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SIMPLE PERIODIC MODULES
OF TWISTED CHEVALLEY GROUPS

PETER FLEISCHMANN AND JENS CARSTEN JANTZEN

Consider a finite twisted Chevalley group constructed over a field
of prime characteristic and its representations over an algebraically
closed field of the same characteristic. In this paper we classify all
those irreducible representations that are periodic, i.e., that have a
periodic projective resolution. There is always the Steinberg module
that is both simple and projective. We show that there are further
periodic simple modules only for groups of types >4, and 2B, .

0. Introduction. Let K be an algebraically closed field of charac-
teristic p > 0 and I' a finite group with p||I'|. A finite dimensional
KT'-module M is called periodic, if it has a periodic minimal projec-
tive resolution. Of course projective modules are also periodic, but
the non-projective ones are characterized by their complexity cp(M)
being one. Here we understand complexity in the sense of Alperin [1].

In this article we look at the case where I' is an “almost simple”
twisted group of Lie type, defined over a finite field of the same charac-
teristic p. We will give a classification of all periodic simple modules
for these groups and the finite simple groups related to them.

It is a well-known fact that all finite groups of Lie type have a unique
simple projective module, the Steinberg module St. We will prove in
this paper that, if I is not of type 24, or 2B, , then the only periodic
simple KT'-module is St. With the classification for 24, in [6], [7],
and for 2B, in part 3 of this paper, we will achieve a full classification
of simple periodic modules for twisted groups.

The corresponding classification for non-twisted Chevalley groups
was recently accomplished in [9], [10]. Together with the initial classi-
fication for the type 4; in [15], the final result is that for finite groups
of Lie type there are simple periodic modules, other than St, only for
groups of type A,, 24, and 2B,.

To state our results more precisely, we have to introduce some no-
tations which we take over from [5]. For conceptual reasons we prefer
working with universal groups:

So let K be an algebraic closure of the prime field F,, let G be
an almost simple, simply connected and connected affine algebraic
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230 PETER FLEISCHMANN AND JENS CARSTEN JANTZEN

group over K, defined and split over F,. Let F be a Frobenius
endomorphism of G, as in [5], 7 an F-stable maximal torus of G
with character group X(7) and R C X(7') be the (indecomposable)
root system of G. We choose a basis Il = {a;, az,...,qa} of R
and assume F to induce a non-trivial automorphism 7 of the Dynkin
diagram of G. So either 7 is of order 3 and R of type D4 or 7 is
of order 2 and R of type 4; (I>1), D; (I >3), Eg,or By, Gy, Fy4
(in which cases p must be 2, 3, 2 respectively).

Attached to F are natural numbers i, ¢ €N such that Fi(¢) = t*
for all t € T and the number ¢ := p¢/! is uniquely determined by
G and F. The group GF of F-fixed points is either a finite (uni-
versal) Steinberg group (usually denoted by 3D4(g3)sc., 24;(4%)sec. »
2Di(q%)sc. or 2Eg(q%)sc.) or a Ree or Suzuki group (usually denoted
by ZBz(qZ), 2F4(q2), 2G2(q2) where q2 = 22m+l resp. qz = 32m+l
for some m ).

Excluding the cases (a) 242(4)s.., (b) 2B2(2)scc. , (¢) 2G2(3)sc. and
(d) 2F4(2)sc. , their quotient by the center is simple (see [19], Theorem
34, pg. 188) and is usually denoted by 3D4(g%), 24,(g?) etc. (or by
3D4(q),% 4;(q), according to the taste of the author.)

The groups in (a) and (b) are solvable, whereas in (c) and (d) their
commutator subgroups have index 3 and 2 and are simple non-abelian
finite groups (= PSI,(8) in (c), = Tits’ simple group in (d)) ([19], pg.
188).

In this framework the main theorem of this article reads as follows:

0.1. THEOREM. Let T be GF, GF /Z(GF) or (GF), then all peri-
odic simple KT'-modules are projective if and only if R is not of type
Ay or B, in which case they are isomorphic to St|gr or to a Clifford
component of it, if (GF) < GF.

