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We show that there are exactly 10 residue class domains of c,
the ring of real convergent sequences. We also classify some of the
residue class domains of C*([0, 1], R).

Introduction. The residue class domains of C(X, R) (the ring of
real valued continuous functions on a topological space X ) have been
extensively studied by Kohls [16], Gillman and Jerison [10], and oth-
ers.

In [6], Cherlin and Dickmann began the study of the residue class
domains of C(N*, R), where N* is the one-point compactification
of N. Clearly C(N*, R) is isomorphic to c, the ring of real conver-
gent sequences. In [8], Cherlin and Dickmann (and Louveau) showed
that there exist non-maximal prime ideals p of C(N*, R) such that
C(N*, R)/p is areal closed valuation ring. They asked about the other
prime ideals. Both the author’s dissertation (written under Cherlin’s
guidance) and this paper grew out of that question. We deal with two
main problems:

(1) Classify all the residue class domains of C(N*, R), assuming
the continuum hypothesis.

(2) Classify the residue class domains of C*°([0, 1], R).

(The reader may well ask, “What about C([0, 1], R)?” We touch
this question very lightly. Cherlin and Dickmann, in §4 of [8], go into
it more deeply.)

We completely solve problem 1 in this paper. We show that there
are exactly ten residue class domains of C(N*, R).

We can classify these domains in the following manner, considering
¢ rather than C(N*, R):

First, one of these conditions will hold for (/*/p — c/p); it will
either be empty, have a non-empty countable coinitial subset, or be
non-empty with no countable coinitial subset.

Second, one of these conditions will hold on neighborhoods of zero
in c¢/p; there will either be a countable coinitial subset of c¢/p of
the form {[f ]k},‘g":1 , or a countable coinitial subset {[f,]1}5_, of ¢/p
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where [fin]X > [fins1] forall k, m € N, or there will be no countable
coinitial subset of c/p.

This accounts for nine of the domains; R = ¢/m, where m is any
maximal ideal of ¢, is the tenth.

Our main line of attack is to use some work of Ax and Kochen [1]
concerning valued fields. (The use of valuations to study C(X, R)/p
goes back at least to [16].) In [14] it was shown that, under certain
conditions, two valued fields will be isomorphic if and only if both the
two valuation groups and the two residue class fields are isomorphic.
For a non-maximal prime ideal p of ¢, we have a chain of at most
three fields:

R C Frac(/®/cy) € Frac(c/p)

(where cg is the set of sequences that converge to zero, and Frac(D)
denotes the fraction field of a domain D). The question then comes
down to: “What are the possible valuation groups of Frac(/*/c)
over R, and what are the possible valuation groups of Frac(c/p) over
Frac(/®°/cy) 7 We shall show that there are three in each case.

In the first case, Frac(/*°/cy) over R, the valuation group is closely
tied to ({*°/p —c/p). If [°°/p = c/p, then the valuation group is the
group {0}. If [*°/p # c/p, then (I*°/p — c/p)+ having a countable
coinitial subset is equivalent to the valuation group having a countable
cofinal subset. These conditions are closely tied to different types of
non-principal ultrafilters on N.

In the second case, Frac(c/p) over Frac(/*®/p), the valuation group
is closely tied to the neighborhoods of zero in ¢/p. These neighbor-
hoods of zero will have a countable coinitial subset if and only if the
valuation group has a countable cofinal subset. Further, these neigh-
borhoods of zero will have a coinitial subset of the form {[f]* s
if and only if the valuation group has a cofinal subgroup isomorphic
to R.

Non-principal ultrafilters on N play an extremely large role in this
paper, since every non-maximal prime ideal p of ¢ has such an ul-
trafilter associated with it. For a very good survey article on these
non-principal ultrafilters, see [23].

Problem 2 is considerably more complicated. There are several rea-
sons for this. Among them are the exceedingly richer prime ideal
structure of C*°([0, 1], R) and the fact that not all convergent se-
quences can be extended to C* functions.

We are able to solve a small piece of this problem, by using the
results of problem 1. Certain quotient rings of C*°([0, 1], R) are iso-
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morphic to subrings of ¢. For some of these, we completely classify
the “inherited” residue class domains. We also classify the residue
class domains associated with the largest differentially closed sub-
ideals of these inherited ideals. These latter domains are differential
rings, and have themselves a very complicated structure.

Finally, we show the existence of a prime ideal which is neither
inherited from C([0, 1], R) nor a differentially closed sub-ideal of
an inherited ideal. In fact, we show the existence of a prime ideal p
of C*([0, 1], C) which is not equal to its own complex conjugate.

In §1 we review certain preliminaries. In §2, we show that there are
at most 10 residue class domains of ¢, depending on whether or not
all three cases of coinitial subset of (/*°/p—c/p). , mentioned earlier,
can occur. In §3, we show that all three cases do, in fact, occur. In
§4, we apply these results to some other spaces. In §5, we study the
residue class domains of C*([0, 1], R).

I would like to thank my thesis advisor, Professor Gregory Cherlin,
who suggested this problem and the main lines of attack to me, while
I was his Ph.D. student at Rutgers University.

1. Preliminaries.

A. Real closed fields. Here are some well known facts concerning real
closed fields, which will bring us to the Ax-Kochen Theorem, which
plays a significant role in this approach to classifying the residue class
domains of c.

DEFINITION 1.1. A real closed field is an ordered field such that:
(i) Every positive element of F has a square root in F .
(i1) Every odd degree polynomial, P € F[x], has a zero in F.
We denote by C(X, R) the ring of all real valued continuous func-
tions defined on a topological space X .

(1.2) If m is a maximal ideal of C(X, R), then C(X, R)/m is a
real closed field ([10], p. 175).

Considering non-maximal prime ideals of C(X, R), we will find
the following to be useful.

ProvrosITION 1.3. Let p be a prime ideal of C(X,R). Then,
Frac(C(X, R)/p) is a real closed field.

Proof. C(X,R)/p is ordered by ([10], p. 69). In proving (1.2),
Gillman and Jerison showed that in C(X, R)/p, every polynomial of
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odd degree with leading coefficient 1 has zero in C(X, R)/p. Triv-
ially, every positive element has a square root.

DEFINITION 1.4. A real closed ring A is an ordered domain such
that
(i) Every positive element of 4 has a square root in 4.
(ii) Given any polynomial P € A[x] and a,be A, a< b, if P
changes sign from a to b, then P has a zero ¢ suchthat a<c<b.
We use N* to denote the one-point compactification of the natural
numbers. Cherlin and Dickmann (and Louveau) have shown that:

(1.5) There exist non-maximal prime ideals of C(IN*, R) such that
C(N*, R)/p is a real closed ring ([8], 3.2.2).

We are interested in the other quotient domains as well. The fol-
lowing is well known:

(1.6) The following are equivalent:

(i) A is a real closed ring.
(ii) A is a convex subring of a real closed field and / € 4.

B. Filters. Every prime ideal has associated with it a prime z-filter.
For X = N* every non-maximal prime z-filter has a corresponding
non-principal ultrafilter on N. These facts we shall use extensively
throughout this paper.

Here we recall some simple properties of filters which will be as-
sumed in later arguments.

The zero set, f~1({0}), of a function f € C(X, R) is denoted by
Z(f).

DEFINITION 1.7. A z-filter is a family % of zero sets such that
(i) Z(f)es and Z(g)eF imply [Z(f/)NZ(g)leTF .
i) Z(f)eF, Z(f) c Z(g) imply Z(g) e & .
The filter & 1is proper if
(iii) ¢ ¢ 7.
DEFINITION 1.8. A z-filter is prime if [Z(f)U Z(g)] € & implies
Z(f)esF or Z(g)esF .

Prime z-filters are crucial to the study of residue class domains. In
particular, we shall find useful the following theorems.

(1.9) Given a topological space X and a prime z-filter ¥ on X,
the set of functions
py ={f1Z(f) e 7}
1s a prime ideal ([10], p. 29).
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(1.10) Given a prime ideal p of C(X, R), there exists a prime z-
filter # such that Z(f) € # implies f € p. Thatis, ps C p ([10],
p. 197).

DEFINITION 1.11. An ultrafilter on a set S is a family Z of subsets
of S, such that

(i) AeZ and BeZ imply (ANB)eZ .
(i) Ae% and ACB imply Be#Z.

(iii) ¢ ¢ % .
(iv) Forall AC S,either AcZ or (S—A)e%.

NoTtAaTION 1.12. For an ultrafilter % on a set X, and for functions

f,g:X—R

f=g means {x[f(x)=g(x)}€Z.

f ; g means {x|f(x)>gx)}e¥.
For a prime z-filter ¥ on a topological space X, and for f, g €
C(X,R)

f=g means {x|f(x)=g(x)}€F.

f > & means {x|f(x) > g(x)} €F but [ #¢g.
. F

We will need the following theorems on ultrafilters.

(1.13) Let ¥ be a non-maximal prime z-filter on N*. Then there
exists an ultrafilter (%) on N such that for A CN

AeU(F) ~ (AU{0}) e F
([17], Th. 2.2).

REMARK 1.14. For ¥ and % (%) as above, letting ¢ denote the
ring of convergent real sequences and letting

by ={f€clZ(f) e#(F)},
we have
¢/pys) ~ C(N*, R)/ps.
(1.15) C(X, R)/p is always an ordered domain ([10], p. 69).

(1.16) For a prime ideal p of C(X, R), if ¥ is the prime z-filter
such that
Z(f)es¥ implies fep
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then
{x|f(x) > g(x)} € implies [f]=>[g]
([16], p. 69).
Combining (1.14) and (1.16) we have

(1.17) Let p be a prime ideal of c¢. Let Z be the ultrafilter such
that
{n|f(n)=0} €% implies f € p.

Then
f >8 implies [f] > [g].

DeFINITION 1.18. For ¥ and p asin (1.10), we call & the prime
z-filter associated with p. For % and p as in (1.17), we call % the
ultrafilter associated with p .

NoTATION 1.19. ¢y denotes the set of real valued sequences con-
verging to zero. /> denotes the ring of bounded real valued sequences.

REMARK 1.20. Let p be a non-maximal prime ideal of ¢. Then p
is properly contained in ¢y.

As a result of the comparison test, we have

REMARK 1.21. ¢ is a convex subset of /> . In fact ¢y is a convex
ideal of /.

C. Valuation theory. Back in [16], Kohls began using valuation
theory to study residue class domains of C(X, R). Since that time,
valuation theory has been greatly developed by Ax and Kochen. We
will use their results to classify the residue class domains of ¢, giving
the fraction field of ¢/p (p being a non-maximal prime ideal of ¢)
the structure of a valued field.

DEFINITION 1.22. A valued field is a 6-tuple (K, R,I,G,v,K),
where

(i) K is the field, hereafter called the main field.

(i1) R is a subring of K such that for all a € K, either a € R or
aleRr.

R is called the valuation ring.

(iii) IT={a€Rla"! ¢ R}.

I is called the valuation ideal.

(iv) G isan ordered Abelian group, isomorphicto (K—{0})/(R-1),
considering the latter as a multiplicative group.

G is called the valuation group.
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(v) v is the canonical map from (K — {0}), also denoted K%,
to G.

v 1is called the valuation.

(vi) K is a field isomorphic to R/I.

K is called the residue class field.

ProposiTION 1.23. If (K, R, 1, G, v, K) is a valued field, then for
any two non-zero elements a, b € K,

v(a+ b) > min(v(a), v(b)).

Proof. Without loss of generality, assume that v(a) > v(b). This
is equivalent to a/b € R. But then (a/b)+ 1 = (a+b)/b € R and
v(a+b) >v(b).

DEFINITION 1.24. A valued field with cross-section is a pair
(K,R,I,G,v,K);n) where (K, R,I,G,v,K) is a valued field
and 7 is a group homomorphism from G to K* such that

v(n(a)) =a forallaeG.

DEFINITION 1.25. Given a valued field (K, R, I, G, v, K), the
residue map is the ring homomorphism p: R — K, whose kernel is
I. We write p(x)=X.

DEFINITION 1.26. A Hensel field is a valued field (K ,R,I,G, v, K)
with the following property:

Given a polynomial P € R[x], if P € K[x] has a non-singular root
at « € K, then P has a root at some a € R such that 2 = «.

DEFINITION 1.27. A valued field (K, R, I, G, v, K) is w-pseudo-

complete if: given a sequence {a;}, a; € K, such that for all j,
v(ajs2 — ajy1) > V(@41 — aj)

then there exists a € K such that
v(a—ajy) > v(aj —aj)),

forall j €N.

DEFINITION 1.28. Given two valued fields (K, R, I, G, v, K) and
(K',R',I',G',v',K), an analytic isomorphism is a pair (v, y¥)
where

(1) w: K — K’ is a field isomorphism.

(i) w*: G — G' is an Abelian group isomorphism.
(iii) Forall b€ K, b #0, v'(y(b)) = y*(v(b)).
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DerFINITION 1.29. Given two fields with cross section
(K,R,I,G,v,K);n) and ((K',R,I',G',v',K);7n)

a cross-analytic isomorphism is an analytic isomorphism ( , ¥*) such
that
y(n(a)) = n'(y*(a)), forallaeg.

DEeFINITION 1.30. A subgroup H of a group G is a pure subgroup
if:

If a € H and b € G such that for some n € N, nb = a, then
beH.

REMARK 1.31. If G is a divisible group, then its subgroup H is
pure if and only if it is divisible.

DEFINITION 1.32. Let
(K,R,I,G,v,K);n) and ((K',R,I',G,v' ,K);n

be two valued fields with cross section. Let E be a subfield of K and
let E’ be a subfield of K’'. A cross-analytic isomorphism (v, y*)
from (E,ENR,ENI,v(E),v|g, E); ntlyr) to (E',E'NR,
E'NI',v'(E"), vz, E); 'l gr)) is a pure map if v(E) is a count-
able pure subgroup of G and v'(E’) is a countable pure subgroup of
G.

ProrosITION 1.33. Let (K,R,1,G,v,K) and (K',R,I', (',
v, _If') be two valued fields. Then the following are equivalent:

(1) There exists an analytic isomorphism from (K, R,I1,G,v, K)
to (K',R,I' G,v,K).

(2) R~R'.

(3) I~1TI.

Proof. That (1) — (2) — (3) is trivial. It remains to show that
(3) = (1). Let 8: I — I' be the isomorphism. We will define an
isomorphism y: K — K'. Let a € K; if 1/a € I, then y(a) =
1/(6(1/a)). If 1/a ¢ I, then for § € I, we have that (af) € I,
so for # # 0 let y(a) = (8(aB))/6(F). Then, w(R) = R’ and
w(R—1I)= R -TI. Consider an element of G, [a- (R —1)]. We
define y*, y*([a- (R-1)]) = [w(a) - (R' = I')]. This completes the
proof.

Because of Proposition 1.33 we have the following:
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DEerFINITION 1.34. Let R be a domain (but not a field) such that,
for all x,y € R, either x|y or y|x. Then letting I be the
set of non-units of R, we have a valued field (Frac(R), R, I,
Frac(R)*/(R—1), v, R/I). We call this valued field the valued field
generated by R.

LEMMA 1.35. Let K be a field. Let I C K be a subset such that
(a) I is closed under addition, subtraction, and multiplication.
(b) K — I is closed under multiplication.
(c) 1 ¢1I.
Then I determines a valued field, the valued field generated by R =
{x€eK|l/x ¢ I}.

Proof. Given I ¢ K, R is unique, and K is the fraction field of
R, Frac(R). We need to show that R is closed under addition. Let
(a+b) € K— R, thatis, 1/(a+ b) € I. We shall show that either a
or b isin K — R, thatis, either 1/a or 1/b isin I. But 1/(a+b) =
(1/b)—(a/b)-(1/(a+b)) and 1/(a+b) = (1/a) —(b/a)- (1/(a+b))
Recall that 7 is closed under addition, so if ((a/b)-(1/(a + b))) €
then so is 1/b, similarly for (b/a)-(1/(a+ b)) and 1/a. But

((a/b)-(1/(a+b)))- ((b/a)- (1/(a+ b)) =1/((a+b)*) € L.

Therefore R is closed under addition (recall that K — I is multiplica-
tively closed), and the proof is complete.

