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Let A be a C*-algebra and B(H) the algebra of all bounded
linear operators on a Hilbert space H. We study the structure of
pure completely bounded and completely positive multilinear operators
from A¥ = Ax---x A into B(H).

1. Introduction. The definition of completely bounded (resp. com-
pletely positive) multilinear operators from one C*-algebra into an-
other was introduced by Christensen and Sinclair [4]. We begin by
recalling these definitions for our convenience.

Throughout this paper, we assume that (C*-algebras are unital.
Let A and B be C*-algebras. We denote M,(A4) = {[a;;]: a;j € A}
(resp. M, (B))the C*-algebra of nxn matrices over 4 (resp. B). If
¢: A¥ = Ax---x A— B is a k-linear operator, the k-linear operator
bn: My(AK — M,(B) is defined by

n
¢n(A1,A2, ,Ak)= Z ¢(aili2, al-zi}, ,a,-k,'w)

iy ey =1
forall 4;=[a;; 1€ My(4) (1 <j<k). We define the norm of ¢,
by
pnll = sup{lign(A1, 42, ..., AR||: A; € Mn(4)
with ||4,]| < 1 for 1 < j < k}
and define the completely bounded norm of ¢ by

#llcy = sup{li¢nl|: n € N}.

A k-linear operator ¢ is called completely bounded (resp. com-
pletely contractive) if the completely bounded norm ||¢||., is finite
(resp. ||¢llcs < 1). We denote CB(A*, B) the complex Banach space
of all completely bounded k-linear operators from AX into B. If
¢: A¥ — B is a k-linear operator, the adjoint k-linear operator ¢*
from A% into B is defined by

*(ay, ...,aq)=¢dag, ..., a;)"

155
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for all a;,...,a, € A. If ¢ € CB(4A*, B), then so is ¢* with
lo*|lcs = l|#llcy - This gives an involution on the complex Banach space
CB(4*, B). A completely bounded k-linear operator ¢ € CB(A4*, B)
is called symmetric if ¢ = ¢*. We denote CBy(A*, B) the set
of all completely bounded symmetric k-linear operators from A*
into B. Then CB;(4*, B) is just the real space of all selfadjoint ele-
ments in CB(AX, B). A k-linear operator ¢: A* — B is called com-
pletely positive if:

(i) k=2/-1 odd. Wehave ¢,(A], ..., A7 |, A1, Aj_y, ..., A1)
>0 forall 4y,..., A, € M,(A), A€ M,(A)" andall ne N, or

(i) k =2l even. We have ¢,(47,..., 4], 4;,..., 4;) >0 for
all 4y,...,4, € M,(4) andall neN.

We denote CB*(4X, B) the set of all completely bounded
and completely positive k-linear operators from 4% into B. Then
CB*(A4*, B) is a proper positive cone in the real Banach space
CB;(A*, B). It is known from [18], [10], [12] and [4] that CB,(4*, B)
= CB*(4*k | B) — CB*(4*, B) if B is an injective C*-algebra. This
gives a natural partial ordering on CB;(4*, B) defined by v < ¢ if
¢—w e CBt(4k B).

ReEMARK. The above definition of completely bounded (resp. com-
pletely bounded symmetric, completely positive) k-linear operators
from AX into B is a natural generalization of the usual definition
of completely bounded (resp. completely bounded self-adjoint, com-
pletely positive) linear operators from C*-algebra 4 into C*-algebra
B. In the case of kK =1, we know that every completely positive lin-
ear operator between C*-algebras is already completely bounded with
ll¢llce = |l¢ll. Unfortunately, this is not true for completely positive
k-linear operators when k > 2 (see [4], page 155).

DEeFINITION 1.1. A completely bounded and completely positive k-
linear operator ¢ € CB* (4%, B) is pure if, for every w € CB*+(4*, B),
v < ¢ implies ¥ = A¢ for some 4> 0.

From the above definition, ¢ € CB*(4X, B) is pure if and only
if the ray R, = {A¢: 1 > 0} determined by ¢ is an extreme ray in
CB*(A4*, B) (cf. G. Choquet [2], Volume II).

Now we consider B = B(H), the algebra of all bounded linear op-
erators on a Hilbert space H. If k =1 and B(H) = C, it is well
known that every pure element in CB+(4%, C) = (4*)" is just a pos-
itive linear functional on 4 whose GNS representation is irreducible
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(cf. Takesaki [17] Chapter I). The pure elements in CB* (A4, B(H))
were studied by Arveson [1].