In §1 we will reduce the problem for the Steinberg groups to the case
GF = 24;3(g%)sc. = SU4(q?), which will be dealt with in §2. Factoring
out the center, which does not affect the Sylow- p-structure, leads to
the result for the simple groups. Section 3 is devoted to the Ree and
Suzuki groups.

1. The reduction to SU,. In this section we exclude the cases
B,, G, and F,; but keep the previous notations. So all roots in R
have the same length. We assume moreover T  to be defined and split
over F,. So the usual Frobenius endomorphism x — x? on K gives
rise to an endomorphism Fy of G, acting on 7 via Fy(¢) = t# for
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all t € T. There is an automorphism of G that has the same order
as 7, commutes with F, stabilizes 7" and induces on I1 C X(7") the
same map as 7. If this automorphism is also denoted by 7, then we
can write F = to F}' = Fj’ ot for some integer n > 0; in this case
g = p". We denote the fundamental dominant weights of R by 4,
and set p := )_ 4, where the sum is over all simple roots. Let X(7T)*
be the set of dominant weights and set for all » > 0:

(1.1)  Xu(T) := {,1 =Y rda € X(D)0< 7, <p" forallae n}.

For any A€ X(T)* let V(1) be the Weyl module for G with high-
est weight A and L(A) its unique simple quotient. One has
V((p"-1)p) = L((p" —1)p) for all n; this module is often called the
n th Steinberg module and denoted by St,, .

For any G-module M and any r € N let M) denote the G-module
got from M by twisting the G-action with Fj. If u=}_ p'u; where
i ranges from O to n— 1 and y; € X;(T), then
(1.2) L(p) = L(o) ® L(u)V ® - ® L(ptp—)"" ™Y
by Steinberg’s tensor product theorem [18].

According to another theorem of Steinberg [18] the L(A) with 1 €
X,.(T) remain irreducible when regarded as a representation of GF,
and each simple K Gf-module is isomorphic to exactly one L(1) with
A€ Xy(T).

The nth Steinberg module St, = L((p" — 1)p) is known to be
projective as a KGF-module. So in the case of the Steinberg groups
our main theorem amounts to:

(1.3) THEOREM. Suppose that G is a Steinberg group not of type
Ay . Then L(X) is not a periodic KGF-module for any 4 € X,(T), A #

(" —=1p.

Using the corresponding results for non-twisted groups of type A4;,
[ > 1 (proved in [9]) we reduce the proof of this theorem to the case
of 243 (i.e. to the groups SU4(g?)) that will be dealt with in §2.

(1.4) PROPOSITION. If Theorem 1.3 holds in the case *As, then it
holds in all cases.

Proof. Suppose that L(4) is periodic. Then for any subgroup H of
GF any direct summand M of L(A) asa KH-module is periodic. So
we prove the proposition by constructing in each case some H and
M such that M is not periodic for KH .
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Here and in the following we will abbreviate a weight 4 = > rid,

by (ry,r,...,r), where Il ={a;, ..., a;}.
Case 1. Type A4;, ! > 3. Here the Dynkin diagram is:
(o] (o] o se (o] [0}
@ @, Qg @y @,

We consider GF = SU,,;(¢?) with respect to the hermitian form
given by the unit matrix.

Then ¢;: g — (§9) and c;: g — () g) define two canonical em-
beddings of SU;(g?) — SU,, (¢?). If L; denotes the Levi subgroup
for J CII in G, then the image Imc; is contained in the derived
group L’n\ (o) = L; and Imc, C L’H\ {0} = L, ; hence we can apply
a theorem of Smith [17]:

If 2= (r,...,n) € Xu(T) then L(A)|L, = L(4;) ® M; where
L(A;) is an irreducible module for L; with highest weight 4, and
M; is some other L; module. We get 4 = (r;, r2,..., ;) and
Ay =(ry, r3, ..., r)). See also [16] for a proof of these facts.