NoTATION 1.36. Because of Lemma 1.35, we can identify a valued
field by identifying the main field K and the valuation ideal /. Thus,
(K = Frac(c/p), I = co/p) will denote the unique valued field with
main field Frac(c/p) and valuation ideal I = ¢y/p. Similarly, we
shall let R = [*°/p denote the unique valued field having valuation
ring [®/p.

D. Ordered divisible Abelian groups. We can capsulize the Ax-
Kochen results by saying that under certain conditions two valued
fields are isomorphic if their residue class fields are isomorphic and
their valuation groups are isomorphic.

For all valued fields that we deal with in this paper the valuation
groups will be ordered divisible Abelian groups.

DEerFINITION 1.37. An ordered divisible Abelian group is an ordered
Abelian group G, such that for all » € G and n € N, there exists
c € G such that nc=5>.
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REMARK 1.38. A torsion free divisible Abelian group is a vector
space over Q. A fortiori, an ordered divisible Abelian group is a
vector space over Q.

REMARK 1.39. Let G and H be two ordered divisible Abelian
groups and let f: G — H be surjective. Then there exists a ho-
momorphism g: H — G such that fo g: H — H is the identity. In
particular, for a valued field (K, R, I, G, v, K),if K*/{-1, 1} and
G are divisible groups, then there exists a cross-section 7: G — K*.

DEeFINITION 1.40. An ordered divisible Abelian group G is ;-
saturated if it satisfies the following property:

Let A and B be two subsets of G such that for all a € A and
beB, a<b. Let card4 <Xy and card B < ¥;. Then there exists
g € G such that

(i) a< g forall ae 4 and
(i) g<b forall beB.

We observe that either 4 or B (or both) may be finite or empty.

ProPOSITION 1.41. Let G and H be two ordered divisible Abelian
groups. Let cardG = card H = N;. Let both G and H be w;-
saturated. Then there exists an ordered Abelian group isomorphism
0:G— H.

Proof. We prove this by a very standard method. First we well order
the elements of G and H, {ga}a«o, and {ha}a«uI . (Of course, this
well ordering has no connection with the orders on either group.) For
each gg € G, we have two sets

gf ={g€Glg>gp} and gf={geGlg<gg},

similarly for hg € H .
We shall construct a family of isomorphisms between subgroups

{ea: Ga - Ha}a<w, )

such that

(a) forall y >a, G, CG,, H,C H,, and 0, extends 6, and

(b) G =Uscw, Ga» H=U,c, Ha, and such that 6 = B, is
the desired isomorphism.

First, we let Gy = {0}, Hy = {0}, and 6y(0) =0.

For a limit ordinal 4, we let G, = U, Go, H; =U,; Ha, 0; =
Ua<l 00‘ .

a<w,
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If o is of the form o = A+2n—1, we choose gz ¢ G,—; such that
p <y forall g, ¢ G,_;. Then G, will be the subgroup generated
by gs and G,_,. For 6,(gz) we choose # € H such that

(i) forall g € G,y ﬂgf;], Oo-1(8) > h,
(i1) forall g€ G, N gﬁ, Oo_1(g)<h.

Since G,_; is countable, the existence of such an 4 is guaranteed
by hypothesis.

Finally, if « is of the form o = A+ 2n, we choose hg ¢ H,_,
such that g <y forall h, ¢ H,_,. For 6;'(hg) we choose g € G,
such that

(1) for he HyoyNhY, 671, (h) > g,

(2) for he H,_; ﬂh{;, 9;_‘1(}1) <g.

This completes the construction and the proof.

PRroPoOSITION 1.42. Let G be an w-saturated ordered divisible
Abelian group. Let H be a convex subgroup of G, and let H have a
countable cofinal subset. Then G/H is an w,-saturated ordered divis-
ible Abelian group.

Proof. Clearly G/H 1is a divisible Abelian group. Since H is a
convex subset of G, G/H inherits the order from G. To see that
G/H is w,-saturated, let 4 = {[a; + H]} and B = {[b; + H]}. As
usual, let [a; + H] < [by + H] for all a; and b, . Let {h,} be the
countable cofinal subset of H , with 4,, > 0 for all m. We then have
two countable subsets of G

Ay ={(a; +hm)}; men > By = {(bx — hn) i nen

and a; + hy < by — hy, for all j, k, m, and n. Then, by w;-
saturation of G there exists g € G, such that
(1) a;j +hm < g forall a; and Ay,
(i) by — h, > g for all b, and A, .
Therefore
[aj+Hl<[g+H] forall[a;+ H]e€ A
and
[by + Hl > [g + H] forall [, + H] € B.

2. Residue class domains of ¢. In this section we shall show that
there are either exactly 7 or exactly 10 residue class domains of ¢. In
§3 we shall show that there are exactly 10.
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2.1. ¢ and [°°. In this part of §2, we shall show four things:

1. Frac(c/p) = Frac(I*/p).

2. Frac(c/p) can be made a valued field with residue class field
Frac(/®°/cy) . We also classify all the valuation groups of these valued
fields. There are three.

3. Frac(I*®/cy) can be made a valued field with residue class field
R. We classify all possible valuation groups for these valued fields.
There are at most three, including the trivial {0}.

4. We show that the valued fields in 2 and 3 are w-pseudo-complete.

w-pseudo-completeness is one of the hypotheses of the Ax-Kochen
Theorem. 1 is needed to show 2 and 3.

In part 2 of this section we shall apply Ax-Kochen machinery to 2
and 3 to show that there are either exactly 7 or exactly 10 residue class
domains of c.

Recall that to every non-maximal prime ideal p of c, there is asso-
ciated a non-principal ultrafilter % on N such that Z(f) € Z implies
fep.

Observe also:

REMARK 2.1.1. Let Z be a non-principal ultrafilter on N. For
f,gec,if

f;g;m
then there exists 8 € /*® such that

fo=s.

On the other hand, we shall see later that there exist an ultrafilter
7" and f, g € ¢ such that

f;g;O
and
fo =g implies 6 ¢ c.

(f and g, of course, depend on 7°.) Therefore, /* will play a major
role in this paper.

NoTtaTIiON 2.1.2. Let p be a non-maximal prime ideal of ¢, and



RESIDUE DOMAINS OF C 91

let Z be the ultrafilter associated with p. Then
m={oerarenirzo}.
v ={oeriarean: =6},
10’%2{061 |11?£n0=0}.

REMARK 2.1.3. p,, ¢p, %, and [y 4 are all convex prime ideals of
[*. ly 4 is a maximal ideal.

We shall show that Frac(c/p) and cy/p generate a valued field
(K = Frac(c/p), I = cy/p). Further, the residue class field of the
above mentioned value field is isomorphic to Frac(/*°/cy #) . Finally,
Frac(I®/cg %) and Iy y/co v also generate a valued field (K =
Frac(/®/co, %), I =1y w/co.«), and the residue class field of this field
is R.

We would like first to characterize Frac(c/p). We do so in the next
proposition.

ProprosiTION 2.1.4. Let p be a non-maximal prime ideal of ¢. Then
Frac(c/p) ~ Frac(I*°/py).

Proof. We have the field isomorphism induced by the map i: ¢/p —
[*®/p, where i([f+ p]) = [f + pp]. We need to show that this field
isomorphism is onto. So let

[0 + ps]
(W + pp]
with 8 € [* and w €. Let g€ cy—p. Then (g6) € ¢p. Hence
.<[g0 +p]) _ [g0+pp] _ [0+ 1)
[gw +p]) (8w +ps] [w+ppl

Next we shall classify a special case of Frac(c/p), namely the case

where p = py .

€ Frac(I/py),

ProPoSITION 2.1.5. For a non-principal ultrafilter % on N, let
pyw={feclZ(f)eZ}.
Then
Frac(c/py) ~ Frac(I*°/py ) ~ <H R) J%.

N
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Proof . By Proposition 2.1.4, we need only show that Frac(/®/py ;)
is isomorphic to ([[yR)/# . Certainly, /* C [[yR, and 0 =4 v is
equivalent to (6 — w) € py p, so Frac(/®/py ) C (H§ R)/% . Next,
let Qe JIyR. If 1 >4 |Q, then

Q;lAQW—I):QI

and Q, €l*. If Q>y 1,let Q, =QV1=y Q. If Q<y —1, let
Qy =QA(-1)=y4 Q. Then,
1 oo
’g.z—z el
We wish to show now that, for a non-maximal prime ideal p,
Frac(c/p) and co/p generate a valued field (K = Frac(c/p), I =
¢o/p) - This will be done in Proposition 2.1.8.

LEMMA 2.1.6. Let p be a non-maximal prime ideal for c. Then
[®/py is a convex subring of Frac(/®/py).

Proof. Let |[6 + ppl|l > |[¥ + pp]|. Then |y| =y |0] A |y|. Clearly
|6(n)| > 10(n)| A|w(n)| for all n €N, so

OIA Y] _ .
] el>;

hence
Iy + byl

= e
6] < /7

and
[v + ppl

[0 + ps]

€ [*®/pp.

LEMMA 2.1.7. Let p be a non-maximal prime ideal of c. Then

[Frac(c/p) — co/p]

is a multiplicatively closed subset of Frac(c/p).

Proof . This is clearly equivalent to [Frac(/*°/p,) — co.«/ps] being
multiplicatively closed. By Lemma 2.1.6 and Remark 2.1.3, ¢, % /ps
is convex in Frac(/*®/p,). Let

(611 1621
] 2™ )
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be elements of Frac(/®°/p,). Assume
[6:] [62]

— - —= & .
(w1l Tya] € O-%/P0
Assume towards contradiction that
1611
C
[v/ ] ¢ 0, W/pb
and
[!// ] ¢ 0 7//pb
By convexity of cg, #/pp , this implies that both
1611 (62]
[wi] [w-]
are greater than their product. Hence
1> —[—0—2—1 and 1> [6—1] .
[w-] [¥1]
Therefore
1611

o) [2] 00
fp) € /e and ) €5 R

Since ¢, % /pp is a prime ideal of /*°/p,, the result follows.

ProrosiTION 2.1.8. For p a non-maximal prime ideal of c,
Frac(c/p) and cy/p generate a valid field (K = Frac(c/p), I = cy/p).

Proof. Lemmas 2.1.7 and 1.35.

We wish now to study the valuation group of the valued field (K =
Frac(c/p), I = cy/p). We shall show that it is always a convex sub-
group of an w;-saturated ordered divisible Abelian group. This is
done in Proposition 2.1.12.

LEMMA 2.1.9. Let {[fm]} be a countable subset of co/p (or of
lo.w/Pp). Then there exists [g] € co/p (or [g] € Iy« /Dy, respectively)
such that [g] > |[fm]| for all m.

Proof. Given {f,}, we define {A;}:

hj=1AIVIAIV - VI
Clearly h; =4 | f].
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We next define a function k: N — NU {oo}:
k(n) = sup{jll Ah;(n) < 1/j}.
We next define g: N — R, by

o = { ﬁ if k(n) € N
0 ifk(n)=

It can be checked that g has the desired properties.

REMARK 2.1.10. If v is the valuation in the valued field (K =
Frac(c/p), I = co/p), then v([f]) > v([g]) if and only if [f]/[g] €
co/p -

LEMMA 2.1.11. Let % be a non-principal ultrafilter on N. Let {fn}
and {gr} be two countable subsets of ly o (either or both may be finite
or empty), such that f, >y g for all m and k. Then there exists
hely g such that

Sm >u h >y g for all m and k.
We leave the proof of Lemma 2.1.11 to the reader.

PROPOSITION 2.1.12. Let p be a non-maximal prime ideal of c. Let
{lfm]} and {[gi]} be countable subsets of co/p (either or both subsets
may be finite and {[fn]} may be empty) such that

[fm] > [g]>0
and
L&kl
[fm]
Let the set {[gc]} be non-empty. Then there exists [h] € co/p such

that
[n

[/l

[gk]
)

Proof. We consider four cases.
Case 1. {[fm]} is empty. This is Lemma 2.1.9.
Case 2. For each [f;] there exists j > k such that

L]
i S0P

€co/p forall m and k.

€ co/p forall m

and
€ co/p forall k.
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and for each [gy,] there exists i > m such that

[gm]
)
In this case, let # be the sequence guaranteed by Lemma 2.1.11,

€ co/p.

S >u h >y gn for all m and k.
Then, since fj >» h, it follows that

L1 [A]

== > —= € ¢y/D.

(Sl ™ /]

Since h >4 g;, it follows that

Lgm] _ [&m]
Ted > Th Sl

Case 3. For each [f;], there exists j > k such that

[fi]
[flec()/p,

however, there exists [g;] such that for all [g,,],

[gi]
[gm] & /P

(or vice versa for f and g). In this case, let

L&l
[f ] [gk] € CO/p

By Lemma 2.1.9, there exists [0] € ¢y/p such that [6] > [6,] for all
k. Let
[8i]

h] = ==.
(7] 0]
Clearly [f;] > [Ah] for all j, and hence

1 1h
U > [f] € cy/p forall k.

Clearly |
[g i

]

1] _ lgm] [gi]
(k] = A (gml

L&l
[gm]

[0] ECO/p’
and for m > i,
GCO/p7

but
co/p;
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therefore, by primality of ¢y/p,

[gm]
)
Case 4. There exist [f;] and [g;] such that

€ co/p.

il
71 ¢ co/p forallk

and
[31]

[gm]
In this case, let [#] = /[f;] [&]. Clearly,

In) _[&d] _ [leid
51~ =\ SO
For k € N such that [fj] > [fi],

" U _ 1
AR

and by primality of ¢/p,

¢ co/p for all m.

[f]e“/”

For m € N such that [g,,] > [gi],

[gm]  [&] _ L8l
(7] [gm] 7]
and by primality of cy/p,

€co/p

[gm]

)

If p is a prime ideal of ¢, such that py C p C ¢y, then the valuation

group of the valued field (K = Frac(c/p), I = cy/p) is a convex

subgroup of the valuation group of (K = Frac(c/py), I = cy/pw) -
Accordingly, we turn our attention to the case p = py .

€ co/D.

LeEMMA 2.1.13. Let % be a non-principal ultrafilter on N and let
{/j} be a countable family of sequences such that

/i o Ji+1 o 0.
Then there exists g such that
fj;g;O for all j.
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Proof . First we define a family of sequences {g;}, by

[ fi(n) if fj(n) >0,
g’(n)_{l/n if fi(n) < 0.

Then let g(n) =g (n) A--- A gu(n).

ProrosITION 2.1.14. If p = py for some non-principal ultrafilter % ,
then the values field (K = Frac(c/p), I = c¢/p) has an w,-saturated
valuation group.

Proof. Follows by Lemma 2.1.13, Proposition 2.1.12, and Lemma
2.1.9.

We next show that the valuation group of (K = Frac(c/p), I =
¢o/p) must take one of three forms. We shall later show (Theorem
2.1.17) that each of these three forms describes a unique group up to
isomorphism.

THEOREM 2.1.15. Let p be a non-maximal prime ideal of ¢. Let G
be the valuation group of the valued field (K = Frac(c/p), I = cy/p).
Then G has one of the following forms:

(1) G is w;-saturated.
(ii) G = R® Gy with lexicographical ordering, and with Gy being
an wq-saturated group.
(iif) G=U32,(R;®G;) where each sum R; @ G; is as in (ii), and
R; ® G; is a convex subgroup of G, .

Proof. A cofinal subset of G is the image of a coinitial subset of
(co/P)+ -

If (co/p)+ has no countable coinitial subset, then by Lemma 2.1.9
and Proposition 2.1.12, G is w-saturated. As an example of this
case, we have p = py .

If (cy/p)+ has a countable coinitial subset, then either there exists
[f]1 € co/p such that {[f]*} is coinitial or no such [f] exists.

First, assume that such an [f] exists. Let

H = {[6] € Frac(c/p)| |[6]* > [f] and |[6]]~% > [f] for all k}.

~

Claim. Gy = v(H) is an w;-saturated ordered divisible Abelian
group.
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Proof of claim. By Lemma 2.1.9 and Proposition 2.1.12, it suffices
to show that v(H) has no countable cofinal subset. This is equivalent
to showing that ( H )+ has no countable coinitial subset.