In this paper, we study the structure of pure elements in
CB*(4%, B(H)) for k = 2l. In particular, we give a detailed dis-
cussion for pure completely bounded and completely positive bilinear
operators from A? into the matrix algebra M,(C). Applying [4],
Theorem 4.1, we show, in §2, a representation theorem for pure com-
pletely bounded and completely positive k-linear operators from AX
into B(H). We show, in Theorem 3.2 and Theorem 3.3, that a com-
pletely bounded and completely positive bilinear operator ¢ €
CB+*(A%, M,(C)) is pure if and only if there are bounded linear func-

tionals f;, ..., f» on A such that ¢ = F*® F, where
fi S
L
0 --- 0

Such a linear operator F is unique up to multiplication by a complex
number of module one. We generalize Theorem 3.2 and Theorem 3.3
to completely bounded and completely positive 2/-linear operators
from 4% into M,(C) in Theorem 3.4. In §4, we discuss the normal
version of the above results. In §5, we apply the results in §3 (resp.
in §4) to study the pure elements in multivariable Fourier-Stieltjes
algebras (resp. in multivariable Fourier algebras).
To close this section, we state a result of [4].

THEOREM 1.2 ([4], Lemma 3.1 and Corollary 4.2). Let H be a
Hilbert space, let A be a C*-algebra, and let ¢ € CBs(A*, B(H))
with k > 2. Let ¢: A — B(H) be a completely positive linear operator
given by ¢ =V*nV , where n is a *representation of A on a Hilbert
space K and V € B(H, K) is a bounded linear operator with K =
[7(A)VH]. If we have

_¢H(X*X) S¢H(X*a A2> R 9Ak—la X) S (0n(X*X)

Jor all X € My(A) and all (A, ..., Ax—y) = (Af_,,..., 45) €
My(A)=2 with |4;| <1 2 < j<k=1), then thereis a y €
CBs(A*=2, B(K)) with ||w|ly <1 (when k =2, w is just a fixed
selfadjoint linear operator in B(K)) such that

Par, ..., a) =V'r(a)y(az, ..., q_)n(a)V
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forall ay, ..., a, € A. If, in addition, ¢ is completely positive, then
S0is y.

REMARK. In Theorem 1.2, we considered a given representation
{n,V, K} of ¢ with K =[n(A)VH] the norm closure of n(A)VH,
which is called a minimal representation of ¢ in [1]. If A is a unital
C*-algebra, the representation of ¢ obtained from the Stinespring
construction (cf. [1] and [16]) is minimal. Since any two minimal
representations of ¢ are unitarily equivalent, the result in Theorem
1.2 is essentially the same as that in [4] Lemma 3.1.

2. A representation theorem for pure completely bounded and com-
pletely positive k-linear operators. Let 4 be a C*-algebra, let K and
H be Hilbert spaces, let 7 be a *-representation of 4 on K and let
V € B(H, K) with K = [n(A)VH]. For any integer k > 2, we can
define a map I': CB(4¥%, B(K)) — CB(4*, B(H)) by

Lly)ar, ..., ) =V*r(any(ay, ..., a_)n(@)V

for all a;,...,a, € A. Here we denote B(K) = CB(A°, B(K)).
It is clear that I" is a well-defined bounded linear operator from
CB(A*~%, B(K)) into CB(A*, B(H)), which maps CB;(4*~2, B(K))
into CBs(4*, B(H)) and CB*(4%-2, B(K)) into CB*(4*, B(H)).
It follows from K = [n(A)VH] that I' is a linear injection. If
V € B(H, K) is a contraction then so is I'.

LEMMA 2.1. The linear operator T is a linear order isomorphism
from CBs(A*=2, B(K)) onto its image T(CBy(4*~2, B(K))).

Proof. We only need to show that, for any ¢ € CB* (4%, B(H))n
I'(CB;(AX~2, B(K))), there is a ¥ € CB*(4X-%, B(K)) such that
I'(y)=9.