Furthermore L; is simply connected of type A,_;. If 1 #
(p" — 1)p, then we may assume without loss of generality that 4, #
(p" —=1)(p—Aq,) . Then L(4,) is a simple periodic and non-projective
SU,(g?) module in contradiction to the induction hypothesis.

Case 2. Type 2D;(q?)s..

[o] @,

Let L; be the derived group of the Levi subgroup corresponding to
Ji, where J; = {a;, ajy1} for i<l—-2 and J;_, = {a;_», aj_y, oy}.
Each L; is F-stable and simply connected; one has Lf = Ar(q)s.c.
for i <1-2 and (L;_5)f = 243(¢%)sc.. Ifagain A= (ry, 12, ..., 1),
then by Smith’s theorem L(A)|,r = L(4;) ® M; as above with A; =
(ri,rigy) for 1 <i<[l-3, and'll_z = (r_p, rj_1, 7). Again, since
L(A) # St,, one of these L(4;)’s must be non-projective and hence
non-periodic for Ll.F , by the corresponding result for 4,(g) in [9] and
the hypothesis.

Case 3. Type 2Eq(q%)s.c. :

oL

[e] (e]

@ @

Q
Q

c«Q ©
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The same kind of argument applies here with J; = II\{as}, J» =
{az, as} and (L;)¥ = 24s5(q%), (L;)F = 4a(q), using Case 1 and
the result in [9].

Case 4. Type 3D4(q*)sc.:

7

0 a,

o a,

R={x(¢e; £¢;), i #Jj}

Ro

The Weyl group W (G, T) acts on Z* as permutations of the =+¢;’s
with an even number of sign changes.

If ay:=¢e1—¢€, ay:=¢€,— €3, a3 :=€3—&4, a4 .= 3+¢&4, then the
t-fixed points a,, aj+ar+az+tas =€1+&3=: B, aj+2ar+az+ay =
&) + &, form an A4,-subsystem of R. Moreover W maps

(a3, B) — (ep, ;) under /1 2 3 4
1 -3 -2 4

(ay,az)— (az,a3) under (1 2 3 4
2 3 1

(a1, @) — (az, as) under <1 2 3 4
2 3 -4 -1

If U, denotes the root subgroup of G, then Uaz, Up are F-stable
and UF UF =F; . Let H be the subgroup (U, , Usg) < G; then
H is of type Ay and HF of type Ay(q). For i =1,3,4 let J; =
{ai, az}; hence L, =: L; is of type A4, but not F-stable. Let now
L(A) # St,, with A= (ry, rp, 13, F4).

Then L(A)|r, = L(4;) ® M;, where 4; = (r2, ry) resp. (r1, r2).

For each i there is some w; € W such that w;(H) = w;Hw;'
is contained in L;. Since L(A)|,r is periodic, also the restrictions
L(4)l, (gr) must be periodic. This can be seen for instance looking at
the rank variety in the sense of [3], [4] and the fact that rank varieties
of conjugate groups are isomorphic. Since w;(H) is contained in L;,
also L(4;)|,, (H") is periodic. But w;(HF) = A,(q) and r; < g, so
L(4;) is also irreducible for w; i(HF), which forces r; and r, to be
q — 1 by the result in [9]. This gives a contradiction. O

2. The Case SU,4. Keep all assumptions and notations from §1 and
assume that R is of type As.
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(2.1) LemMA. Let p = Y' p'w € Xu(T) with all w, € X,(T). If
L(u) is a periodic KG¥-module, then each u; has one of the following
forms :

(

b) p-1,p-1,1) with0<i<p-—1,

®) (,p—-1,p-1) with0<i<p-1,

) -1,4,)) with0<i,j,i+j=p-2,
(¢) (,j,p-1) with0<i,j,i+j=p—-2,
(d (p-1,i,p-1) with0<i<p-1,

() (i,p—1,)) with0<i,j<p-1,

) (p-2-i,i,p—2-i) withO<i<p-1.