We assume toward a contradiction that (H), has a countable coini-
tial subset {[g;]}. But by Proposition 2.1.12, there exists [A] € ¢y/p
such that [g;] > [A] > [f]/* for j € N and k € N. By definition of
H, [hle (INJ )+ and so {[g;]} is not coinitial. This proves the claim.

Now, let [g] € (co/p)+ - We define

r((g]) = inf{t e R*||[g]] > [f]'};
then

(gl _ 5
(77 € H.

g = (rteD. o () ero o

As an example of this case we have, letting f(n) = ™", for any
non-principal ultrafilter %,

p={g|forall k, f* > |gl}-

Finally, we assume that (cy/p)+ has a countable coinitial subset but
no [f] such as above exists. It is trivial to show that in this case we
have a countable coinitial subset {[f,]}5°_, where [ SmlE > [frns1] for
all keN and m e N. If we let

Hy, = {[6] € Frac(c/p)| (01 > [fn] and [1/[01/% > [fn]
for all k£ € N},

then it is easy to show that v(ﬁm) = G,, 1s an w;-saturated ordered
divisible Abelian group. Let [g] € (cy/p)+. Then by coinitiality of
{[fm]}_, , there exists [f;] such that {t € R*|[g] > [f;]'} is non-
empty. Let

ri([g]) = inf{t € R*|[g] > [f;]'}.

Then

gl 4
L5~ H.
7 S

and

og) = (rted v () eri0 6,
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As an example of this case we have, letting
felm)y =™,
p= {g|fk ; |g| for all k}.

LEMMA 2.1.16. Let G and H be two ordered vector spaces over R.
Let cardG = card H = X . Let both G and H, considered as ordered
divisible Abelian groups, be convex subgroups of wi-saturated groups.

Let there exist {gn} C G such that for all ¢ € G, there exists g,
such that g, >c; and g,.1 >r-gn, forall reR and all n € N.

Let {hn} be an analogous subset of H .

Then H and G are isomorphic as ordered Abelian groups.

Proof. For each g, , we define

(@) Gy, L ={c€G|gn>|r-c| forall r€R}.

(b) G, v = {c € G| there exists r € R such that rg, > c}. Also,
for each h, we define H,, ; and H,, v, in the same fashion.

We observe that, for all m and n, H, ; and G, ; are w-
saturated ordered divisible Abelian groups. We also observe that by
1.42, Hyyy L/Hp v and Gy, L/Gm v are w;-saturated.

We shall construct two families of isomorphisms

160n: Gp,p — Hy 1}y and {w,: G, v — H, v}
such that
(1) w, extends 6, .
(i1) 60,,; extends y,.
Then, 6 = J;2, 0, is the desired isomorphism.

Since G, ; and H; ; are w;-saturated there exists 6;: G; p —
H 1,L-

Since G, .y = R® G, and H, y = R® H, ; (each with the
lexicographical ordering), we can easily extend 6, to y,. It remains
to extend y, to 0, .

Since Gu41,./Gn v and H,.; 1/H, v are both w;-saturated, by
1.41 there exists an isomorphism

Qn+1 : Gn+1 ,L/Gn,U - Hn+1 ,L/Hn,U-
This yields the following diagram
0— Gunu — Guyi,r — Guyr,L/Guu —0

r//nl Q”Hl
0— Hyyv — Hpyp — Hpp1/Hiyu —0
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and by the Five-Lemma, there exists an isomorphism
Ons1: Guyr,L — Hovr 1S

making the diagram commute. 6,,; therefore extends y,. This
proves the lemma.

THEOREM 2.1.17. Let p and q be non-maximal prime ideals of c.
Let G, denote the valuation group of the valued field (K = Frac(c/p),
I = cy/p). Define G, analogously. Let one of the following three
conditions hold:

(i) Neither (co/p)+ nor (co/q)+ have countable coinitial subsets.
(ii) Both (co/p)+ and (co/q)+ have countable coinitial subsets of
the form {[f1<}¢ .
(iii) Both (co/p)+ and (co/q)+ have countable coinitial subsets but
neither has a coinitial subset of the form {[f Y2,

Then G, ~G,.

Proof. If (i) holds then G, ~ G, by Proposition 2.1.12 and 1.41.

If (i1) holds, then by Theorem 2.1.15, G, = R® Gy 4 and G, =
R& Gy , with lexicographical ordering and with Gy , and Gy , being
w-saturated ordered divisible Abelian groups. Then by 1.41, Go , ~
Go.q. Of course, R~R,s0 G; ~Gp.

If (iii) holds, then, by Theorem 2.1.15, G, = UJ;,_|(Rn®Gpn,p) and
G, =U;-(Ry® G ,g). By Lemma 2.1.16, these are isomorphic.

What we have done now is classified up to isomorphism all the
valuation groups that arise in the valued fields (K = Frac(c/p), I =
co/p). The work of Ax and Kochen allows us to classify (c¢/p) by
means of these groups and the valuation group of the valued field (K =
Frac(I*®/co %), I =1y v /co »), % being the ultrafilter associated with
p . Therefore, we study ly o /co » -

REMARK 2.1.18. The residue class field of (K = Frac({®/cy ), [ =
lo.#/co.») is R, so for 6 and y in [/, we have that the following
are equivalent:

1) v([0]) > v(lw]).
(ii) r|ly| >« |6| for all r e RT.
(ii1) r|[w]| > |[6]] for all r € RT.
(iv) [6)/lvlelo,«/co,«-

The following proposition is closely analogous to Proposition 2.1.12.
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PropPosITION 2.1.19. Let % be a non-principal ultrafilter on N. Let
{[6;1} and {[wi]} be two countable subsets of (lp o /co )+ Such that
rlwe] > [6;] for all j and k, and all r € R*. Let {[0;]} be non-
empty. Then there exists [Q) € ly o /co o Such that

rlwi] > [Q] for all r € RY and all [y, ]

and
r[Q] > [0;]1 forallr € R* and all [6;].

Proof. We consider 3 cases.

Case 1. {[wi]} is empty. In this case the result follows from
Lemma 2.1.9.

Case 2. For each [6;] there exists [0,,] such that r-[6,,] > [6;] for
all r € R, and for each [y;] there exists [y;] such that r-[y;] > [w;]
for all r € R*. Then by Lemma 2.1.11, there exists Q € /* such that

W ;Q; 6; forall k and j.

Case 3. Either there exists [0,] such that for each [6,] there exists
r € Rt such that
[0m] > r[6;],
or there exists [y;] such that for each [y;] there exists » € Rt such
that
[wil > riwil,
or both.
In this case, we either define a family [6}] or [y;] or both: [0}]=
27[0m], (W] = 27k[y;]. Then the result follows from Lemma 2.1.11.
We did not deal with the case where {[6,]} is empty; that is, we
did not show that (/p »/co #)+ does not have a countable coinitial
subset. It turns out that (/y #/co,#)+ can have a countable coinitial
subset; in fact, (ly,4/co.#)+ can be empty. But there is one kind of
coinitial subset that (/y 4 /cy #)+ cannot have.

ProposITION 2.1.20. Let % be a non-principal ultrafilter on N.
Then (ly.»/co.v)+ does not have a coinitial subset of the form {[0]<}.

Proof. Given 0 € Iy 4, with 8 >4 0, we define y
(n) { 0 if 6(n) =0,

n)=

v e~ 1/18m|  otherwise.
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Then
ok >y > f for all k and for all f € c.

We can now classify, up to isomorphism, the possible valuation
groups of the valued fields (K = (I*°/cy, %), I = lp,%/co,%). In 2.2,
we shall show that this classifies Frac(/*°/cy 4) up to isomorphism.
Frac(/®/cy %) is the residue class field of the valued field (K =
Frac(c/p), I = cy/p), with Z being the ultrafilter associated with

D.

THEOREM 2.1.21. Let % and 7 be two non-principal ultrafilters
on N. Let Gy be the valuation group of the valued field (K =
Frac(I®/cp ), I = Iy w/co.%). Define Gy analogously. Let one
of the following conditions hold:

(i) lo,w =co,w and Iy, = o, .
(i) (lo,%/co, %)+ # <& and has no countable coinitial subset;, and
(lo,7/co,7 )+ # @ and has no countable coinitial subset.

(iii) Both (ly.o/co %)+ and (ly o /co,» )+ have non-empty count-

able coinitial subsets.

Then G% o~ GW .

Proof . If (i) holds, then Gy ~ {0} ~ G4 . If (ii) holds then Gy and
Gy are wj-saturated ordered divisible Abelian groups of cardinality
N;. By 1.41, Gy ~ G . If (iii) holds, then Gy ~ G5 by Lemma
2.1.16.

We summarize:

(a) The valuation group of the valued field (K = Frac(c/p), I =
co/p) is independent of %, the ultrafilter associated with p.

(b) The valuation group of the valued field (K = Frac(I®/cp ),
I=1Iy 4/co %) is determined by Z .

Finally, one of the hypotheses of the Ax-Kochen Theorem is that the
valued field must be w-pseudo-complete. Therefore, we must show:

ProrosITION 2.1.22. Let p be a non-maximal prime ideal of c.
Then the valued field (K = Frac(c/p), I = cy/p) is w-pseudo com-
plete. Let % be a non-principal ultrafilter on N. Then the valued field
(K =Frac(I®/cy. ), I =1ly,y/co.%) is w-pseudo-complete.

Proof. This is actually a fairly simple application of Lemma 2.1.11.
We shall only prove this proposition for (K = Frac(/®/cy ), I =
lo,w/co,%)-
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Let {[w,]} be a countable subset of Frac(/*°/cy #) such that

[wi—1] = [Wks2]
[wi] = [Wis1]

€ly.y/cow forallk.

That is,

V([Wks2] — [Wks1]) > 0wl — [wi]), forall k.
We need to show that there exists [y] € Frac(/*°/cy 4) such that

[v] — [¥ii1]

el C for all k.
W=l <o/

That is,
v(lw] = [Wkt1]) > v([w] = [wi]) forall k.

Toward this end, we construct two subsets of Frac(/®/cy %), Sy and
St . We construct them in the following manner:
(1) I [Wk1]1> [wil, then [y] € Sp and (2[wii1] - [wk]) € Su .

(2) If [Wir1] < [wkl, then [y] € Sy and (2[ypi] - [wi]) € SL.
By Lemma 2.1.11, there exists [y] € Frac(/*/cp %), [w] less than

every element of Sy and greater than every element of Sy . It is easy
to check that [y] has the desired properties.

2.2. Real closed valued fields. Here we will be using the Ax-Kochen
machinery to show that there are either exactly 7 or exactly 10 residue
class domains of ¢. We first must finish showing that the precondi-
tions for the Ax-Kochen machinery are satisfied. This is checked in
Proposition 2.2.3. With Proposition 2.2.7 we begin using the work
of Ax and Kochen. We cannot use their results directly because we
are trying to show, not only that the valued fields are isomorphic, but
also that certain subrings are isomorphic. Therefore we will mimic
Kochen’s proof of Theorem 1 in [14] (this theorem says that, under
certain conditions, two valued fields are isomorphic if their valuation
groups and their residue class fields are isomorphic), modifying it to
ensure that the subrings are isomorphic. We use this result in two
separate steps.

We first consider the valued field (K = Frac(I®/cy %),I =
lo.#/co,») whose residue class field is R. Then we consider the
valued field (K = Frac(c/p), I = cy/p), whose residue class field is
Frac(I®/cy %) .

In the first step, we show that for two ultrafilters % and 7~ if
the valuation groups of (K = Frac({®/cy %), I = ly »/co,) and
(K = Frac(I®/cyg,»), I = ly,»/co,») are isomorphic, then we have
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an isomorphism from Frac(/®/cy #) to Frac(/*°/cy ») which sends
the constant functions to the constant functions. As we showed
in 2.1 there are at most three different valuation groups for (K =
Frac(I®/co, %), I =1y, #/co,%) , including the trivial group {0} .

In the second step, for two non-maximal prime ideals p,q C c,
with % and 7 as the ultrafilters associated with p and g, we show
that: If

(a) we have an isomorphism from Frac(/*°/cy 4) to Frac(I®/cy o)
which sends the constant functions to the constant functions
and

(b) The valuation groups of (K = Frac(c/p), I = cp/p) and (K =
Frac(c/q), I = cy/q) are isomorphic.

Then we have an isomorphism from Frac(c/p) to Frac(c/q), such
that the image of c¢/p is c/q.

As we showed in 2.1, there are three possible valuation groups for
(K = Frac(c/p), I = cy/p). The three choices for valuation group of
(K = Frac(c/p), I = ¢p/p) and at most three choices for the valuation
group of (K = Frac(/®/cy.o), I =1lo,%/co, %) yield at most 9 residue
class domains ¢/p, with p non-maximal.

DEFINITION 2.2.1. A real closed_ valued field with convex valuation
is a valued field (K, R, I, G, v, K) such that

(i) K is a real closed field.
(i) For a,be K, if a>b >0 then v(b) >v(a).

We first prove some simple but essential results about real closed
fields with convex valuation which will enable us to use the Ax-Kochen
machinery.

LEMMA 2.2.2. For a valued field (K, R, I, G, v, K), the following
are equivalent:

(i) (K,R,I,G,v,K) is a real closed valued field with convex
valuation.
(i) K is a real closed field and I is a convex subset of K .
(iii) R is a real closed ring.

Proof. Left to reader.

ProposITION 2.2.3. Let (K, R,1,G, v, K) be a real closed field
with convex valuation. Then

(i) (K,R,1,G,v,K) is a Hensel field.
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(ii) K is a real closed field.
(iti) K*/{-1, 1} is a divisible group.

(iv) G is a divisible group.

(v) There exists a cross-section n: G — K*.

Proof. (i) Let g(x) € R[x] and let g(x) = f(x) € K[x]. If f has
a non-singular root at o, then f changes sign at a. Let g,y € K
be such that (w.l.o.g.)

(1) p<a<y,

(2) for <y <a wehave f(y) >0, and

(3) for a <y <y we have f(y) <0.

Then, for ze R, if B <Z<a wehave g(z) >0,andfor a<z<y
we have g(z) < 0. Since g changes sign and R is real closed, there
exists a € R such that g(a) =0 and a =«a.

(ii) Clearly, every positive element of K has a square root. So
let f(x) € K[x] be an odd degree polynomial. Clearly there exists
g(x) € R[x] such that

(1) degg(x) = deg f(x), which is odd,

(2) 8(x) = f(x), and

(3) the leading coefficient of g(x) is a unit of R. Since R is real
closed, there exists b € R such that g(b) =0. Then f(b)=0.

(iii) For all positive b, for all n, there exists ¢ € K such that
c"=b.

(iv) The image of a divisible Abelian group is always divisible.

(v) Torsion-free divisible Abelian groups are vector spaces over Q.
Hence all exact sequences split.

COROLLARY 2.2.4. Let p be a non-maximal prime ideal of c¢. Let
(K,R,I,G,v,K) be the valued field (K = Frac(c/p), I = co/D).
Then K is a real closed field, G is a divisible group, and there is a
cross-section n: G — K*. Further, (K = Frac(c/p), I = co/p) is a
Hensel field.

COROLLARY 2.2.5. Let % be a non-principal ultrafilter on N. Then
Frac(I®/cy,%) is a real closed field, and [ /cy 4 is a real closed ring.

We now begin exploiting the work of Ax and Kochen.

NoTtaTiON 2.2.6. Let (K,R,I,G,v,K) and (K',R,I', G,
v', K') be two valued fields. Let E C K and E' C K’ be subfields.
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Let
6,6%:  ((E,RNE,INE,v(E),v|g, E), Tlyr)
~((E',RNE,I'NEv'(E), Vg, E), ol )
be a pure map. We hereafter simply denote this as
0: E— FE'
when there is no danger of confusion.

We have the following important fact from [14].

ProrosiTION 2.2.7. Let (K, R,I,G,v,K), n) and (K', R, I,
G, v, f’) , ') be w-pseudo-complete Hensel fields with cross-section
such that

(i) CardK = CardK’ = N,.

(ii) charK =charK =0.

(iii) There exists an isomorphism y*: G — G'.

(iv) K~K .

Let EC K and E' C K' be subfields such that E=K and E =K .
Let 8: E — E' be a pure map such that 6%: v(E) — v'(E') is the
restriction of w* to v(E). Let ¢ € K. Then there exists a subfield
FcK,withceF, ECF, andapure map p: F — F' such that p
extends 0 (p* thus extends 6%), and p* is the restriction of w* to
v(F).