Given ¢ € CB*(A4%, B(H))NTI'(CBy(4*-2, B(K))), thereisa v €
CBs(A*=2, B(K)) such that T'(y) = ¢. For each n € N, and all
(A2, ooy Agy) = (AL, ..., A}) € Mu(A)*~2 with 4,, >0 if k is
odd, where m = (k + 1)/2, and for all #, = n,(X)(V ®id,)&, , when
X € M,(A) and &, € H", we have

(wn(Aa, ..., Ak—1)Mn > 1)
=((V*®1dn)mn(X*)Wn(Az, ..., Ap_1)Tn(X)(V ®1d,)Ern, &n)
= {pn(X", A2, ..., A1 X)&n, &n) 2 0.
Thus y € CB+(4%~2, B(K)) since n(A4)VH is dense in K . O
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Let ¢ € CBT(4*, B). The order interval [0, ¢] is defined by
[0, ¢]={¢ € CB*(4*, B): 0< < §}.

LEmMMA 2.2. If ¢ = I'(y) for some y € CB*(4*2, B(K)), then
the order interval [0, @] is contained in T(CB*(A*—2, B(K)) and T
is an affine isomorphism from [0, y] onto [0, &].

Proof. Without loss of generality, we assume that ¢ = I'(y) for
some y € CB*(4*~2, B(K)) with ||y|l, = 1. Let ¢ = V*aV .
Since

I <yn(4s, ..., 4k1) <1,
we have
_'wn(X*X)S¢n(X*’A2"-'aAk—lsX)S¢n(X*X)
forall X € My(A)and(4,, ..., Aj_y) = (4}_,, ..., A3) € My(A)*2

with ||4;]| <1 (2 < j £ k—1). We need to show that, for any

[0, #], there is 7 € [0, w] such that T'(y) = .
Given ¢ € [0, ¢], we claim that

—pn(X*X) < Pu(X*, Az, ...y Ax_1, X) < (X' X)

forall X € M,(A) and (A4, ..., Ax_y) = (A} _, ..., A3) € My(A)k2
with |4, <1 2<j<k-1),andall nEN.
To see this, if kK =2/+ 1, we have

(A2, ..., Agy)= (B3, ..., B/, B\, By, ..., By)
for some B; € M,(A) with ||Bj|| <1 (j=2,...,/+1) and B
selfadjoint. Hence we can write B, = B;jr | = B, _1» Where B;jr , and
B/ | are positive in M, (A) with the norms less than or equal to 1.
Since
0< @u(X*,B;,....,B,BE,,B,..., By, X)

< ¢n(X*,B5,...,Bf,Bj%,,B;,..., By, X)

< on(X7X)
we have

~

—¢n(X*X) < ¢n(X*, B3, ..., B}, B.1, B, ..., By, X) < dp(X*X).
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If k =2/, we have
(A, ..., Ag)=(BS, ..., B, By, ..., By)
for some Bj € M,(A4) with ||B;|| <1 (2 <j<!);then we have

—¢n(X*X) <0< Gn(X*,B},...,B}, By, ..., By, X)
<oun(X*,B5,...,B}, By, ..., By, X)
< Pn(X*X).
By Theorem 1.2, there exists a completely bounded and completely
positive (k—2)-linear operator § € CB*(4*~2, B(K)) such that I'(y7)
= V*nynV = ¢. Since é< qﬁ and, by Lemma2 1, ' is a linear order

isomorphism from CBs(4*~2, B(K)) onto T’ (CBS(A" 2, B(K))), w
have ¥ € [0, yv]. o

LEMMA 2.3. A completely bounded and completely positive k-linear
operator y € CB*(A*=2 B(K)) is pure if and only if its image ¢ =
I'(y) is pure in CB*(A*, B(H)).

Proof. From the definition, we know that y (resp. ¢ ) is pure if and
only if [0, y]={Ay:0< A< 1} (resp. [0, ¢] = {1¢; 0 <A< 1}).
The conclusion follows easily from Lemma 2.2 o

THEOREM 2.4. Let A be a C*-algebra, let H be a Hilbert space and
let ¢ € CBY(A*, B(H)) with k > 2. Then ¢ is pure if and only if
(i) k =21+ 1 odd. There are *-representations m;, ..., n;.; of
A on Hilbert spaces K, ..., K;.; with m; irreducible on K, ; and
linear operators V; € B(K;_, K;) for 1 <j<I1+1, where Ky = H,
Ki=[nj(AViK;_] forall 1 <j<I+1 and