Proof. Suppose u = (m;, mp, ms). The same argument as in the
proof of (1.4), Case 1 shows that L({(m;, my)) and L((m,, m3)) are
periodic as KSUj3(g2)-modules. The classification of these modules
in [7] yields now the claim. O

(2.2) LEMMA. Let 2 € X|(T) be of type (d), (e), (f) in Lemma (2.1).
Then dim L(A) is not divisible by p3.

Proof. The formulae for the characters of the L(4) in [12] §7 imply:

dimL(p-1,i,p—1)=dmV{p-1,i,p-1)
—dimVp-(i+2),i,p-(i+2))
forO0<i<p-1;
dimL(i,p—1,j)=dimV(i,p—1,j)
—dimVp-(+2),p-1,p~-(i+2)
+dimV(p—(i+2),i+j+1-p,p~(+2))
for0<i,j<p—-1,i+j>p—-2;
dmL(i,p-1,j)=dmV(i,p-1,j) for0<i,j,i+j=p-2;
dimL(i,p-1,j)=dimV(i,p-1, j)
—dimV((j,p—-(i+j+3),1)
for0<i,j,i+j<p-2;

dimL(p-2—-i,i,p-2—-i)=dimV(p-2—-i,i,p—-2-1)
for0<i<p-1.
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By Weyl’s dimension formula
dimV(r,s,t)=(r+1)(s+1)(t+1)(r+s+2)(s+t+2)(r+s+t+3)/12.

In each case one sees immediately that p? does not divide dim V' (u)
forany u. Inthecase A=(p—1,i,p—1) one gets

dimL(A) =2dim V(1) 20 (modp?) forp >3,
dimL(A) =2dim V(1) £0 (modp?) forp =3,
dimL(A)=14#0 (mod8) forp =2.

The other cases are similar and are left to the reader. |

Recall the definition of the rank variety Vg M of a KE-module
M for any elementary abelian p-group E as in [3] or [4]. So it is a
homogeneous subvariety of the vector space K where m is the rank
of E. It is called linear, if it is a linear subspace of K™.

(2.3) LEMMA. Let E be an elementary abelian p-subgroup of GF =
SU4(q?) and let € X;(T) be of type (b) or (c) in Lemma (2.1).
Then

Proof. Set C* ={(ry,r, ) € X(T)|-1<r,rn,r3,ri+rn+r<
p —3}. Then C* is a fundamental domain for the “dot” operation
(ie., w-u =w(u+p)—p) of W, on X, where W, is the affine
Weyl group (as in [14], II, 6.1). So there is a unique ' € W, - un C*
and a unique A’ € W, -ANC* where A =(p—-1,0,p—2); in fact
A=(-1,-1,0).

We want to use the translation functors T/{‘f and Tlf,' , cf. [14],
II, 7.6. More precisely, we shall show that T/{f’L(/I) = L(u) and
THL() = L(2). As T} L(3) is a direct summand of L(1) ® M

for a suitable finite dimensional G-module M , and T"},I L(u) a direct
summand of L(u) ® M*, elementary properties of the rank variety
(cf. [3]) yield VEL(A) = VgL(u).

If u is of type (c) in Lemma (2/.1), then A and u belong to the
same facet for W), . In this case Tf, L(A)= L(u) and le,'L(u) = L(A)
are special cases of [14], II, 7.15.

Suppose now that u is of type b) in Lemma (2.1),1e. u=(p—-1,
p—1,1) forsome i, 0<i<p-—1.Then p/=(-1,i,p—-(i+2)).
One has V(4) = L(A) and V(u) = L(u) by [11], p. 120 or by [12].
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We can compute the formal characters of T”IL(A) and T'VL( W) using

[14], II, 7.8. Let s; = s, be the reﬂectlon with respect to «; (for
i=1,2,3) andlet s € W be the affine reflection with s(r, s, ¢) =
(r+s+t—p,p—t,p—y5) for all (r,s,t) € X(T). Then the stabilizer
of 4 (under the dot action) in W), consists of {1, s, s, 515, S89,
51881}, that of A’ of {1, sy, 82, 5152, 5251, §15281}. The intersection
of these groups is {1, s;}, a system of representatives modulo this
intersection is {1, s, 5;5,} in Stab (1) and {1, s, 515} in Stab(4').