Proof. ([14], Proposition 3.)
Combining Proposition 2.2.3 and Proposition 2.2.7 we have:

PROPOSITION 2.2.8. Let (K,R,I,G,v,K) and (K',R',I', G,
v', fl) be w-pseudo-complete real closed valued fields with convex val-
uation. Let m and ©n' be the cross-sections guaranteed by Proposition
2.2.3. Let

(i) CardK = Card K’ =N,
(i1) w*: G — G' be an isomorphism,
(iii) K~K .
Let EC K and E' C K' be subfields such that E=K and E =K .
Let 0: E — E' be a pure map such that 6%: v(E) — v'(E') is the
restriction of w* to v(E). Let ¢ € K. Then there exists a subfield
F cK,withceF and E C F, and a pure map p: F — F' such
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that p extends 0 (thus p* extends 0%), and p* is the restriction of
w* to v(F).

From Proposition 2.2.8, we can see that once we get the first such
pure map between such subfields of K and K’, we can extend it by in-
duction to a cross-analytic isomorphism between the two valued fields
with cross section. We do not want the cross-analytic isomorphism for
its own sake, of course. We want at last to be able, under certain condi-
tions, to construct an isomorphism between c¢/p and ¢/q . To do this,
we use the fact that in the valued field (K = Frac(c/p), I = co/p),
co/p =1 C c/p. Also, in the valued field (K = Frac(/*®/cy %), I =
lo.w/co ), the valuation ideal /y 4 /cy 4 has trivial intersection with
the image of c/p.

PROPOSITION 2.2.9. Let % and 7 be non-principal ultrafilters on
N. Let one of the following conditions hold-

(1) (I°°/co.»)~R and (I®/cy ») =R.

(2) (lo.w/co. %)+ has no countable coinitial subset and (ly »/co .7 )+
has no countable coinitial subset.

(3) (lo.%/co.%)+ has a non-empty countable coinitial subset; so does

(lo,/co,7)+-
Then there exists an isomorphism

0:1°°)co.s — 1°/co.
such that for f ec,
Of +co,z)) =1 +co.»]
Proof. We first observe that the subsets
Ey={[f+cozllf€c}CI*®co»

and

Ey={[f+c 7llf€ctCl®cy
are both isomorphic to R. We have isomorphisms y, and y» such
that

X ([f +co,%]) =1i?£nf= ’}ngof(n),
17 ([f +co,7]) = 1gnf= r}Ln(}of(”)-

So we have
011 E1 — E; with 01 = Xo;l O X
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This, of course, disposes of case (1).

For the other two cases, since v 1is trivial on E; and v’ is trivial
on E{, 6, is trivially a pure map.

We extend 6, by induction using Proposition 2.2.8. It is therefore
necessary to show that the valued fields (K = Frac(/®/cy o), I =
lo.o/co.o) and (K = Frac(I®/cy o), I = ly »/co,+) satisfy the hy-
potheses of Proposition 2.2.8.

By Lemma 2.2.2 and Corollary 2.2.5, these are both real closed fields
with convex valuations and in both cases the residue class field is R;
hence the residue class fields are isomorphic to each other. In fact, 6,
induces this isomorphism. By 2.1.21, the valuation groups are isomor-
phic (and 6}: {0} — {0} is certainly the restriction of this isomor-
phism). By 2.1.22, both valued fields are w-pseudo-complete. Clearly,
they each have cardinality X; = 2% . The hypotheses of Proposition
2.2.8, then, are satisfied.

So we well order the elements of Frac(/®/cy o), {xa}a<wl , and the
elements of Frac(/®°/cqy o), { ya}a<wl . We shall show that there exists
a family of pure maps {6,: E, — Eéy}am,l such that

(@) Uacw, Ea = Frac(I®/co,z) -

() Upcw Eb =Frac(i®/cy, o).

(c) 0= U'a <w, 0o 1s the desired isomorphism.

We have shown above that 6,: E; — E| exists, and that E, =K~
K =E,.

Let @ = A+ 2n where A is a limit ordinal and # is a non-negative
integer. Given 6,: E, — E! , by Proposition 2.2.7 there exists 6, :
E.1 — E!_ | such that: 6, extends 0,, E, C E,y1, E|, C E],
and X(A+n) € E,..

Let « = A+2n+ 1. Given 6,: E, — E! , there trivially exists
0;': E' — E, and by Proposition 2.2.7 there exists 0;}1: E
E,.1 where 6], extends 6! and v, € E ;.

Finally, for limit ordinals A,

0,=\J6., E;=|JE. and E;=|JE.
a<i a<i a<i

This completes the proof.

We shall show later, in §3, that all 3 cases of Proposition 2.2.9, (1),
(2), and (3), occur.

We wish to prove a proposition similar to the preceding one for the
valued field (K = Frac(c/p), I = cy/p). However, since we do not
have an obvious image of the residue class field in the main field, as

+1>

—
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the constant functions are an obvious image of R, it is not quite as
easy to get the initial pure map. Toward that end, we have:

LEMMA 2.2.10. Let (K, R, I, G, v, K) bea real closed valued field
with convex valuation. Let Ky be a maximal subfield of K on which
the valuation is trivial. Then

Koﬁf():F.

Proof. Clearly Ky~ Ko C K. Assume towards a contradiction that
peK—Kg. Let b€ K be such that b = . Consider two cases:

Case 1. For all P € Ky[x], (except P =0), v(P(b))=0.
Then Ky(b) is an extension of K on which the valuation is trivial,
contrary to assumption.

Case 2. There exists P € Ky[x], P # 0, such that v(P(b)) > 0.

The set of such P (including 0) forms an ideal of Kjy[x], and
since Ky[x] is a PID we let P, be the generator of this ideal. We
then have v(P;(b)) > 0, and hence P;(f) = 0; and by Henselity
(Proposition 2.2.3), there exists ¢ € K such that ¢ = f and P(c) =
0. Ky(c) is then an extension of K on which the valuation is trivial,
contradicting the hypothesis.

LEMMA 2.2.11. Let (K,R,I,G,v,K) and (K',R,I',G",v',
K') be real closed valued fields with convex valuation. Let K ~ K .
Then there exist subfields Ko C K and Kj C K' such that

(a) Ko~Ko=K~K =Ky ~K}.

(b) v is trivial on K.

(c) v’ is trivial on K.

Proof. This follows immediately from Lemma 2.2.10.

PROPOSITION 2.2.12. Let p and q be non-maximal prime ideals
of ¢c. Let % be the ultrafilter associated with p and let 7 be the
ultrafilter associated with q . Let there exist an isomorphism

6: (I%/co,z) — (I%/co,%)
such that for f € c,
O([f +co,2]) =[f +co,~],

and let one of the following conditions hold:
(a) Neither (co/p)+ nor (co/q)+ has a countable coinitial subset.
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(b) Both (co/p)+ and (co/q)+ have a countable coinitial subset of
the form {[f1}% .

(c) Both (co/p)+ and (co/q)+ have countable coinitial subsets, but
neither has a coinitial subset as in (b).

Then c/p ~c/q.

Proof. We will proceed on lines similar to those in the proof of
Proposition 2.2.9. We shall construct a cross-analytic isomorphism
between the valued fields (K = Frac(c/p), I = co/p) and (K =
Frac(c/q), I = cp/q). This will certainly map cy/p one to one onto
co/q . We shall also ensure that for a constant sequence r, the image
of [r+p]is [r+4q].

By Lemma 2.2.2, (K = Frac(c/p), I = ¢y/p) and (K = Frac(c/q),
I = ¢y/q) are real closed valued fields with convex valuation. By
2.1.22, they are w-pseudo-complete. By 2.1.17, the valuation groups
are isomorphic. Clearly Card(Frac(c/p)) = Card(Frac(c/q)) = 8; =
2%,

We recall that

Frac(c/p) ~ Frac(I*/p,) and Frac(c/q) ~ Frac(I*®/q),

and that the image of cy/p and ¢y/q in Frac(//p,) and Frac(/*®/q))
are co /Py and ¢o o /qp. Clearly the residue class field of (K =
Frac(c/p), I = co/p) is isomorphic to Frac(/®/cy 4) and the resi-
due class field of (K = Frac(c/q),I = cp/q) is isomorphic to
Frac(/®®/cy ) .

We let K, be a subfield of Frac(c/p) and K|, be a subfield of
Frac(c/q) such that

(i) For any constant sequence r,
[r+pl€Ky and [r+q]€ K.
(ii) v is trivial on Ky and v’ is trivial on K.
(iii)) Ko and K|, are maximal with respect to property (ii).
Next by Lemma 2.2.10, we have isomorphisms
Xxp: Ko — Frac(I®/cy. %)
and
Xq: Ko — Frac(I®/cy »)
such that for any constant sequence r,

1([r+pl) =1Ir+co %],
Xg([r+q) =1[r+co, 7]
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Then
wi=x;'000x

is our desired initial pure map.
The proof can be completed by transfinite induction as in Proposi-
tion 2.2.9.

Together Propositions 2.2.9 and 2.2.12 give us the following, which
is the main theorem of this section.

THEOREM 2.2.13. Let p and q be non-maximal prime ideals of c.
Let % be the ultrafilter associated with p. Let 7" be the ultrafilter
associated with q. Let one of the conditions (1) to (3) below hold, and
let one of conditions (a) to (c) below hold.

(1) I®°/co,.# 2R and 1®°/cy o ~R.

(2) (lo,%/co, %)+ has no countable coinitial subset, neither does

(lo,7/c0,7)+-
(3) (lo.%/co, %)+ has a non-empty countable coinitial subset, so does

(lo,7/co,7)+-
(a) Neither (co/p)+ nor (co/q)+ has a countable coinitial subset.
(b) Both (co/p)+ and (co/q)+ have coinitial subsets of the form

{[f]k}keN .

(c) Both (co/p)+ and (co/q)+ have countable coinitial subsets but

not of the form {[f1*}ien -
Then c/p ~c/q.

THEOREM 2.2.14. There are at most 10 residue class domains of c.

Proof. Let p be a maximal ideal of ¢, then ¢/p ~ R. For p
nonmaximal, there are at most the 9 cases listed in Theorem 2.2.13.

We shall show later that there are exactly 10 residue class domains
of c.

3. Ultrafilters and (/p % /co #). In this section we show that there
are exactly 10 residue class domains of ¢. Toward that end, we show
that all three cases of 2.2.9 do occur. That is, we show that there exist
ultrafilters %, 7°, and 7" on N such that

(1) (I®/co,z) ~R.
(i1) (lo,#/co,#)+ has no countable coinitial subset.
(iii) (lo,#/co,#)+ has a non-empty countable coinitial subset.
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Satisfying (i) is equivalent to % being a P-point ultrafilter. The
existence of P-point ultrafilters is guaranteed by Martin’s Axiom, a
fortiori by the Continuum Hypothesis. On the other hand it is con-
sistent with ZFC that P-points do not exist (see [2], [21], [23], and
[24]).

Necessary and sufficient conditions for ultrafilters to satisfy (ii) are
not known; neither are those for (iii). We show that to satisfy (ii), it
is sufficient that 27 be a limit point of a discrete sequence of non-
principal ultrafilters. In 3.2 we construct an ultrafilter 7" satisfying
(iii), which is obviously neither a P-point nor a limit point of a dis-
crete set of non-principal ultrafilters.

It is known (see [23]), that CH guarantees the existence of ultra-
filters that are neither P-points nor limit points of discrete sets of
non-principal ultrafilters. There are two cases (both guaranteed):

(a) Weak P-points that are not limit points of any countable subset
of SN—-N.

(b) Ultrafilters that are limit points of a countable subset of SN—N,
but not of a discrete countable subset.

Interestingly, the residue class domains themselves can distinguish
3 types of non-principal ultrafilters on N, while the first order theories
of these domains can only distinguish 2 types [19].

3.1. P-points and limit points of sequences of ultrafilters. We first
show that the case /*°/cy 4 ~ R does, in fact, occur.

LEMMA 3.1.1. There exists a non-principal ultrafilter % on N such
that. Given a sequence of subsets of N, {A j}j?i , with

(a) 4 j+1 C A jo

(b) A, € forall j,
there exists A € % such that (A — Aj) is finite for all j.

Proof. [21].

Ultrafilters Z such as in Lemma 1 are called P-point ultrafilters
(strictly speaking, they are the P-points of SN — N).

LEMMA 3.1.2. For Z as in Lemma 1, if 8 € [®, then there exists
f€c such that 6 =y f.

Proof. Let r = limy 6. Let A; = {n}|0(n) —r| < 1/j}. Clearly,
Ajy1 C A; and 4; € # for all j. Hence there exists 4 € # such
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that for all j, the set
{neAl|0(n)—r|>1/j}

is finite. Define f:
OB

Then f=4 60 and fec.

O(n) forne A,
r forn ¢ A.

ProvrosITION 3.1.13. For % as in Lemma 1,

ZOO/CO,% ~ R.

Proof. For y, 0 €[, let limy 0 =limy . Then limy(y — 0) =
0. By Lemma 3.1.2, there exists f € ¢ such that f =5, y—6. Clearly,
lim, o f(1) =0, s0 (¥ — 6) €y« . This proves the proposition.

The preceding proposition was first proved in [8], Th. 3.2.2 by Cher-
lin, Dickmann, and Louveau.

We next show that the case does occur where (/y, »/cy o)+ is non-
empty and has no countable coinitial subset.

LEMMA 3.1.4. Let {?/,-}?‘; , be a countable family of non-principal
ultrafilters on N. Let there exist a family of subsets of N, {4 j}?‘;l
such that

(i) 4;€%;,

(i) AjNA; =D for i#j.

Let % be a non-principal ultrafilter on N. Then the family of subsets
7", defined by

7 ={BCN|{j|Be¥%}e%}
is an ultrafilter.

Proof.. Left to reader.

ProrosITION 3.1.5. Let 7 be an ultrafilter as in Lemma 4. Then
(lo,7/co.7)+ has no countable coinitial subset.

Proof. Assume toward a contradiction that {[6;]} is a countable
coinitial subset of (/. - /cp »)+ . Choose representatives of each con-
gruence class, y, € [0,], such that y;(n) > w,.1(n) >0 for all k£
and n. This then gives us that for any ultrafilter %, , if

l//k;|f| for all f € ¢
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and if i < k, then
vi> |f| forall f €.

We define 0 € [* on A; by: 0(n) = y;(n), where
kzmax{l, sup{m < Jjlwm ; [f] forallfeco}}.
Clearly, then,
{j|l//1§|f| forallfeco}={j|6;|f| forallfeco}
and for all m
{j|l//m§|f| foralleCO}z{jzmly/m;G}.

Hence, for all m, and for all f € ¢,
>0 >\f],
Win > 6 > /]
contrary to assumption.

3.2. Ultrafilters 7 such that (ly y» [co.» )+ has a countable coini-
tial subset. Finally we wish to show that there exists a non-principal
ultrafilter %" such that (/y, » /co.»)+ has a (non-empty) countable
coinitial subset. This amounts to the following: We need to construct
an ultrafilter 7" containing a doubly indexed countable family of sub-
sets of N,

{A/‘,k}?ilzoﬂ

where for each [6,] in the countable coinitial subset
;5= 607((0, 1/k]).

It is also necessary that forany j € N, if aset B; issuch that B;~A4;
is finite for all k € N, then BJC. € 7 ; otherwise ¢; would converge
(mod 7°). It is further necessary that for any y: N — R, such that
8, >» |w| forall j €N, y should converge (mod 7).

If any countable coinitial subset exists then there exists a countable
coinitial subset {6 j}j?‘; , such that 6;.; is not merely less (mod7")
than any power of §;, but in fact is less (mod7”) than the compo-
sition with 6; of any non-decreasing f: R = R (fo0; >; 6,.).
This is Lemma 3.2.1.



RESIDUE DOMAINS OF C 115

We observe that for any v, Q: N — (0, 1],
ULy, 1/k]) = Q7((0, 1/kD)] C {nly(n) < Q(n)}
k=1

c Uy, 1/kD) - Q71((0, 1/(k + D).
k=1
Therefore f o 6; >5 0;,, for all non-decreasing f: R* — R is
equivalent to

U{4)41,000)— 4 1k} €7 forallg: N—N.
k=1

There are two main steps in constructing the ultrafilter 7.