Vil Vil = 16l

such that
dlay, ..., &)
=WViri(ar) - ma)Vim( @) Viamay,) - mi(a) M
forall ay,...,a, € A.
(i) k = 2l even. There are *-representations ny, ..., n; of A on
Hilbert spaces K, , ..., K;, linear operators V; € B(K;_,, K;), where

Ko=H, K; = [n;(A)V,K;_] for 1 <j<I and

1/2
Vil Vil = llellis?
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and a rank one projection T in B(K;)" such that

(]5(611, :ak)

=Vin(a)Vyna(az) - m(a) Tr(a;) - malae ) Vamy (@) Vi

forall ay,...,a € A.

Proof. Applying [4], Theorem 4.1, we have

(i) k = 2/ +1 odd. There are *-representations m;, ..., T
of A on Hilbert spaces K, ..., K;;; and linear operators V, €
B(Kj_l, Kj), where KO = H, Kj = [TCJ'(A)VJ'KJ'_I] for all 1 < ] <
[+1 and

1AL 1Vl = llllg

such that
(]S(d], ey ak)
=Wimi(ar) - m@) Vi ma(ar  )Viam(apen) - m(a)

forall a;,...,a, € A. By Lemma 2.3 and induction on /, we have
¢ € CB*(4%, B(H)) is pure if and only if y = V}* 7,V is pure
in CB*(4, B(K;)) if and only if 7 is an irreducible representation
on K;,, (see Arveson [1]).

(ii) k = 2/ even. There are *-representations 7n;, ..., n; of A
on Hilbert spaces K, ..., K;, linear operators V; € B(K;_;, K;),
where Ko=H, K; =[n;(4)V;K;_;] for 1 <j </ and

1/2
Vill-- Vil = llglle?

and a positive linear operator 7 € B(K;)* with ||T]| =1 such that
play, ..., a)

= Vi'n(a)Vymo(ar) - mp(a)Tr(ap,,) - malar—1) Vamy(a) Vi

for all a;,...,a, € A. By Lemma 2.3 and induction on /, we have
¢ € CB*(A* | B(H)) is pure if and only if T is pure in B(K;)*, the
set of all positive linear operators on K;, with ||7|| = 1 if and only
if T is a rank one projection. O

3. The structure of pure completely bounded and completely positive
multlinear operators. In this section, we study the structure of pure
completely bounded and completely positive 2/-linear operators from
A% into M,(C). Let f and g be [-linear functionals from A’ into
C . We define a 2/-linear function f® g: A4¥ — C by

(feg)ai,...,ay)=flar, ..., a)& (@15 .-, )
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forall a;,...,ay € 4. Let F =[f;;] and G =[g;;] be [-linear oper-
ators from A’ into M,(C). Then we can define a 2/-linear operator
F-G: A¥ = M,(C) by

n
FoG= [Zf,—k@bgkj .

k=1

For an [-linear operator F = [f;;]: A’ — M,(C), the adjoint I-
linear operator F* of F can be written as F* = [f;]. The [-
linear operator F is completely bounded if and only if each f;; is
a completely bounded /-linear functional on A’. If F is completely
bounded, then so is F* with ||F*||., = [|F|lcp -

Let F = [f;;]: A' — M,(C) be a completely bounded /-linear op-
erator. For all 4; = [a,-},-m] € My(A4) (1 <j<2l),wehave

(F*GF)m(Aly'“aAﬂ)
m

= (F* @F)(al l >t aizlizlﬂ)]

= ( alliz [ al/l/+|))
ll+l
( Z F( ’/+| 220" ’2/’zz+n)):|
I+2

=F* Al,.. I)F A[_H,...,Az[)
in M,,(C)® M,(C). Since
Fo (A7, ..., 4]) = (Fn(4;, ..., A1)
forall 4,..., 4, € M,,(4), we have

(F*OF)m(AL, ..., 4, A, ..., A1)
=FL(A}, ..., A)Fn(d;, ..., A))
= (Fn(Ay, .., A Fn(4;, ..., A)).

This implies that F* ® F: 4% — M,(C) is completely positive.

