3)]

<IF(a, €)= Fva, €l +1F (v, €)= F(va, €]

= (Fer—e s Ya) + [(For , ¥ = va)|

<lle* = el - IIF Il + [{Fer » ¥ = ya)l-
Since ¢} converges to e* in norm and y,; converges to y in the weak*
topology, F(y4, ed) converges to F(y, e*). It is known that ||F|| =
sup,-cy |- || = ||F]|, and so the mapping F — F is a linear isom-
etry. m]

REMARK 1. If % is an element of H*® and F is an element of
H>(E), then h-F € H®(E) and

() h-F(y,e)=(h-Fo,y)=h(y)- (F, )
(since y is a maximal ideal).

REMARK 2. For each (y, e*) € X, let L, .- be alinear function on
H>(E) which is defined by L, ,-(F) = F(y,e*). It is known that
the weak* closed convex hull of the Choquet boundary B (for H*)
contains Y . By the proof of Lemma V.8.6 and Lemma V.8.5 [D-S],
every extreme point in the unit ball of H*(E) is in the weak* closure
of theset {L, ~:y € B and e* € U}.

LEMMA 2. Suppose that {(y,, e})} isanetin BxU. If {L, .}
converges to a nonzero element in the weak* topology, then {y;} con-
verges (in the weak* topology).

Proof. Since B is compact in the weak* topology, y, has a limit
point, say y. We claim that {y,;} converges to y in the weak* topol-
ogy. If this is not true, then there is a weak* neighborhood V' of y
such that for any d|,

(VxU)N{L, ,:d>do}#< and
(Y\V) x U)ﬂ{Lyd’e;I d>dy} # 2.

Since y € B and w*-lim L, .- # 0, there exist FeM and he H®
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such that

(1) limF(y,, e;) converges to a positive number,

(i) 1=kl =h(),and |h| < on Y\V.
This implies that (k- F, Lyd,e;) = iz(yd) AF, Lyd,e;) does not con-
verge. We get a contradiction since {Lyd,e;} converges in the weak*
topology. O

Let e* be an element in U. We say e* is a w*-strongly exposed
point (in U) if there exists a unit vector e € E such that {{f* €
U: (e, f*) > a}: a > 0} is a neighborhood base for e¢* in U in the
norm topology. (We also say e is w* strongly exposed at f*.) It is
known that if E is uniformly smooth, then E* is uniformly convex
and every point in the unit sphere is a w*-strongly exposed point in
the unit ball.

LemMMA 3. If e* is a w*-strongly exposed point in U and y € B,
then L, - is an extreme point of the unit ball of H®(E)*.

Proof.. Since e* is a w*-strongly exposed point, there exists a unit
vector e € E such that
Ve>036>0(f*eUand (e, [*)>1-0)=|f —¢€| <e.
Suppose that Z:'_i_l ai4=1, a; 42>0,and w*-limE?il a; 4L, .

*
1.d’>"r.d

=L, ,~. Forany ¢ > 0 and any w*-neighborhood V" of y,let 4, y 4
denote the set

{i:lle*—ef 4l >eory; 4 & V}
We claim that im}_,., ;4 =0. Since y € B, there is an h €
H>™ such that (h,y)=1= k| and |h(y)]<1-6 on Y\ V.

nd
l=(e-h,L, , )=lm) (e-h,a; 4L, . )

=1

= lim ( Z (e .h’ ai’dLyr.d’e,*_d) + Z <e -h, a[,dLy"d,e’*.d>)

ieAe«l'.d i¢Ae‘V,d

< limsup ((1—6) Z a q+ Z ai,d).

ieAs.l'.d l‘¢A£.l"d

So we must have
lim Z a; ¢ =0.