The first step is by far the hardest. In the first step we construct a
filter # and a countable subset of /*°, {6;}%2, such that:

(1) # contains the family of sets {4; ,}72,32,, with 4; , =
671((0, 1/k).

(2) # contains the family of sets {2 [4;11,0x) =4, ]}, for all
o: N — N and for all j €N.

(3) For any set B; with (B;—4; ;) finite forall k €N, Bf € 7.

(4) For any y €[ either |y| >4 0, for some j €N or

for some filter & extending #, y converges (mod %).

The last property of # could be rephrased (and this is the form of
the property that we work with):

For any nested sequence of sets {Cp,}00_, either

(a) There exists G € # and j € N such that GNCy, C 4 ,, for
all meN, or

(B) There exists C C N such that C — C,, is finite for all m € N,
and forall He #, CNH #J.

If # has all four of these properties we say that # is combed by
the family of sets &/ = {A; x}32,32, -

In the second step we extend # to an ultrafilter 7", taking care
that 7" satisfies property (4). (Properties (1), (2), and (3) are true for
all extensions of #.) For the ultrafilter 77", property (4) will mean
that, given y € [*°, either |y| >» 0 for some j or y converges
(mod 7). {[6,;1}52,, then, will be the desired countable coinitial
subset.

LeEMMA 3.2.1. Let % be a non-principal ultrafilter on N. Let
{6 j}?i . be a countable coinitial subset of (lp. — co.)+. Then for
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each j, there exists m(j) € N such that, for all non-decreasing func-
tions f: Rt =R, fol; >y O, .

Proof. Assume false. Let there exist 6; such that for each 6,,,
there exists f;, such that

Bm >W fmogj.
Define f,for 1/(n+1)<x<1/n,

fx)= N\ ful).
m=1

Then, for all m,
em ;fo 01.

Claim. fo0; ¢ cy .

Proof of Claim. Let A € #" be such that fo0;|4 converges to zero.
For b,c >0, if f(b)=c, then fo6;(n)<c/2 implies 0;(n) <b.
Hence 6;]4 converges to zero, contrary to hypothesis.

This claim and the fact that

6, ;/foﬁj for all m,
together contradict the coinitiality of {6,,}5_, .

ProPOSITION 3.2.2. Let 7 be a non-principal ultrafilter on N.
Then the following are equivalent:
(i) There exists a (non-empty), countable, coinitial subset of
(o, 3/, )+
(ii) There exists a countable family of subsets {A; x}X2,32, C ¥
such that
(1) 4j x CAjy1 k>
(2) Aj k41 C4jk,
(3) for all sequences 6: N — N, and for all j,
U@js1,000 - 45,0 | €7,
k=1
(4) for B a subset of N, if for some j € N, BUA; ; has finite
complement for all k € N, then B€ %, and
(5) given a countable family of sets {Cy}32.,, such that
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(@) Cry1 C Gy,

(b) Cp €7 forall k, and

(c) forall j, [Upzi(Ck —A4; )1 €X,

there exists C € #° such that (C — C}) is finite for all k.

Proof. (i) — (ii). Let {[6;]}%2, be a countable coinitial subset of
(lo,w/co,»)+- Let B8j(n)>6;.,(n)>0. By Lemma 3.2.1, for each j
there exists m(j) € N, with

0; > f 0 Omj

for all non-decreasing f: Rt — R*. Without loss of generality let
m(j)=j+ 1. Then let

A; o =A{n|1/k > 6;(n)}.
It can be checked that {4 ,}%2,¢2, has the desired properties.
(it) — (i). We define 6;:
1 ifne¢A;,,
Oi(n)=< 1/k ifn€d; —Aj ki1,
0 ifneMiz 4 k-

Clearly {[6;]} is a countable coinitial subset of (/y »/co 5 )+. This
completes the proof.

The rest of this section will be devoted to constructing a % con-
taining a family of sets such as in Proposition 3.2.2.

DEFINITION 3.2.3. Given a family &/ = {4; ;}9%72, of subsets of
N, such that
(@) Aj x CTAjir k>
(b) Aj k41 CAj ik,
a filter # is combed by &/ if
(o) Forallmaps o: N—N, UZ[451 60c)—4j k] €Z.
(B) Given a nested sequence of subsets of N, {C,,}, either
(one) There exists C C N such that C — C,,, is finite for all
meN and forevery He#Z, CNH #3J.
(two) There exists G € # and j € N such that (GNCy,) C
Aj m forall meN.

LEMMA 3.2.4. Let & be as in Definition 3.2.3. Let a filter # be
combed by </ . Then the following are satisfied:
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(a) Forall jeN, [, 4; (] €Z.
(b) If B C N is such that for some j € N, BU A; ; has finite
complement for all k € N, then B € # .

Proof. (a) Let (k) = k. Thengiven x € (g2 4j ik, X & [Aj41 k—
A; i] for any k. Hence

[U(Ajﬂ,k - Aj,k)] C

00 C
() 4.
k=1 k=1

b) For B and j as in the hypothesis, B¢ — A4; , is finite for all k.
Def Js
efine

00 c
a(k):l—}-max{ml(BC—Aj,k)ﬂ[ﬂAjH,r ﬂAHl,m;«é@}
r=1
Clearly,
1) 4 0o
ln Ajyr1,r| NBN ,:U(Aj+l,a(k) "Aj,k)} =0
r=1 k=1
and
o0 C
U j+1,a(k) — ] mAj+1 r] cB
Hence B € %’.

The above lemma shows that property (4) of Proposition 3.2.2 is
really superfluous.

REMARK 3.2.5. For a non-principal ultrafilter 77~ on N, the fol-
lowing are equivalent:
(i) (lo,#/co,#)+ has a countable coinitial subset.
(i1) There exists a family of sets &/ = {4 j’k};?';”‘f’: , as in Defini-
tion 3.2.3 such that 7 is combed by .

Our next step is to find a family & = {4; ,}92,72, and a filter #
that is combed by . . Later, we shall extend /# to an ultrafilter 7~
which is also combed by .

NoOTATION 3.2.6. We let r; denote the jth prime.

DEFINITION 3.2.7. We define a family of functions {v;: N — N},
by
vj(n) =k if r¥|n and ri*! § n.
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We are now ready to construct & = {4; ,}%2,%°,.

NoTATION 3.2.8. u; i, wj i, and A; ; will denote the following
sets
uj k ={nlv;(n) =k},

w; = |J wj,m={nlvj(n) >k},

m>k

J
Aj,k = Uw,-,k.
=1

Clearly 4;  CA;| y and A4; ;1 CA; .
Now we are ready to construct the filter # .

NoTATION 3.2.9. For &/ as above, given j € N andamap g: N —
N, F; , will denote the set

o0
o= |UMjs1,000— 45,0 -
k=1
LEMMA 3.2.10. Let A; 4, j €N, k € N be as in Notation 3.2.8
andlet F; ;, j €N, o € NN be as in Notation 3.2.9. Then the family
{Aj k}JEN U{F] a} jEN
oeN"
has the finite intersection property.

Proof. For a finite collection of sets {4 Jok Yies if we let K/ =
max{k;}, then 4, ,» C (L, 4; x . Forall fixed j and a finite collec-
tion of functions {6;: N — N}, ,if welet 6 =g,V V--- Vo,
then F; , C ()2, Fj , . Therefore, we need only consider sets of the
form

m
H=4,;0()Fj .,
i=1
where j;, | > j; forall i< m. Welet kg =k and k; = 1+0;(k;_1+1).

Then .
[Zk : H rf:I eH
This completes the proof. -
NotATION 3.2.11. From now on /# will denote the filter generated

by

{Aj k} JEN U{Fj a} jEN .
keN geN™
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We need to show that ## is combed by

o = {Aj,k}jeN .
keN

REMARK 3.2.12. Observe that for all j € N and Kk €N,

(o9}

Aj N U (Aj,m—Aj—1,m)| CWj g,

m=1
SO W y EX .

In order to prove that /# is combed by ./ : We will define a family
of properties for subsets of N, {M (i, j)}, such that if K C N has
property M (i, j) for all i € N and j € N then the family of sets
# U {K} has the finite intersection property. We will also define a
family of properties {P(i, j)} for nested sequence of subsets of N,
such that if {Cp,}%5_, does not have property P(i, j) forall i, jeN
then there exists G € # and r € N such that C,, NG C 4, , for
all m. On the other hand, if {Cy;,}°_, does have property P(i, j)
for all i, j € N then there exists C such that C — C,, is finite for
all m € N and C has property M (i, j) for all i, j € N. Hence
# U{C} has the finite intersection property.

DEeFINITION 3.2.13. For
{4; 1} jen
keN
as in Notation 3.2.8, a set K C N has property M (1, j) if

is an infinite set.
We define “the property M (i, j)” inductively.

DEeFINITION 3.2.14. For i > 2 aset K C N has property M(i, j)
if
{k|K Nu;j , has property M(i—1, j+ 1)}
is an infinite set.

We shall next show (Proposition 3.2.17) that if K has property
M(i, j) forall i e N and j € N, then K has non-empty intersection
with each set H € # . (In fact, we shall show that for H € #, HNK
also has property M (i, j) forall i€ N, j&N.) Then ZU{K} has
the finite intersection property.
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LEMMA 3.2.15. Let K have property M(i, j) forall i € N and all
JE€N. Then forall M e N and n e N, KN Ay, , also has property
M(i, j) forall ieN and je€N.

Proof. 1t is sufficient to show that KN A4,, , has property M(i, 1)
forall i>2. Since KN4y , C KNAm, n, itis sufficient to show that
KnNA; , hasproperty M(i, 1) forall i >2. Solet K have property
M(i, 1) for some i > 2. Then

{k|K Nu;  has property M(i —1, 2)}
is an infinite set. But then
{k > n|[KNu, x has property M(i -1, 2)}

is also an infinite set, and K N A4; , also has property M (i, 1).

LEMMA 3.2.16. Let F,, , be as in Notation 3.2.9. If K C N has
property M(i, j) for all i € N and j € N, then for all m € N and
d € NN, KNF, s has property M(i, j) forall i e N and jeN.

Proof. It clearly suffices to show that KNF,, , has property M(i, j)
for all i > 3 and for all j < m. Let K Nu, , have property
M(i—1,m+1). Then

{PIK N Up, N Upy1,p has property M(i —2, m+2)}
is an infinite set. But then
{p>a(k+1)|KNuy, N tmysi,p has property M(i —2, m+2)}

is also an infinite set, and K N u, x N Fu - has the property
M(i—1,m+1). Thus

{k|K Nu,, i has property M(i—1, m + 1)}
= {k|K Nu,, N Fn, o has property M(i — 1, m+ 1)}.

So if K has property M (i, m), then so does KNFy,; .

Claim. Given m > 2, if the pair (d, n), with m > d > 2 and
n > 3 has the property:

“If L ¢ N has property M(i, d) for some i > n, then so does
LNFy q,foral 6: N—N,”

then the pair (d — 1, n+ 1) has the same property.
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Proof of Claim. For some i > n+ 1, let J C N have property

M(i,d—-1). Given k e N, if [JNu,_; ] has property M(i—1, d),
then by hypothesis so does [J Nuy_; 4 N Fm o]. That is
{k}|J Nuy_y  has property M(i —1,d)}
={k|J Nuy_y 4 N Fn, o has property M(i — 1, d)}.

This proves the claim.

We have already shown that the pair (m, 3) has the property in
the claim; hence so does (1, m + 2). This proves lemma.

ProrosiTION 3.2.17. If K C N has property M(i, j) forall i e N
and j €N then forall H e #, KNH has property M(i, j) for all
ieN and jeN. A fortiori KNH # Q.

Proof. Follows from Lemma 3.2.15 and Lemma 3.2.16.

DEeFINITION 3.2.18. {Cp}oo_, , a nested sequence of subsets of N,
has property P(1, j) if

n {k|Cp, Nuj k # I}

m=1
is an infinite set.
We define “the property P(i, j)” inductively.
DEeFINITION 3.2.19. {C)u}S_, , a nested sequence of subsets of N,
has property P(i, j) if
{k{Cm Nuj i };p—; has property P(i — 1, j+ 1)}

is an infinite set.

ProrosITION 3.2.20. Iffor some i € N, j € N, a nested sequence of
sets {Cm}oe_, does not have property P(i, j) then there exist k € N
and o € NN such that for all m e N

j+i—1
[Aj,kmcmn () Fio| CAjsi,m
a=j

Proof. We proceed by induction.
i =1. Given j € N, such that {C,,}3_; does not have property
P(1, j) we let

k' =14 max{k|Cn Nu; y # 3 for all m € N}.
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Then, for k > k', we define
m(k) = max{m|Cp, Nu; y # D}.
We define 6: N — N by

olk)=1+ kngai(k{m( )}

We shall show that

o0}

U j+1,00) — A4j k)

]kﬂCm CAj+1,m.

Letting
t(m) = min{k > k'|Cn N u; x # <}

it follows that

00
j kN CmN [U j+1,a(k) — k)]

k=1

cCun

o0
U (Ajs1 00— Aj k)| CAjs1,o((m)+1)-
k>t(m)+1

Next we show that

o(t(m)+1) > m.
g(tim)+1)=1+ max {m(r)}

k'<r<t(m)+1
=1+max{s|3r, k' <r<tim)+1;Cinu; , #}
> 1+ max{s|CsNuj m)#D} > 1+m>m.

i > 2. Assume that the proposition is true for all j € N and all
d <i.Let {Cy}5_, not have property P(i, j). That is,

{kl{CmNuj i}m—, has property P(i — 1, j+ 1)}

is a finite set.
Let

k' =14 max{k|{Cpn Nu; i}on_, has property P(i — 1, j + 1)}.
So, for k > k', by induction there exist z(k) € N and amap g;,: N —
N such that for all m e N

j+i—1

ConNuj  NAjL1 20N [ ﬂ Fs,ak} CAjyi,m-
s=j+1



124 JAMES J. MOLONEY

We define the map o: N — N by
o(k) = max {k, max {z(r)}, max {a,(k)}}.
k'<r<k k'<r<k

We shall show that

j+i—1

n Fl,a

i=j

Aj’k’nCmn CAj_f_[,m.

This will complete the proof of the proposition.
Let x € C,yNu;  for some k > k'. Now observe that for d > k,

o(d)>or(d) and o(d)> k.
Hence
ooa(d) 2 oy oo (d)

and
[6]9(d) > [0,]%(d).

Therefore

J+i—1 J+i—1
uj,kn n Fla CA]+lzk)m n Fsa .

A=j s=j+1
Thus, for all k > k'

jti=1 i1

uj,kﬂCmﬁ[ m Fl’ail CAj+1’Z(k)ﬂCmﬂu]~’kﬂ|: n E’GA:I CAJ:H"m
A=j s=j+1

This completes the proof of the proposition.

LeEMMA 3.2.21. Let a nested sequence of sets, {Cm}So_,, have prop-
erty P(i, j) forall ie N and j € N. Then there exists C C N such
that

(1) C — Cy, is finite for all m € N.

(2) C has property M(i, j) forall ie N and j € N.

Proof. Clearly, if C has property M (i, 1) for all i € N then it has
property M(i, j) forall ie N and je€N.
We choose an increasing function 8: N — N such that
{Cm N uy 63y =1

has property P(i, 2).
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Next, we choose a family of maps
{vit N > N},
such that, if
(by, ..., b;) € range y;
then for r < i

r o0
{ui,e(z‘) NCnN Lﬂ ud+1,bd} }
=1 m=1

has property P(i —r, 1 +r), and
i

Ui, o) N Cm N Lﬂ ud+1,bd] # &
1

for all m e N.

We construct C in the following manner: Given m € N, for each
r < m, and for each r-tuple whose entries (a;, ..., a,) are less than
or equal to m , letting

Wr(ala°"3ar):(b1,---,br)

we choose an x,

.
xeCnun Uy, oy N [ﬂ ud+1,bd] .
d=1
We let C be the set of all these x’s. C clearly has property M(i, 1)
for all i € N, and clearly C — C,, is finite for all m € N.