LemMa 3.1. Let F = [f;;]: A' — M,(C) be an I-linear operator.
Then the corresponding 2l-linear operator ¢ = F*® F: A* — M,(C)
is completely positive. The -linear operator F is completely bounded
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if and only if the 2l-linear operator ¢ = F*OF is completely bounded.
In this case, we have ||@||.p = ||nll = [|FII?, -

Proof. The first statement is obvious. For the rest of the proof,
we consider the case / = 1 without loss of the generality. If F is
completely bounded, we have

9llce = sup{llom(X, Y)||: X, Y € Mp(4)
with || X||, |Y|| <1, m € N}
= sup{||[Fp(X)Fm(Y)[|: X, Y € Myn(A)
with || X]|, ||Y|| <1, me N}
< IF eI Fllep = I1F 1125
Hence ¢ is completely bounded. On the other hand, if ¢ is com-
pletely bounded, we have
IFNZ = 1Eal®  (by [15])
= sup{||Fx(X)|I*: X € My(4), | X|| < 1}
sup{[[(Fn (X)) Fa(X)||: X € Mn(4), || X|| < 1}
= sup{||¢. (X", X)||: X € Mn(4), [|X|| <1}
<Nnll < M1#llce-

Hence F is completely bounded and we have |F|%, = |F|J* =

6]l = lllles - O

Now we are ready to study the structure of pure completely bounded
and completely positive multilinear operators. For our convenience,
we first consider the bilinear case.

THEOREM 3.2. If ¢ € CB* (A%, M,(C)) is pure, then there are

bounded linear functionals f,, ..., f, on A such that ¢ = F* O F,
where _
fi S
e
0 --- 0

The linear operator F is completely bounded with ||F||%, = ||®|ls -
Furthermore, if
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is another completely bounded linear operator from A into M,(C)
such that ¢ = G* © G, then there is a complex number A with |A| = 1
such that F = AG.

Proof. To avoid technical complications, we only discuss the case
n = 2. The calculations are in the same spirit for general n € N.

Let ¢ # 0 € CB*(4%, M,(C)) be a pure element. By Theorem 2.4,
there is a *-representation 7 of 4 on a Hilbert space K, a bounded

linear operator V': C2 — K with K = [n(4)aVC?] and ||V|| = ||4|.)
and a rank one projection 7 in B(K) such that

d(x,y)=Vn(x)Trn(y)V

for all x,y € A. Let & be a unit vector in K such that 7K =
[Tr(A)VC?] = span{} andlet {e; = [}], eo = [?]} be the standard
basis for C2. For i =1, 2, there are linear functionals f; on 4 such
that

fi(x)6o = Tn(x)Ve;

for all x € A. Then we have

(e [2][8]) = 5 Brastote vies e

—

:<[wm ﬂ[ﬁ@)ﬁwq[m] Vq>
fz*(.X) 0 0 0 (%) ’ ﬂz
for all x,y € A and for all «;, f; € C (i = 1, 2). This implies
that ¢ = F*©F , where F = [/ £]. It follows from Lemma 3.1 that
F: A— M,(C) is completely bounded with (|F|2, = ||#(.p -

Suppose that G =[% % ]: 4 — M(C) is another completely bounded
linear operator such that ¢ = G* ® G. Since ||F*||cp = |[Fllep =
llpl| il/)z # 0, we may assume that f # 0. Then there is an element
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Xo € A such that f(xy) # 0. Thus for all x € 4, we have
L7 (x0)fi(x)] = (F* © F)(x0, x) = ¢(xp, x)
= (G" 0 06)(x, x) = [&(x0)8,(x)].

If we let 4 = g7 (xo0)/f*(x0), then we get fj(x) = Ag;(x) forall x € 4
(j=1,2), ie. we get F = AG. Since |Glcp = 9]I1)> = |Fller =
\A|lIGles » then [A] =1 o

THEOREM 3.3. Let

LR R R A e
0O --- 0

be a completely bounded linear operator. Then ¢ = F* O F is a
pure completely bounded and completely positive bilinear operator in
CBH(A?, My(C)) with ||llep = | FIZ,

Proof. It follows, from Lemma 3.1, that ¢ is a completely bounded
and completely positive bilinear operator from A4 into M,(C) with
l¢lles = I|F ||, - It suffices to show that ¢ is purein CB* (4%, M,(C)).
Here we only prove the case n = 2 as in Theorem 3.2.