€4, |,
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Let F be any function in H*°(E). Then for any ¢ > 0 there exists a
neighborhood V of y such thatif y' € V' then |(F,-, y)—(F,+, y')| <
e. Soif Y,cp a4 =7, then

2 <F, Z a,',dLyl.d’e:d> —(F, L, o)

i€B,

S <F, Z 2 ) ai’d(Lyl.d’e:*‘d —Lyl.d’e* +Ly"d’e* _Ly’e*)>
ieBd\Ae.l'.d
+ > 24,4 |F|
ieBdnAs.l'.d
<2%|F|l+ > 2-a;4 |F|
ieBdnAs«l'.d

This implies 2- . B, af’dLJ’,,d e, converges to L, ,- inthe w* topol-
ogy. So L, .- is an extreme point of the unit ball of H*(E)*. O

3. The isometries. Let 7 denote a fixed isometry of H*(E) onto
itself. Then 7™ is an isometry on H*(E) and 7™ maps the extreme
points of the unit ball of H*(E)* onto itself.

LEMMA 4 (See Lemma 2.1 [C1]). Suppose E* is strictly convex. Let
er, e; be two w*-strongly exposed points in U and x be any element
in B. Suppose that w*-limL, - =T*(Ly ) and w*-limL, -
T*(Ly or). If w*-limzy = y' and w*-limy,; =y, then y = y'.

Proof. If 'y # y', then there exist two disjoint neighborhoods V7,
V>, of y and y'. Since y and )’ arein B, forany 0 < e < % there
exist h; and hy such that 1 =|A]| =k (y) = () =|lhall, || <e
on Y\V;,and |h <é on Y\V,. If [|Fi|| =1 (resp.|F,|| =1) and
lim Fy(yq, fj) > 1—¢& (resp.limFy(zy, g7) > 1—¢), then

(i) limhy(yg)-F(vg, f7) > 1—¢ and limhy(z4)-F (24, 83) > 1-¢,

(i1) ”hl - F +h2~F2|| <l+e.

Since ¢ is arbitrary, we have
2= |wlim(L, - +L. o) =Le o+ Ly o]l = lef + €3]l
This contradicts the fact E* is strictly convex. Hence, y =y'. o

REMARK 3. Clearly, the conclusion of the above lemma is still true
if E* does not contain a two dimensional /; space. In [C2], M.
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Cambern showed that if E is a finite dimensional complex Banach
space which does not split, then the conclusion of the above lemma is
true. (Note: we say a Banach space E splits if it is the direct sum of
two nonzero subspaces E; and E; with sup norm.) But we do not
know whether it is still true if £ is an infinite dimensional Banach
space.

Suppose that E* is strictly convex. For any y € B and any w*-
strongly exposed point e* € U if w*-lim L, ¢ = T*(L, ), then we
define

2) o(y) = w*lim z,.

By Lemma 4, ¢(y) is independent of the choice of the w*-strongly
exposed point in U .

LEMMA 5. ¢ is a continuous function.

Proof. Let e* be any w*-strongly exposed point in U. If y; con-
verges to y, then Lyd’e' converges to L, .- in the weak* topology.
Since T* is continuous with respect to w* topology, T *(Lyd’e*) con-
verges to T*(L, ,-) in the weak* topology. If ¢(y;) does not con-
verge to ¢(y), then there is an £ € H*™ such that it(q)(yd)) does not
converge to 4(¢(y)) = 1. Let F be any unit vector in H*®(E) such
that (F, T*(L, ,-)) = 1. Then

1=h(pW)(F, T*(Ly ) =(h-F,T*(Ly .+))  (by(2))
= hm<h -F, T*(Lyd,e*)) = llmh(¢(yd))<F: T*(Lyd,e*))'
But {(F, T*(Ly, .))} converges to (F, T*(L, (~)) = 1, so this is
impossible. Therefore, ¢ is a continuous function. O
REMARK 4. Similarly, one can show that if
(i) welimyg =y,
(i1) {e;} is a net of w*-strongly exposed points such that {Lyd ,e;}

converges to a nonzero element in w*-topology,
(iii) w*-lim de, o= T (w*-1lim Lyd’ e;) ,

then w*-1lim z; = ¢(y). Hence, ¢ is one-to-one and onto.

LEMMA 6. Suppose that E is uniformly smooth. There are a con-
SJormal map t of the unit disc onto itself and a complex number «
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of absolute value 1 such that for each h € H*® and F € H*®(E),
T(h-FY=hot-T(F). (So T\ (h-F)=hot™!-T-I(F).)