REMARK 3.2.22. Lemma 3.2.21 shows that for a nested sequence of
sets {Cp,}o0_, , there will exist G € # and j € N such that C,, NG C
Aj ,» for all m € N, if and only if for some i € N and j € N,
{Cm}S_, does not have property P(i, j). Further, by considering
the sequence of sets {Cy}5°_, with Cp, = C for all m € N, we see
that there exists G € # with GNC = O if and only if, for some
ieN and j €N, C does not have property M(i, j)

ProposITION 3.2.23. Let &/ be as in Notation 3.2.8. Let # be as
in Notation 3.2.11. Then # is combed by </ .

Proof. Trivially, in fact by definition of #,

[ o]
Ul4)s1,00) -4 k1€ # forallo: N—N,
k=1
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and # satisfies (a) of Definition 3.2.3.

Given a nested sequence of sets {Cy,}%0_,, by Proposition 3.2.20,
either

(1) There exists H € # and j € N such that C,, N H C 4; ,, for
all meN or

(2) {Cm}S_, has property P(i, j) forall ie N and j€N.

(1) is condition ( 8 one) of Definition 3.2.3, so we assume that (2)
holds. Then by Lemma 3.2.21, there exists C C N such that, for all
m € N, C—C,, is a finite set, and such that C has property M (i, j)
for all i € N and j € N. By Proposition 3.2.17, for such a C, given
any H e #Z, CNH # J. This is condition ( f two) of Definition
3.2.3, and so the proof is complete.

We next show that if a filter # is combed by a family of sets .« ,
then so is every countable extension of # .

LeEMMA 3.2.24. Let &/ be as in Notation 3.2.8. Let # be as in
Notation 3.2.11. Let {D,} be a countable family of subsets of N such
that # U {D,} has the finite intersection property. Let & be the filter
generated by # U{D,}. Then & is combed by </ .

Proof. Order {D,} asasequence {D,}. Let E;, = ﬂj;:l D, . Clearly
E; € Z forall i € N. Also clearly, given a set K C N such that for all
He# andall ie N, KNHNE; # <, we have that forall G Z,
KNG#09.

Let {Cn}$_, be a nested sequence of subsets of N such that

(a) forall GeZ andall me N, GNC, # and

(b) there does not exist G € £ such that for some j €N

GNCynCAj ,, forallmeN.
Clearly {C,,}°°_, also has these properties with respect to # and,

m=1
also clearly, for all i € N; so does the sequence of sets

{CWYo_ = {(Cn NENYS_,.

Thus for each i € N, there exists C!Y) C E; such that C) —[C,,NE;]
is finite for all m € N and, for all H € #

CYONH+0.
We let -
ct=Jic nc.

i=1
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Clearly
m—1
Cc*-Cuc JICV -

i=1

and so C* — C,, is a finite set for all m € N. Given H € # and E,,
COnC,NnHCcHNE;nC*

and .
CONCINH#Q

hence
HNE NC*#0.

This completes the proof.

Clearly the above lemma would hold for any family ./ as in Defi-
nition 3.2.3 and any filter # combed by & .

Now comes the main result of this section. The ultrafilter 7,
of course, is not a countable extension of #, so we use a different
method, a fairly standard trick, to construct a 77" combed by &/ .

THEOREM 3.2.25. There exists an ultrafilter %~ on N such that
(lo,w/co.#)+ has a (non-empty) countable coinitial subset.

Proof. By Remark 3.2.5, it is sufficient to show that the 7 is
combed by 7,

& ={A4; r}jeN, keN
where A4;  is as in Notation 3.2.8.

By Proposition 3.2.23, # is combed by ./ and by Lemma 3.2.24
so are all countable extensions of #Z .

We complete the proof by induction. We shall simultaneously con-
struct a family of filters {#}.<w, , and a family of subsets of N,
{Ea}aco, -

We shall construct the #,’s in the standard manner. We let # =
# . For each a, when we have chosen E, we let %,,; be the filter
generated by #, U{E,}. For a limit ordinal A, we let

74 = %
a<i
Finally,
v =] %

a<w|
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As we observed earlier, for a < w;, #, is combed by ./ . We also
observed that Lemma 3.2.24 does not directly yield that 7" is combed
by .7 . The trick then is to properly choose the E,’s. Toward this
end, we order the power set of N such that each subset of N has
countably many predecessors. {Da}a«uI will denote the ordered set
of subsets of N. We also order the set of nested sequences of subsets
of N such that each sequence has countably many predecessors. We
denote the ordered set of nested sequences by {{Cin};}y<w, and Cp
shall denote the m th set in the nested sequence {C,}, .

To choose E,, we consider two cases.

Case 1. There exists a nested sequence {C,,}, C H, such that

(1a) There does not exist C € #, such that (C — Cp,,,) is a finite
set for all m € N and

(1b) There do not exist H € #, and j € N such that C,, ,NH C
Aj »n forall meN.

We let & be the least such y.

We let D C N be a set such that:

(#) (D—-C, ) is a finite set for all m € N and

(##) Forall He #%,, DNH #J.
Such a set D exists since, as we said above, %, is combed by .7 .
Next, either (DN D,), (DN DS) or both will satisfy (##) above.
If (Dn D,) satisfies (##), then let E, = D N D,; otherwise, let
E,=DnD;.

Case 2. No nested sequence such as described in Case 1 exists.
Then let E, = D, unless D, € #,. If D € #,, thenlet E, = DS,

So, let {C,}, € #;. Clearly, for n = 3max{y, B}, either there
exists C € # with (C — Cy,,,) a finite set for all m € N, or there
exists H € #, and j € N such that C,, yNH C A ,, forall meN.

THEOREM 3.2.26. Up to isomorphism, there are exactly ten residue
class domains of c, the ring of real convergent sequences.

Proof. 3.2.25, 3.1.3, 3.1.5, 2.2.13, and 2.2.14.

4. Some applications to other spaces. Cherlin and Dickmann [8]
showed that for any compact space X with finitely many accumulation
points the residue class domains of C(X, R) are precisely those of c.
We show that all the residue class domains of ¢ are also residue class
domains of C(X, R) for many other spaces X . Among these spaces
are all non-discrete metric spaces. We also show that if a space X
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has a compact non-discrete subset then C(X, R) has at least 4 of the
residue class domains of c¢. Finally, we show that for certain spaces
X, for any non-maximal prime ideal p, C(X, R)/p has four of the
residue class domains of ¢ (e.g. X = N* x N* oreven X = H'f N*).

DEFINITION 4.1. A compact space X with finitely many accumu-
lations points is said to have Cantor-Bendixson rank one. A compact
space Y has Cantor-Bendixson rank n + 1 if the set of accumula-
tion points of Y has Cantor-Bendixson rank n (with the subspace

topology).

THEOREM 4.2. Let X be a compact space having Cantor-Bendixson
rank one. Let p be a prime ideal of C(X, R). Then there exists a
prime ideal q of ¢ such that C(X,R)/p~c/q.

Proof. [8], 3.3.2.

We also wish to see for which other X does C(X, R) have the
residue class domains of §§2 and 3. First, we notice:

REMARK 4.3. Let X be a completely regular space. If N* can be
imbedded in X, then it can be C-imbedded. That is, every continu-
ous function on N* can be extended to a continuous function on X,
rest: C(X, R) — C(N*, R) (the restriction map) is onto, and every
residue class domain of C(N*, R) ~ ¢ is a residue class domain of
C(X, R). In particular, this holds for any nondiscrete metric space.

There are also spaces which have some of the residue class domains
of ¢, but not necessarily all. For instance, if X is a compact space
and has a C* imbedded copy of N (that is, all bounded sequences
extend to continuous functions on X ) then X has exactly 4 of the
residue class domains of ¢, R and the domains where /y o = cg % .
Observe that, except for R, these are real closed valuation domains,
see [8].

THEOREM 4.4. Let X be a non-discrete pseudo-compact space. Then
among the residue class domains of C(X, R) are rings isomorphic to
the following cases of c/p:

(1) R.

(2) lo,w =co,# and (co/p)+ has no countable coinitial subset.

(3) lo.w = cow and (co/p)+ has a coinitial subset of the form

{11}
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(4) lp.w = co.w and (co/p)+ has a countable coinitial subset, but
not as in (3) above.

Proof. We can construct a countably infinite subset ¥ of X, such
that every point of Y shall be an isolated point of Y. We choose a
sequence of points {y,}%°,, and a sequence of open neighborhoods
{@n}S2., , such that

(a) yn €6,.

(b) onno; = if j <n (by symmetry, if j #n).

(c) U’,le @, has infinite complement for all k.

Let Y = {yn}32,. We shall first show that for every convergent se-
quence g there exists f € C(X, R) such that f(y,) = g(n). Clearly,
g = r+ h where r is a constant sequence and 4 converges to zero.
Since /& converges to zero it is the uniform limit of a set of sequences
{h j};?';l having finite support,

h(n) = hj(n) forall n < j.
By complete regularity of X we have a family of continuous functions

{fj};)i1
r+hjn) if x =y,

J
r if x ¢ | J&.

n=1
Their uniform limit f is the desired extension of g. Thus, for the
restriction map

fi(x) =

rest: C(X,R) — [®
defined
rest(f)(n) = f(¥n)

we have
c Ccrest(C(X, R)) c[*®.

Let 77 be a P-point ultrafilter and let p be a prime ideal of c,
containing

pr ={fl{nlf(n) =0} e 7}.
(Recall that p, = {6 € [*|3f €p; f =» 0}; Notation 2.1.2.) Then

¢/enpy =1%/py =rest(C(X, R))/(pp N[rest(C(X, R))]),

which proves the theorem.
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COROLLARY 4.5. Let X be a topological space, with a compact, non-
discrete subset W . Then C(X, R) has the four residue class domains
listed in Theorem 4.4.

REMARK 4.6. BN, the Stone-Cech compactification of N, has pre-
cisely the 4 residue class domains listed in Theorem 4.4. This does
not depend on the existence of P-points.

LEMMA 4.7. Let X be a compact metric space of finite Cantor-
Bendixson rank. Let F be a non-maximal prime z-filter on X. Then
there exists a compact rank one set Y C X, and an ultrafilter % on
the isolated points of Y, such that if A€ % and F contains an open
neighborhood of A then F € & .

Proof. Let X have Cantor-Bendixson rank n. XD is a rank
one set.

Case 1. There exists an open neighborhood & of (X"~ — x (")
such that @ ¢ 7 . then @° € .. ¢ has rank < n. We can repeat
this with #°¢ acting as X .

Case 2. For every open neighborhood @ of (X"-D — x(n) & ¢
F.Let Ac (XD _ x") and B C (X0 — X)), ANB =0
and AUB = (X~ — x(n))  Let £, be an open neighborhood of 4
and % be an open neighborhood of B. Then £, U %5 is an open
neighborhood of (X("~1) — X)) 'so (#,UPp) € F . By primality
of & ,either #4€F or PgcF .

This completes the proof.

THEOREM 4.8. Let X be a compact metric space of finite Cantor-
Bendixson rank. Let p be a non-maximal prime ideal of C(X, R).
Then C(X, R)/p has 4 of the residue class domains of c.

Proof. Let # be the prime z-filter associated with p. We assume
that there is no rank one F € %, (or else this is trivial). Let Y be
the rank one set guaranteed by Lemma 4.7. By 1.14, the ultrafilter
% on the isolated points of Y induces a prime z-filter & on Y.
This induces a prime z-filter £ on X . Clearly ¥ is contained in
% . Then ps C pz and pe ¢ p. Therefore p C pe and we have

0: C(X,R)/p— C(X,R)/pg ~C(Y, R)/pz.

The result follows immediately.
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REMARK 4.9. The author showed in [19], that for any compact space
of finite rank, there is a metric space of finite rank with the same set
of residue class domains. This natural generalization of Theorem 4.2
means that Theorem 4.2 could be extended to all compact spaces of
finite rank. It would be extended to all compact spaces of finite rank.
It would be natural to support that Lemma 4.7 could be extended
much further; however, as Theorem 4.10 shows below, Lemma 4.7
cannot be extended to [0, 1]. This was shown earlier in [8], 3.4.2.

THEOREM 4.10. There is a non-maximal prime z-filter ¥ on [0, 1],
such that, given any rank one set A, there exists F € F such that
ANF c {0}

Proof. For G a closed subset of (0, 1], we define

t
{(G) = lim 1026
t—0 t
when this limit exists. Observe that the family of sets {G|{(G) = 1}
is a z-filter, and can be extended to a maximal z-filter on (0, 1].
This induces a prime z-filter % on [0, 1]. Let 4 be a set of isolated
points of (0, 1]. There exists a neighborhood of 4, #,, such that
{(@4) =0. So the complement of @, isin & .

5. Residue class domains of C*°([0, 1], R). As a byproduct of §§2
and 3 we get some results on C*([0, 1], R). We shall classify 20
residue class domains, 2 for each of the 10 residue class domains of
c.

5.1. Residue class domains of C*([0, 1], R) that are inherited from
C([0, 1], R). In this part of §5 we classify one residue class domain
of C*=([0, 1], R) for every residue class domain of c.

For any sequence of points Y = {y,} in [0, 1], converging to zero,
the restriction map

rest: C®([0, 1], R) — C(Y, R)

has image isomorphic to a subring of c¢. Further if there is enough
space between the y,’s (e.g. ¥, = 1/n), then the image of {f]/%)(0) =
0, for all k£ > 0} under rest is a convex ideal of ¢. That is, given any
f:Y — R which is eventually less then any power of x, f can be
“glued together” to form a C* function. Therefore, if .# is a non-
maximal prime z-filteron [0, 1] and Y € & then C*®([0, 1], R)/p+
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(ps is the set of functions that are zero on an element of .#) is iso-
morphic to a subring of ¢/py(s) (#(F) is the ultrafilter induced on
Y by &); C*([0, 1], R)/ps is the vector sum of subring isomorphic
to R[[x]] and a prime ideal whose image is convex in c/py . Further
for any non-maximal prime ideal p C C*®([0, 1], R) with associated
prime z-filter F , if Y € F then there exists a prime ideal p C ¢
such that C*([0, 1], R)/p is isomorphic to a subring of ¢/p . In this
case C*°([0, 1], R)/p is the vector sum of a subring isomorphic to
R[[x]] and a prime ideal whose image is convex in ¢/p. Further for
two such prime ideals p,, p, ¢ C*([0, 1], R),

C>([0, 1], R)/p; = C*([0, 1], R)/p> iff ¢/p; =~ c/p>.

NOTATION 5.1.1.
My ={f € C([0, 1], R)|f(y) = 0},
Q, = {f € C>([0, 1], R)|f®(y) = 0 for all k}.
We shall also write .# for .# and Q for Qg. For a prime z-filter

&,
ps={fe€C(0,1],R)|Z(f) e 7},
g5 = {f € C°([0, 11, R)Vk, %) € ps}.
For a prime ideal p of C([0, 1], R), p* denotes pNC>([0, 1], R).

Fact 5.1.2.
C>([0, 11, R)/#} ~R,
([0, 11, R)/Qy ~ R[x]].
NotATION 5.1.3. For a rank one set F C [0, 1], with a unique
accumulation point, we denote by pr and pg:
pr:C([0,1],R)—c,
ppe - C([0, 1], R) — ¢
the maps induced by the restriction to the isolated points of F .
Observe that pg is onto.

Fact 5.1.4. Let F be as in Notation 5.1.3. Let ¥ be a non-
maximal prime z-filter containing F . Then p,+(p%) is a prime ideal
of pp+(C*([0, 1], R). In fact there exists a non-principal ultrafilter
# on N such that

P (DE) = Py N pps(C®([0, 11, R) = pr(ps) N pp+(C([0, 1], R).

NoTtATION 5.1.5. For F and % as in Fact 5.1.4, we denote by
Wp(F) (or just (%) if no confusion is likely) the non-principal
ultrafilter on N such that pr(ps) = pz .
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We let py denote the isomorphism
pr: C([0, 1], R)/ps — ¢/py, (5)
induced by pr and we let pgf) denote the monomorphism

p: ([0, 11, R)/pY — /Py ()

induced by pp+.

As we said earlier, if there is enough space between the X, ’s in a
sequence {x,}%°, and g is a function dominated by all powers of
(x —y) then we can C* patch together the restriction of g to F.