Since ¢ = F* © F € CB*(4%, M>(C)), by [4] Theorem 4.1, there
is a *-representation © of 4 on a Hilbert space K, a bounded linear
operator V: C? — K with K = [z(A4)VC?] and ||V| = ]|¢Hi£2, nd
a positive linear operator 7" in B(K) with ||T|| =1 such that

d(x,y)=Vn(x)Tre(y)V

for all x,y € 4. From Theorem 2.4, it suffices to show that T is a
rank one projection.
Since very element 5 € n(4)VC? can be written as

2
= Z n(x;))Ve;
i=1

forsome x; € A (i =1, 2), we define a linear functional f: m(4)VC?
— C by

2 2
(Zn Xj Ve,) =Y filx))
i=1

i=1
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for all Y°2_, n(x;)Ve; € n(4)VC?. Since

2

2 2
< Z (x))Ve;, Zn(xi)Ve,-> :

i=1 i=1

it follows that f is well-defined and we have

2 2 2 2 2
’f (Z n(x; Ve,) Z (x| = <TZ (x;)Ve;, Zn(xi)Ve,->.
i=1 i=1

i=1 i=1
<1}

Therefore,

2

d w(x)Ve;

i=1

171 Sup{
-

=|IT| = 1.

2
(Z n(xi)Ve,-> :

i=1

/
2
<TZ TC(X{)VG,‘ , Z ﬂ(X,’)Ve,‘>

=1 i=1

1/2

2

Z (xi)Ve;

)

Since m(A)VC? is a dense subspace of K, there is a unique norm
preserving linear extension of f from 7cA(A)VC2 to the whole Hilbert
space K = [n(A4)VC?], still denoted by f. For x;,y,€ 4 (i=1,2),
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the identities

2

2 2
= (Zfi*(x,* ) > 50)) ) <TZ7Z (vj)Ve;, Zn(xi)Ve,->
j=1

i=1

Fm7Q) =(Tn, ¢

for all n, { € K. Since ||f]] = 1, there is a unit vector wy € K
such that f(n) = (5, wo) for all n€ K. Let K, = span{w,}. Since
(ker f ) = Ki-, the Hilbert space K can be orthogonally decomposed
into the direct sum of K; and ker f,ie. K =K; ®kerf.

Finally we want to show that T is a projection from K onto the
one dimensional subspace K; of K. For every n € ker f , we have
Tn =0 since (Tn, L) = f(n)f({) =0 forall { € K. Suppose that
Twy = awy + 1o for some a € C and g € ker f. It follows that

~

a=(Twy, wy) = f(wo)f(wo) = | f(wo)* =

and

Inoll> = (Two, no) = f(ewo)f(no) =0

Hence we have Twg = wg. This shows that T is a projection from
K onto K. o

Finally we generalize our results in Theorem 3.2 and Theorem 3.3
to the 2/-linear operators. The proof is essentially the same as those

in Theorem 3.2 and Theorem 3.3.

THEOREM 3.4. Let ¢ € CB*(A¥, M, (C)). Then ¢ is pure if and

only if there are completely bounded [-linear functionals f,, ..., fu
on A' such that ¢ = F*® F, where
fi o S
e 0 --- 0
0 0

The [-linear operator F is completely bounded with ||F|%, = ||¢l|cs -
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Furthermore, if

81 8n
G = 0 0
0 0

is another completely bounded /-linear operator from 4’ into M, (C)
such that ¢ = G*® G, then there is a complex number A with || =1
such that F = AG.

4. Pure completely bounded and completely positive normal multilin-
ear operators. If R is a von Neumann algebra, a completely bounded
k-linear operator ¢: RK — B(H) is called normal if ¢ is o-weakly
continuous in each component (cf. [11] and [4]). We denote
CB°(R*, B(H)) the space of all completely bounded normal k-linear
operators from R into B(H). We write

CB? (R, B(H)) = CBs(R*, B(H))n CB°(R*, B(H))
and
CB°*(R*, B(H)) = CB*(R*, B(H))n CB°(R*, B(H)).

In this section, we discuss the structures of pure completely bounded
and completely positive normal 2/-linear operators from RZ into
M, (C). First we consider a normal version of Theorem 2.4.