Proof. Since E is uniformly smooth, E* is uniformly convex (so
every point in the unit sphere is a w*-strongly exposed point in the
unit ball). For any 4 € H® and F € H*(E),

(T(h-F), Ly »y=(h-F,T*(L, ) =h(p(y)) - (F, T*(L, .*))
= hp() - (T(F), L, ,) € H.

Note. T is an onto mapping. There exists F € H*®(E) such that
forany y € B, (T(F), L, ,~) = 1. This implies ho P = 71— for some
h € H*® . One can easily verify that

(i) T(h-F)=h-T(F) and T~'(h-F)=h T~Y(F),

(i1) h — A is a linear isometry from H* onto H™.

By the deLeeuw-Rudin-Wermer theorem, there exist a conformal ¢ of
the unit disc onto itself and a complex number « of absolute value 1
such that for each h € H®

h=a-hot.

Let & be the constant 1 function, and it is easy to see that o« = 1. So
T(h-Fy=hot -T(F). 0

REMARK 5. Suppose that E* is strictly convex. The above proof
shows that if e* is a w*-strongly exposed point (in U) and y is a
point in B, then

(T(h-F), L, o) =h(p®)) (T(F), L, ).

If w* cl(co{e*: e* is a w*-strongly exposed in U}) = U, then for any
e*ceU andany y€ B,

(T(h-F), Ly o) = h(p(») (T(F), Ly o).
So the conclusion of Lemma 6 is still true if E* is strictly convex and
E* has RNP ([B] Theorem 4.2.13).

LEMMA 7. Suppose that E* is uniformly convex and E is complex
strictly convex. If F € H®(E) is a constant function, then T(F) is a
constant function.

Proof. For any analytic E-valued constant function F =e-1,, let

T(F) = T(F)(0)-1s+ z - G.
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Then

F=T"YT(F)0) -1+ z-G)
=T YT(F)(0)-1,) + ™' - T7YG).

This implies

llell = 17~ (T(F)(0) - 1a)(2(0)) + ¢~ (2(0)) - T~H(G)(2(0))]|
= |71 (T(F)(0) - 1a)(#(0))I| < I T(F)(O)].

But ||T(F)|| = |le|| - By Maximum Modulus Theorem [T-W], T'(F) is
a constant function (note: e is a complex strictly extreme point). O

THEOREM. Suppose that E is a uniformly smooth and uniformly
convex Banach space. Let T be any linear isometry of H®(E) onto
H>(E). Then there are an isometry I from E onto E and a con-
Jormal map t of the unit disc onto itself such that

(TF)(z) =7 (F(1(2))) (FeH%(E),|z|<1).

Proof. Since T maps the set of all constant functions onto itself,
there is an isometry .7 from E such that 7(e-15) = F(e) - 15
For any unit vector e € E, let f* be a unit vector in E* such that
(Te, f*y = 1. So e is w*-strongly exposed at 7 *(f*). Hence, if
w*-limLyd’ o= T(Ly s-), then f7 converges to *(f*) in norm.
And we have

T*(Ly, 1) = Loy, 7 ()
By Choquet’s theorem, for each |z| <1 there is a probability measure
uz such that u,(B)=1 and f(z) = [ f(y)du-(y) forany fe H®.
By the proof of Lemma 6,

hot(z) =h(z) = / ho()) d=(v).,
B
and so
(T(F(2)), f*) = /B T (v) dpz(y) = /B (TF, L, ~)du.(»)

= [ Ly i) = [ F o (000 duc(v)

= Fz- () (t(2)) = (F((2)), T*(f7))
= (7 (F(i(2))), f7).
This implies that T(f(z)) = I (F(¢(z))). 0
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REMARK 6. The conclusion of the above theorem is still true if £
satisfies the following conditions:

(i) E* does not contain two dimensional complex /; space,
(i) the unit ball of E* is the w*-closed convex hull of its w*-
strongly exposed points,
(iii) the unit ball of E is the closed convex hull of its complex
extreme points.

It is known that if E splits, then the conclusion of the theorem does
not hold. But we do not know whether the converse is true or not.
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