Therefore we define:

DEFINITION 5.1.6. A closed set F = {x,}°> U{y}, FC[0,1]isa
set having polynomial distances if

(1) limpsooXxn, =Y.
(i) v —Xn| >y — Xn41l-
(iii) Either for all n, x, >y, orforall n, x, <y.
(iv) There exist m € N and M € R such that M|x, — x| >
|xn —y|™ forall n.

The most obvious example of such a set is {1/n7}%°, U {0}. From
now on we assume, without loss of generality, that y is the origin. We
shall show that if % contains a set having polynomial distances, then
the image of C>°([0, 1], R)/ps can be described as the vector sum
of a subring isomorphic to R[[x]] and a prime ideal which is convex
in [*°/py(s). We shall finally show that for two such prime z-filters
¥ and Z, the following are equivalent:

(i) ¢/pys) = /Py -
(ii) C>([0, 11, R)/pE ~ C>([0, 1], R)/p% .

We also have a similar result for all prime ideals p of C*°([0, 1], R)
such that p% Ccp ¢ Q.
We shall need to use bump functions.



RESIDUE DOMAINS OF C 135

NOTATION 5.1.7. We let

e~ l/x.e~/-%) f0<x<1,

o) = { -
0 ifl<xorx<o0,
e~r/x . e=rlr=x) if0<x<r,

03 = { .
0 ifr<xofx<0,
e~"/x=b) Lo=r/lr=(x-b)] ifp<x<r+b,

X) =
¢r,5(X) {0 ifr+b<xorx<b.

LEMMA 5.1.8. For ¢, o¢., and ¢, as above, for all b and all
r#0,
sup|p) (x)| = sup|p{ (x)| = (1/(%))sup|p® (x)|
for all k.

Proof. Left to reader.
As corollaries of Lemma 5.1.8, we get the following lemmas.

LEMMA 5.1.9. Let F C [0, 1] be such that F = {x,}>, U{0} with
(1) limy e x, =0.
(11) Xxp > Xp41-

Let {c,}$2, be a real valued sequence such that, for all k € N, there
exists a constant K; such that

Ky - |xn “xn+llk > |cn|
and

Ki - [Xno1 = Xa|* > [ca]

forall neN.
Then there exists g € C*([0, 1], R) such that g(x,) =cn.

Proof. We define a family of functions {A,}:

4
h,=e “@r b,

where .
rp, = mm([xn - xn+1| s |xn - -xn—ll) >

bn =xn—(1/2)rp.
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Let
o0
= Z Cn * hn(x).
n=1
It can be checked that g is C*.

LEMMA 5.1.10. Let F C [0, 1] be a compact rank 1 set. Let F =
{xn}2, U{0}. Let F have polynomial distances. Let F be a non-
maximal prime z-filter on [0, 1] such that F € & . Let {f;}%2,
be a family of C*([0, 1], R) functions such that fj(k)(O) =0 for all
Jj € NU{0} and all k e NU{0}. Then there exists f € C*([0, 1], R)
such that for all j e Nu{0}, fYU) =5 f;.

Proof. Let M € R and m € N be such that
M- |xy — Xpe1| > ) forall meN.

We put an additional condition on F, that (x,)/(x,+1) 1s bounded.
(If necessary, we can always add points.)

We shall prove this lemma by constructing Taylor polynomials at
each x,, and then patching them together with bump functions. Let
Tn = Xpn — Xnt1, bn = Xpp1. We define

o=0

-1
{n(x) = (/ ¢r b(l dt) (/ @r b dt) forall n > 1.

Observe that {,(x,) =1, E,k) (x,) = 0 for all kK > 1. The problem
now is to choose a suitable degree d(n), for the Taylor polynomial at
X, so that

00 d(n)
> ([cn L (013 ) - xn)f/(m)

j=0

isa C*([0, 1], R) function.
We observe that for all j € N and k € N, there exists K; , € R
such that

fi(x) <K xx* forall x.
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For x, x, < x < X,_1, we have

d(n—-1) .
{Ctﬁl(x) ( Z fj(x"'xn—l)j/(j!))

Jj=0

£ 0] =

d(n) (k)
+ (1= {p-1(x)) (Z f}(xn)(x “xn)j/j)}

j=0

j=0

2k d(n-1) d(n)
< (m‘*’ 1) Z |fj(xn—1)l+2|fj(xn)|
n—1 n j=0 j=

j=0
d(n)
< 2k+2ka2_1 Z Kj,km+2
j=0
So we define d(n):
d(l)=1,

R
d(n) = max {s| D K kms222MFx,_y < 1, forall k < s}
=0

or
d(n) = 1 if the set of such §’s is empty.

Observe that since M and K; ,,,, do not depend directly on n,

lim d(n) = oc.

n—00
Observe also that since (x,_;)/(x,) is bounded, f*) is now domi-
nated by x. The proof is complete.

Lemma 5.1.10 will mainly be useful for studying C*°([0, 1], R)/gs .
We have the following proposition as a result of Lemma 5.1.9. We
earlier said that under certain conditions C*([0, 1], R)/p% could be
described as a vector sum of a subring isomorphic to R[[x]] and a
prime ideal whose image is convex in ¢/py (). Our next proposition
will essentially prove this. We also show that this prime ideal is w;-
saturated. As a byproduct we get a result for all non-maximal prime
z-filters that contain rank one sets.
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PROPOSITION 5.1.11. Let F be a rank one set with a unique limit
point. Let F be a non-maximal prime z-filter with F € & . Then

(a) (#)(C°°[0 11, R)/p% ) contains a convex prime ideal of ¢/py s .

Further, if F has polynomial distances, then (letting y be the limit
point of F)

(b) p (#) (Qy/pg-) is a convex prime ideal of ¢/py s -

(c) Qy /p% has no countable cofinal subset.

Proof. (a) and (b) follow immediately from Lemma 5.1.9. To prove

(c), we let {f;}92, be a countable set of sequences such that
(i) forall n e N, Sfi+1(xn) = fi(xn) >0 and

(ii) for each j € N and k € N, there exists a constant K;; such
that Ky (x,)* > f;(xs) forall n.

We now construct a function f such that f > f; for all j €
N and such that, for all k € N, there exists a constant K, with
Ky (x2)k > | f(xn)|. This will prove the proposition.

To construct f, we first define d(n):

d(n) = max{k < n|Ky - (x,) < 1}.

Then
S(xn) = [i(xXn) VooV fany (Xn).
This completes the proof.

From here on, ¥ and £ will denote non-maximal prime z-filters
with rank one sets F € ¥ and G € &, each having polynomial
distances, each having the origin as their sole limit point.

We now wish to study how the different types of ultrafilters, (%),
affect C*([0, 1], R)/p% . In studying c/p, the ultrafilter affected the
set (/°/p —c/p). In the current case, it affects the set of those func-
tions which are less (mod.#) than all powers of x and greater
(mod %) than all flat at the origin C* functions.

LEMMA 5.1.12. Let % (%) be a P-point. Let f € C([0, 1], R) be
such that
|f| <& x* forall k e N.

Then there exists g € C*([0, 1], R) such that =+ g

Proof. Consider the following subsets of {x,}3° ,,

Aj = (x| 1/ ()] < x5}



RESIDUE DOMAINS OF C 139

Notice that 4; € (%) forall j € N. Since #Z(¥) isa P-point there
exists 4 € (%) such that (4 — A4;) is finite for all j € N. Hence,
for each j € N, there exists a constant K; such that

|f(xn)| < Kjx,’; for all x, € A.

The result follows from Lemma 5.1.9.

LEMMA 5.1.13. Let #Z(¥) be a non- P-point. Then

(a) There exists f € C([0, 1], R) such that |f| <s x’ forall j€N
and [ >s |g| forall g € C®([0, 1], R) such that g¥)(0) =0 for all
keN.

(b) The set of all f as in (a) does not have a countable cofinal subset.

(c) The set of all f as in (a) has a countable coinitial subset if and

only if (lo,w(7)/co,v(5))+ does.

Proof. We shall prove all three at once. We first observe that the
families {{a,}|a, = 1/(k(n))} and {h|h(x,) = x,]f(")} where k(n) €
N, are cofinal and coinitial in their respective sets. We have the ob-
vious map {l/(k(n))} — {x,lf(")} which clearly preserves order and
“non-convergence.” The result follows immediately.

We shall now let ¢/py(s) ~ ¢/py) and use Ax-Kochen machi-
nery to build up an isomorphism from Frac(C*([0, 1], R)/p%)
to Frac(C>([0, 1], R)/pZ) which sends C>([0, 1], R)/p% to
C>([0, 1], R)/p%Z. We recall that Q/ps and Q/ps are convex in
C([0,1],R)/ps, so Frac(C>([0, 1], R)/p%) = Frac(C([0,11,R)/ps) .

Recall that, by 1.35, a valued field (K, R, I, G, v, K) can be de-
termined up to isomorphism by the pair (K, 7). We shall be denoting
valued fields by these pairs (as we did before in §2).

NoTATION 5.1.14. The bounded continuous functions on (0, 1]
will be denoted C*((0, 1], R).

PROPOSITION 5.1.15. For F and € as above let
rg = {fe C([0, 11, R)||f] ;xk,VkeN} ,
e = {fe C([0, 11, )| 1] < x¥, vk GN}.

Then there is an isomorphism

w: Frac(C([0, 1], R)/ry) — Frac(C([0, 1], R)/rz)
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such that

(a) w(C>([0, 1], R)/rE) = C>([0, 1], R)/r and

(b) For f,g € C([0, 11, R), if w(lf +75]) = [g + re] then
f®0) = g®)(0) for all k € N.

Proof. Let
Sg = {flEikeN, |f|k <x}.
7

Define s similarly.
Consider the valued fields
(K = Frac(C([0, 1], R)/ss), R=C*((0,1],R)/s#) and
(K = Frac(C([0, 11, R)/s¢), R =C*((0, 1], R)/s%).
(By 1.33 these pairs also describe the valued fields up to isomorphism.)
These are real closed valued fields with convex valuations. The residue
class fields are both R. The valuation groups are both w/-saturated.
w-pseudo-completeness follows from 2.1.22. Therefore, we have an
isomorphism
w, : Frac(C([0, 1], R)/ss) — Frac(C([0, 1], R)/s%)
such that for all constant functions b,

wi([b +s7]) = [b + sz].
Consider the real closed fields with convex valuation
(K = Frac(C([0, 1], R)/r&), I = s#/rs) and
(K = Frac([0, 1], R)/re), I =s¢/re).
In both cases,

(i) The valuation group is R.

(i) There is a cross section m(a) = x*.
(ii1) The valued field is w-pseudo-complete by 2.1.22.
(iv) The residue class field is

Frac(C([0, 1], R)/ss) (or Frac(C([0, 1], R)/s%)).

Therefore, we have an isomorphism  such that for a polyno-
mial g,
v(lg+rs]) =18 +rsl
Let f € C*([0, 1], R) be such that f%)(0) = a;,. Then [f] is the
unique pseudo-limit of the sequence

o]
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Hence

w(lf +rs]) =1 +re]
Therefore, w([f +rs]) = [g + rz] implies (f — g) € r= and hence
(f — g)®(0) =0 for all k (assuming g is C*®).

It is interesting that Proposition 5.1.15 does not depend on the
ultrafilters (%) and #Z(Z). Further, it does not matter at all which
power of x is dominated by the distances between x, and Xx,.;; the
analysis in this paper does not distinguish between {(1/2)"}3°, U {0}
and {1/y/A}22, U{0}.

NoTATION 5.1.16.

Vk € NIM, € R; |g(x)| < Myx* for all x €[0, 1]}
t% of course is Q.

We next have one of the main theorems of the section.

THEOREM 5.1.17. Let & and & be as in Notation 5.1.11. Let us
and ug be prime ideals of C([0, 1], R) such that ps C us ¢ ts and
Pz Cug ¢ to.

Then the following are equivalent:

(a) C([Os 1]9 R)/ug' = C([Oa 1]> R)/uf

(b) There exists an isomorphism

w: C=([0, 1], R)/uf — C*=([0, 1], R)/uf

such that if w([f +ut]) = [g + ul] then f%)(0) = gk)(0) for all
keN.

In particular, the following are equivalent

(al) C([0, 11, R)/ps ~ C([0, 1], R)/ps .

(bl) There exists an isomorphism

6: C>([0, 11, R)/p& — C>((0, 1], R)/p
such that if 6([f + pt]) = [g + pt] then f¥)(0) = g®)(0) for all
keN.

Proof. (a) — (b). By Proposition 5.1.15, (a) implies the existence of
an isomorphism
y,: Frac(C([0, 1], R)/rg) — Frac(C({0, 1], R)/rg)

such that

v2(C([0, 1], R)/r%) = C=({0, 1], R)/rk,
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and for f e C*([0, 1], R)
wa(lf +rs]) = [f +rel.
By Lemma 5.1.13, the valuation group of the valued field
(K = Frac(C([0, 1], R)/t5), I = rs [ts)
is isomorphic to the valuation group of the valued field
(K =Frac(I®/co,u,))» I = lo,%.(5)/¢0,2,(5))-
But by (a) this is isomorphic to the valuation group of the valued field
(K =Frac(I®/co,u ), I = b, % (2)/,%,2))
which is isomorphic to the valuation group of the valued field
(K = Frac(C[0, 1], R)/te), I = re/ts).
Hence we have an analytic isomorphism

(w3, ¥§): (K =Frac(C([0, 11, R)/t5), I =15 t5)
(K = Frac(C([0, 1], R)/te), I =re/te).

Since r% C ty and rf C te, the valuations are trivial on

C>([0, 1], R)/t% and C>([0, 1], R)/%;
therefore we can require that for all f € C*([0, 1], R),

wi([f +ts]) = [f + te].
We do this by choosing the initial subfields Ky & and Ky & such that
[f+is]1€ Ko+ and [f+1g]€Ko 2

for all f € C>([0, 1], R). Then letting

residuey &: Ko & — Frac(C([0, 1], R)/rs)

and
residuey ¢: Ko & — Frac(C([0, 1], R)/re)

be the restrictions of the residue maps, clearly
(residueg, &) ™" o, o (residuey & )([f + t=]) = [f + 1],
and w3 is an extension of
(residueg z) ! o ¥, o (residueg, ).
Finally we consider the valued field
(K = Frac(C([0, 1], R)/ug), I = (tz/uz)).
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Claim. ts/us does not have a countable cofinal subset (nor does
le / ug) .

Proof of Claim. Observe that the families

{{an}lan = 1/(k(n))}keNN clxe,
{hlh(xn) = X1 }xen € C(10, 11, R)
are cofinal in ¢y 4(s)/P»(s) and ts/us respectively. As in Lemma
5.1.13, the map
{1/(k(n))} — {x*"}
preserves order and “convergence.” ¢y »(s)/Pz(s) has no countable

cofinal subset, neither does (zs/us).
This claim shows that the valuation group of

(K = Frac(C([0, 1], R)/us), I = (t5 /us))

is a convex subgroup of an w;-saturated Abelian group (similarly for
tz and uz ).

(a) clearly forces the two valuation groups to be the same type of
convex subgroup, hence isomorphic. So we have an isomorphism

w: Frac(C([0, 1], R)/us) — Frac(C([0, 1], R)/ug)
with
Y(ts/ug) =te/us.
Since by Lemma 5.1.9, t5/us = (5 /u%) and te/us = (t£/ul), we
have that
w(C([0, 1], R)/uf) = C*([0, 1], R)/uf.

Let f, g € C=([0, 1], R) be such that w([f + u%]) = [g + ut],
then w3([f+15]) = [g+t4]. But ws([f+15]) = [f+tf] so (f—g) et}
and f)(0) = g*)(0) forall k eN.

(b) — (a). This follows almost immediately from Lemma 5.1.13.
Observe that the functions mentioned in Lemma 5.1.13 affect the ring
C*([0, 1], R)/u? itself. Thatis, if f € ry — 5, then given g € %,
there exists 2 € C*([0, 1], R) such that

gf; h,
|g|xk > |h| forall k e N

but there does not exist [£] € C*([01, ], R)/uf} such that [g]-[&] =
[A].
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5.2. Residue class domains of C*([0, 1], R) that inherit the deriva-
tion from C>®([0, 1], R). In 5.1 we classified 1 residue class domain
of C*([0, 1], R) for each residue class domain of c. In this part of
§5 we shall classify a second residue class domain of C*([0, 1], R)
for each residue class domain of ¢. We are concerned in this part
of §5 with differentially closed prime ideals of C*([0, 1], R). In
particular, if u is a prime ideal as in 5.1, then we examine

w = {f]f® eu, vk > 0}.