THEOREM 4.1. Let ¢ € CB°*(R*, B(H)) be a completely bounded
and completely positive normal 2l-linear operator R*' into B(H) for
some Hilbert space H. Then ¢ is a pure element in CB°*(R?, B(H))
if and only if there are normal *-representations n;, ..., n; of R on
Hilbert spaces K, , ..., K;, linear operators V; € B(K;_,, K;), where
Ko=H, K; =[rn;j(R)V;K;_] for 1 < j <[ and

2
il 17l = Nl
and a rank one projection T in B(K) such that
dlay, ..., ay)=WVr(a) ma)Tray,) - mi(ay)V

forall ay,...,a €R.

Proof. Given ¢ € CB°*(R*, B(H)) a completely bounded and
completely positive normal 2/-linear operator. It follows from [4],
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Theorem 4.1, and the proof of Corollary 5.7 that there are normal *-
representations 7, ..., n; of R on Hilbert spaces K, ..., K;, lin-
ear operators V; € B(K;_;, K;),where Ko =H, K; = [n;(R)V;K;_]
for 1 <j <! and
1/2
Vil Vil = il

and a positive linear operator 7 in B(K) with ||7|| = 1 such that

dlay, ..., ay) =Vimy(ay) --m(a)Tr(a;,,) - mi(ay)Vi

for all a,,..., ay € R. By Lemma 2.3 and induction on /, we get
that ¢ is pure if and only if 7 is pure in B(K;)* with ||T|| =1 if
and only if the positive linear operator 7 is a rank one projection. O

THEOREM 4.2. Let ¢ € CBT(R¥ , M,(C)) be a completely bound-
ed and completely positive 2l-linear operator. Then ¢ is pure in
CB°*+(R¥ | M,(C)) if and only if there are completely bounded normal

[-linear functionals f, ..., f, on R! such that ¢ = F* ® F , where
i o Ja
P 0 .- 0
0 ... 0

The normal [-linear operator F is completely bounded with ||F|?, =

l'¢”cb

Furthermore, if

&1 8n
G= O .« . O
0 ... 0

is another completely bounded normal [-linear operator from R’ into
M, (C) such that ¢ = G*© G, then there is a complex number A with
|A| =1 such that F = AG.

Proof. The whole proof of this theorem is similar to those in The-
orem 3.2 and Theorem 3.3. The only thing we need to point out
here is that, if ¢ € CB°*(R* , M,(C)) is pure, then there are com-
pletely bounded normal /-linear functionals fi, ..., f, on R/ such
that ¢ = F* © F, where

F =
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We can get /-linear functionals fj, ..., f;, normal on R’ since we
can choose normal representations 7; = R — B(K;) (1 <i <) in
Theorem 4.1. a

5. Application to multivariable Fourier-Stieltjes algebras and mul-
tivariable Fourier algebras. Throughout this section, we let G be a
discrete group, C*(G) the full group C*-algebra of G, A the (left)
regular representation of G on the Hilbert space /2(G) and vN(G)
the group von Neumann algebra of G. The Fourier-Stieltjes alge-
bra B(G) is the space of all coefficients of unitary representations of
G: f € B(G) if and only if there exists a unitary representation n of
G on a Hilbert space H and two vectors ¢ and 7 in H such that

f(@) = {=(0)¢, n)
for all 1 € G. The norm is given by
1Al = inf{||€]|||n]|; where & and n as above}.

It is known by Eymard [9] that B(G) is a commutative Banach *-
algebra of functions on G with the pointwise multiplication and com-
plex conjugation, and that B(G) can be identified with C*(G)* the
dual space C*(G) as follows:

For any w € C*(G)*, we have by GNS representation

w(a) = (n(a)¢, n)

for all a € C*(G), where m is a *-representation of C*(G) on H and
¢, n € H. Thus the corresponding element f, € B(G) can be defined
by
Jo(t) = (n(2), &, n)

forall t€G.

The Fourier algebra A(G) is the space of all coefficients of the (left)
regular representation A of G: f € A(G) if and only if there exist &
and 7n € [?(G) such that

f() = A0S, n)
for all ¢ € G. The norm is given by
I A1l = inf{||]|lin]l ; where & and 7 as above}.

Then A(G) is a closed ideal of B(G) and A(G) is isometrically iso-
morphic to ¥ N(G)., the predual of v N(G) (cf. Eymard [9]).