We shall show that

(a) Coo([o’ 1]’ R)/ul = Coo([o’ 1]> R)/uZ iff

(ﬂ) Coo([o’ 1] ’ R)/’U)] = Coo([o, 1]9 R)/’U)2 .
Therefore for each residue class domain in 5.1 we get one additional
residue class domain. We cannot use the Ax-Kochen machinery
to do this, because the valuation ideal would not be contain-
ed in C*([0, 1], R)/w. Instead, we consider the elements of
C>([0, 1], R)/w; as a sequence of congruence classes

{[f}( + ul‘]}lio:() s

where [f; + u;] is the kth derivative of [fy + u;]. The set of such
sequences forms a differential ring. The isomorphism ¢ from
C>([0, 1], R)/u; to C*([0, 1], R)/u, induces an isomorphism be-
tween the sets of such sequences

{fie + w11} = {<(fe + w1D)}-

We shall show that under this isomorphism the image of
C>([0, 1], R)/w,; is C*([0, 1], R)/w,. Astonishingly, it is more
work to show that (f) implies () than vice versa. Of course, if
up/w; is the image of u;/w; then this follows immediately, but this is
not always the case. However, it is the case unless (C*([0, 1], R)/u;)+
has a coinitial subset of the form {[f + u,;]*}$°,. We dispose of this
case by showing that if u;/w, is not the image of #;/w, then the rad-
ical of the sum of the ideals u;/w;+Im(u;/w;) is the smallest prime
ideal containing the coinitial set {[f+u,]* }%>, - A similar result holds
for u;/w, + preimage(u,/w,).

Finally we show that for such w there exists a prime ideal p,
w C pC C>®([0, 1], R), such that C*([0, 1], R)/p is not one of the
residue class domains that we classified. In fact we show that there
exists a prime ideal p ¢ C*([0, 1], C) such that p is not its own
complex conjugate.
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NotATION 5.2.1. Let us be a prime ideal of C([0, 1], R), such
that
Py CUuy Ltz
where ps and ¢s+ are as in 5.1. Then

ws(u) = {f € C>([0, 1], R)Vk, [ e ul},

(where u% =us N C>([0, 1], R)).
We shall write w4 unless confusion is likely.

Now we have the main result of this section which shall be proved
later.

THEOREM 5.2.2. Let F and G be rank one subsets of [0, 1], each
with exactly one limit point. Let their least elements be yr and yg
respectively. Let F and G have polynomial distances. Let & and
% be non-maximal prime z-filters on [0, 1] such that F € & and
Ge¥%. Let usy and us be prime ideals of C([0, 1], R) such that:
(1) Z(f)eF implies f € us.

2) f e ut = us nC>([0, 1], R) implies fX(yr) = 0 for all
>0.

(3) There exists f € C®([0, 1], R) such that f ¢ us but ) (yr)
=0 forall k >0.

Let ug have the corresponding properties.

Then the following are equivalent:

(i) C(0, 11, R)/us = C([0, 11, R)/us .

(11) There exists an isomorphism

y: C([0, 1], R)/uf — C([0, 1], R)/uf

such that w([f + u%]) = [g + ut] implies fO(yr) = g®)(yg) for all
k>0.

(111) There exists an isomorphism
¢: ([0, 1], R)/ws — C*=([0, 1], R)/we

(where ws = {f|f*) € ut for all k > 0}), such that E(D([f])) =
D'E([fD)-

b

Before going further we observe:

First, the theorem would hold if yr and ys; were both the greatest
elements of F and G. If one were greatest and one were least, we
should change (ii) to read

fROE) = (-1D)FgW(yg).
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Second, without loss of generality we can assume yr =y =0.

Third, (1) < (ii) is 5.1.17. So it remains to show that (ii) < (iii).

Our first inclination here is to notice that if Frac(C>([0, 1], R)/us)
is given the valuation

v(Lf1) = min{k| /%) ¢ uf}

we get an w-pseudo-complete Hensel field with cross-section, hav-
ing as residue field Frac(C*([0, 1], R)/u%). There is one serious
problem with this approach to proving Theorem 5.2.2: The valuation
ideal is not contained in C*°([0, 1], R)/ws , as the following example
shows.

ExAMPLE 5.2.3. Let F ={1/n}U{0} bein & . Let
f(x)=e Ysin(n/x),  g(x)=e V&),
Then v([f]) =1, v([g]) =0. Hence v([f]/[g]) = 1. However,

Lf1/[g] = [/ ¥sin(n/x)] ¢ C([0, 1], R)/gs.

It might be objected that this example deals only with certain special
Z . However, assuming Theorem 5.2.2 to be true, Theorem 5.2.2 and
Example 5.2.3 show that the valuation ideal will not be contained
in C*([0, 1], R)/qs for any # containing a rank one set F with
polynomial distances. In fact, for such an %, this can be shown
for any ws as above. We cannot, therefore, easily use Ax-Kochen
machinery to classify these domains. Instead, we shall use jets.

DEFINITION 5.2.4. For the purpose of this paper a jet is a sequence
{/fi}%2o where fi € C>([0, 1], R) forall j €N.

DEFINITION 5.2.5. A residue class jet (mod p) is a sequence
{Lfi1}32o where [fj]€ C*=([0, 11, R)/p.

NoTATION 5.2.6. T denotes the set of all jets. 7/p denotes the
set of all residue class jets (mod p).

REMARK 5.2.7. T and T /p are commutative differential rings with

(i) elementwise addition,
(ii) multiplication defined: {f;}%2, - {g;}92 = {h;}72(, where

hj:i(i)gk'fj—k’

k=0
(iii) a derivation D defined: D({f;}%20) = {/fj+1}720-
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REMARK 5.2.8. We have a differential ring injection
o : C*([0, 1], R)/ws — T/(u})
defined
0 (Lf +ws]) = {[fV +ub 1}
The image of this map is a proper subring of 7/(u* +5). Now let
w: C([0, 1], R)/ug — C*=([0, 1], R)/u
be an isomorphism. This clearly induces an isomorphism
Q: T/ut — T/ut

defined by
QLA = {w(l/iD}-

As a candidate for ¢ in Theorem 5.2.2 we have
9(_;,1,/) 0Qo Buz_.
We need only show that
Q(0,s (C2(10, 1], R)/u%)) = 6, (C>([0, 1], R)/ut)

PRrRoOPOSITION 5.2.9. For w as in Theorem 5.2.2, Q as above, and
0 as in Remark 5.2.8, we have

QOY (1% jwsr) = O} (2 Jws).

Proof . If f et ,then fU) €% forall j € N. Since by hypothesis,
w([g]) = [h] implies g¥)(0) = AK)(0) for all k, we have that fU) e
t% implies that there exists 4, € £ such that w([f)]) = [A;]. Finally
Lemma 5.1.10 gives the existence of A € £ such that AV) =¢ h;.
Hence

Q0,4 (If +ws]) = 0, ([h + wg]).

This proves
Q(0,+ (th/ws)) C 0,5 (5 /wg).
The other inclusion follows by symmetry.
Proof of Theorem 5.2.2. (ii) — (iii). As we mentioned above we need

only show that
Q(6,, (C*(10, 1], R)/wg)) = 6, (C([0, 1], R)/ws).
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In fact, we need only show that for [f] € C*([0, 1], R)/ws,
(LD = bz, 0 Q00,4 (If]) € C=(10, 1], R)/wy.

7

So let f, g € C*([0, 1], R) be such that y([f + u%]) = [g + ut].
Then by hypothesis, f)(0) = g®)(0) for all k. Hence, if
w(U® + uk]) = [y + ut], then A(0) = f*+)(0) = g®+h)(0) for
all j and so (g(%)—hy) €% forall k. Then, by Lemma 5.1.10, there
exists { € t£ such that [(*) +ut] = [g¥) —hy +ul] for all k. Then,

Sl +ws]) =g - {+wg] e C([0, 1], R)/ws.

(i) — (ii). If &(u% /ws) = ul/we, then this result follows imme-
diately. In some cases, however, &(u% /ws) # ul/wg (see Example
5.2.10). We need the following claim:

Claim 1. Let f € t% be such that f > 0 and such that f%) € u?%
for all k > 1. Then for all j € N, there exists 4; € % such that
[hj + ws) =[f +ws]. Thatis, [/ +ws] hasa jth root.

Proof of Claim 1. Recall that t% /u? ~ ts/us so all positive ele-
ments of % /u? have jthrootsin ¢4 /u? forall j. If [g;+u%) =
[f + u%], then {[g;1,0,0,...} = {[f],0,0,...}. By Lemma
5.1.10, there exists h; € t% such that h; =5 g; and hﬁ.k) =5 0 for all
k>1.

Claim?2. For f, g et ,if g% eu?, forall k > 1 and |f| >5 |g|
for all j, then [f + wg] divides [g + wg] (in C°([0, 1], R)/wy).

Proof of Claim 2. Quotient rule.
Observe now, that if f € u?'} —wg , then for some j, neither [f+ws]
nor [—f + wg] will have a j th root.

Claim 3. If &(ut/ws) # ul/wg, then there exist g, h €
C*([0, 1], R) such that

= {7111 s A forait je Y.
ut = { A1 slet foratljeN}.

Proof of Claim 3. Let f € u%. be such that &([f +ws]) = [g+we],
where g ¢ u?. Let p € t£ be such that 0 <z p <g |g|/ for all
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j€N. Let { €t be such that { =z p and {*) =, 0 forall k> 1.
Then [g + wg] divides [{ + wg]. Hence [{ + wg] € &(u% /ws) . But
[ + we] has jth roots for all j € N, so 7 1([{ + we]) = [ws].
Therefore [{ + we] = [wg], { €ul, and p € u%. Then

{1115 lgp forat jeN} c 2,

To see the other inclusion, recall that u§ =uzNC*([0, 1], R) and
is therefore convex. Hence if f € uf is such that |f| >z |g|/ for
some j, then g/ € uf; hence g € u%, contrary to assumption. For
the corresponding result for u% , we use €71

Therefore, to complete the proof of the theorem, we are left with
the case

u§={f||f|;|h|jforaﬂjeN},

ut = {f| 1f1 <1l forall j e N}.

We next denote
et = { s sV s i}
et = { s 11 < let)}

where £ and g are as in Claim 3. An Ax-Kochen argument yields
the result if we can show that there exists an isomorphism
yi: C([0, 1], R)/e} — C>([0, 1], R) /et

such that y;([{ + e%]) = [p + ] implies {¥)(0) = p*K)(0) for all
k € N. This, in turn, will follow automatically if we show that
E(ek Jws) = et Jwz . So let

Az ={yett|FjeN, I, petlh; v ={+p, [(+ws] € (U /ws),
and [p + ws] € &N (ub /we)}.

Az ={ye|3jeN, 3, pet;y =(+p,[{ +we] € (ul/we),

and [p + wg] € E(ul /ws)}.
Clearly ¢(As/wy) = Ag/ws. So, if we can show that Ay = e,
the theorem will be proved. By the proof of Claim 3, 45 C e and

Az C e . We need to show that e} C A5 and el C Az . Let

lp+wsleé N ubjws), [p+ws] ¢ (uh/ws).
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There exists { € u? such that (*) =5 pk) for all k > 1. So
((—p)€ Az and ({—p)X) =5 0 forall k > 1. Since ({—p) ¢ ut,
there exists j such that |{ — p| >5 |A|/ .

Next, let o € e be such that ¢¥) € u% for all k > 1. Since
for some m € N, |{ — p| >5 |h)J >5 |o)/™, we have that {[{-p],
0,0,...} divides {[¢/™*!],0,0,...}. Therefore o € A5 .

Next, let f € ef-. There exists ¢, € u*- such that g% =5 Cék) for
all k > 1. Thus (B — {,) has the conditions of ¢ above, and hence
(B—1{,) € A7 and B € A5 . By symmetry ef C A . This proves
(iii) — (i1) and completes the proof of Theorem 5.2.2.

We mentioned that &(u% /ws) need not equal u%/wg. The fol-
lowing is an example.

EXAMPLE 5.2.10. Let A(x) = x —e~1/*. Let F = {1/n}>, U {0}
be in nonmaximal % . Define &,
g ={Gh(G) e F}.

Define uf and u?

ut = {f|e_k/x > | f] for all keN} ,

4 _ —k/x

ug-—{f]e ;|f|f0rallkeN}.
It can be shown, by Taylor’s Theorem, that wy = wg . But u% # u?
since e~!/*sin(n/x) € u% — uf . Hence, we have

id: C*([0, 1], R)/ws — C*°([0, 1], R)/we

and

id(ul Jws) = uls Jws # Ul Jwe.
The diffeomorphism /4, of course, does induce an isomorphism such
that &(u? /wg) = ul/we. Surprisingly, it induces more than one
such isomorphism. We define &; and &,

Sl +ws]) =[foh+we],
62({[.{]9 [fI]: [f”]s })Z{[foh]a [f’oh], }

We also have a surprising corollary to Theorem 5.2.2.

COROLLARY 5.2.11. Let & be as in Theorem 5.2.2. Let
g5 = {fIZ(f™) € F for all n > 0}.
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Then there exists a prime ideal ws, q= S wg, and an isomorphism

¢,

such that
E(DLf1) = D'EAS)-

Proof. Let

Uy = {f| 1< e~ /(%) for some k}.

Then C([0, 1], R)/ps ~ C([0, 1], R)/us and the result follows by
Theorem 5.2.2.

Combining Theorem 5.2.2 with 3.2.26 we see that we have classified
9 domains C*([0, 1], R)/u% and 9 domains C*([0, 1], R)/ws .
We also have C*([0, 1], R)/Q ~ R[[x]] and C°([0, 1], R)/m =~
R. Altogether, we have classified 20 residue class domains of
C>([0, 1], R).

We shall show now that there exist prime ideals p, g# C p, &
as in Theorem 5.2.2, such that C*([0, 1], R)/p is not one of the
domains we have classified.

REMARK 5.2.12. For all the domains we have so far classified, there
is no v—1 1in the fraction field.

LEMMA 5.2.13. Let R be any commutative ring. For f, g € R, if
f is in every prime ideal that contains g, then for some k € N, g
divides f*.

Proof. Assume that for all k € N, g does not divide f*. Then
letting I = {gh|h € R}, we have that IN{f, f%,..., f",...} =O.
By Zorn’s Lemma there exists an ideal J, such that

(@) IcJ,

®) Jn{f, f*, ..., f",...} =0, and

(c) J is maximal with respect to (b).

To see that J is prime, let hk € J and assume toward a contra-
diction that " = j; + kx and f™ = j, + hy (with j;, j, € J). But
then

ST = (Jija + jakx 4+ jihy + khxy) € J.
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THEOREM 5.2.14. Let F be as in Theorem 5.2.2. Let q# be as in
Notation 5.1.1. Then there exists a prime ideal p C C*([0, 1], R),
such that q# C p and /-1 € Frac(C*([0, 1], R)/p.

Proof. Let [{l1/n}2, U {0}] € ¥ . As we mentioned earlier,
this assumption involves no loss of generality. Define f and g in
C>([0, 1], R) by

f(x) = e Vsin(n/x),
g(x) = e~ W),
It can be shown that f2 + g2 does not divide g¥ (modgs) for any

k € N. That is, (since sin(nm) = 0), we can show that for any k,
+o0o are the only possible limit points of

¢\

fP+g? n
So by Lemma 5.2.13, there exists a prime ideal p; C C*([0, 1], R)/gqs
such that [f2+g2+qs] € p; and [g+ps] & p; . Hence, there exists a
prime ideal p ¢ C*([0, 1], R) such that g+ C p, (f*+g2) e p, and

g ¢ p. Therefore, in C*([0, 1], R)/p, [/ +[g]* =0, [f1#0,
[g] # 0; and in the fraction field

U1 =
[¢] ’

n=1

REMARK 5.2.15. This also shows the existence of a prime ideal p C
C([0, 1], C) such that p is not equal to its own complex conjugate.
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