The multivariable Fourier-Stieltjes algebra BX(G) and the multi-
variable Fourier algebra 4¥(G) have been studied in [8], where we
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identified B¥(G) with (C*(G)®;, - ®;, C*(G))* the dual space of the
Haagerup tensor product of C*(G)’s and we identified 4%(G) with
(vN(G)®j ---®7 vN(G)). the predual space of the normal Haagerup
tensor product of ¥ N(G)’s. We notice that C*(4) ®, - -- ®;, C*(G)
and vN(G) ®f ---®) vN(G) are operator space and o-weakly closed
operator space, respectively, and we denote that

CB(C*(G) ® -+ ®, C*(G), B(H)) = CB(C*(G)*, B(H))
and
CB°(vN(G)®j -+ ®;’1'1/N(G), B(H)) = CB°(vN(G)*, B(H)).

For the detail about Haagerup tensor products, please refer to [6], [13],
[14], [7] and [3].

In this section, we will restrict our attention to study the pure ele-
ments in the bi-Fourier-Stieltjes algebra B%(G) (resp. the bi-Fourier
algebra A42(G)). We recall by [8] that f € B%(G) if and only if there

are unitary representations n; of G on Hilbert spaces H; (i=1, 2),
T € B(H,, H;) and ¢ € H; and n € H, such that

f(ta, t) = (ma(2) Ty (81)E, 1)
for all ¢, t;, € G. The norm is given by
I/l = inf{| T|IE|llIn]l ; where T, £ and 7 as above}.

Identifying B2(G) (resp. B?*(G)*) with CB(C*(G)?,C) (resp.
CB+(C*(G)?, C)), there is natural order structure on B?(G) given
by the positive cone B?(G)* with B%(G) = spanB?(G)*. It follows
easily from [4], Theorem 4.1, that f € B%(G)* if and only if there
is a unitary representation 7 of G on a Hilbert space H, a positive
linear operator 7 € B(H) and a vector £ € H such that

flta, 1) = (m(t2)Tr(t1)¢, &)

for all ¢;,t, € G. Applying Theorem 3.2 and Theorem 3.3 to the
pure elements in B2(G)*, we have

THEOREM 5.1. Let f € B*(G). Then f is pure if and only if there
is an element g € B(G) such that

f=¢g0os.
We have | f|| = ||g||> and the element g is unique up to multiplication

by a complex number of module one. Therefore, the algebraic tensor
product B(G) ® B(G) = span{all pure elements in B*(G)*}.
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REMARK. If we identify M,(B*(G)) with CB(C*(G)?, M,(C)) for
n € N, we get an #*-matricial norm over B%(G) so that B%*(G)
is an operator space (cf. [14] and [7]). For each n € N, there is a
natural order on M,(B%(G)) given by the positive cone M, (B?(G))*
= CB*(C*(G)?, M,(C)) with M,(B*(G)) = spanM,(B%(G))*.
It follows from Theorem 3.2 and Theorem 3.3 that an element ® €

M,(B%(G))* is pure if and only if there are elements f;,..., f, €
B(G) such that ® = F*® F and ||¢|| = ||F||?, where
fi - f
F=|9 " O e M(B(G) = CB(B(G), My(0)).
0 --- 0

Similar arguments apply to the pure elements in the bi-Fourier
algebra A%(G). It follows by [4] and [8] that f € A?(G) if and
only if there are Hilbert spaces H, and H,, a linear operator T €
B(I*(G)® H, , I*(G) ® H,) and vectors & € [?(G)® H, and 1 € [(G)
® H, such that

flt2, 1) = {(Mt2) @ 1) T(A(1) ® 12 )€, 1)

for all #;,,t, € G, and that f € A%(4)* = CB°*(vN(4)?,C) if
and only if there is a Hilbert space H, a positive linear operator
T € B(I*(G)® H) and ¢ € I>(G) ® H such that

f(t2, 1) = (M) @ 1) T(A(t1) ® Lw)E, &)
for all ¢,,t € G. Applying Theorem 4.2 to the pure elements in
A%(G)*, we have

THEOREM 5.2. Let f € A%(G)*. Then f is pure if and only if there
is an element g € A(G) such that

f=g"®¢.

We have || f|| = ||g||> and the element g is unique up to multiplication
by a complex number of module one. Therefore the algebraic tensor
product A(G) ® A(G) = span{all pure elements in A*>(G)*}.
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