The element w € W), with w(r,s,t)=@p—-r,r+s+t,p—1t) has
the property that y =w -y’ and A =w -4'. One has

wsy - W' =p-(+2),p-1,-1),
wsisy- W =P +i,p—(i+2), —1).

These weights are not dominant, but become dominant after adding
p=(1,1,1). Therefore they contribute O to the sum in [14], I1, 7.12,

and we get T“ L(A) = T" V(A) = V(u) = L(u). Furthermore

ws-A=02p-2,p-1,-1),
wsys-A'=(0,2p-2, -1).

The same argument as above implies

7N _ i ~
Ty L(u) =T,V (u

I
=
>
I
&
>
O

For a € R, let U, = {x4(t)|t € K} be the root subgroup of G with
root homomorphism x,: K — G. We set:

— ~ (pH\4
H := Ual ° Vq +a, © Va,+a, © (JOLI+¢Jt2+a3 = (K™)".

If {uy,uy, ..., un}, {vy,v2,...,vy,} denote bases of F, and F,
over F, respectively, then let x;(u;) := Xo (4;),

X2(V)) 1= Xa, +a,(Vj) Xoy+a, (V]),  X3(Ug) := Xa, +a,+a, (Ur)-
The group
E:= HF = (xi(u)x2(v)xs(u)| 1 < i, k < nj 1< j < 2n)

is then an elementary abelian p-subgroup of rank 4n of Gf =
SU4(g?).
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(2.4) LEMMA. Let 1 € X (T) be one of the weights in Lemma (2.1).
Then

dimVgL(A) >4n—-2 for A# (p—1)p,
dim VeL((p — 1)p) > 4n — 4.

Proof. Let d := dim VgL(A); then by [3], Proposition 5.1, there
exists a “shifted subgroup” E~ < KE*, which is elementary abelian
of order p*'~4 such that L(4)|.~ is free. In particular p*"~4 divides
dim L(4), which proves the claim for the weights of type (d), (e) and
(f) by (2.2).

By (2.3) we are left with the weights (p—1,0, p—2) and (p—1)p;
in both cases L(4) = V(41). Now let J := {a;, ap} C II; then H
can also be described as the unipotent radical U; of the standard
parabolic subgroup Py = Uy xL; < G. If A = (r,s,t), then by
Smith’s theorem L(A)|, = L(A)% & X, where L(4)! is the space
of Uj-fixed points, which is also an irreducible module for L/ =
A (K)sc. X A1(K)s.c. , with highest weight (7, f), hence has dimension
(r+1)(+1).

Since E C U; and E~ is generated by elements of the form
1+ a;(x;—1) with a; € K, x; € E, itis clear that L(A)Us € L(A)E
which has dimension dim L(A)/p*"~? because L(A) is E~-free. So
we get p#"~4 < dim L(A)/(r+ 1)(t+1). Now we apply Weyl’s dimen-
sion formula and obtain p*"~¢ < p2(p+1)/6 for A= (p—1,0, p-2)
and p*"~4 < p* for A=(p—-1)p. o

(2.5) ProPoOSITION. If M is a periodic simple KSU,(q?)-module,
then
M=St,.

Proof. By [3] 5.6, V(X ®Y) = Ve(X) N Ve(Y) for KE-modules
X and Y. It is easy to see that dim Vg(L(u)") = dim Vg(L(n)),
so if M (% St,) is written in the form of (1.2), then at least for
one u; we must have dim Vg(L(u;)")) > 4n -2 by (2.4). Since all
rank varieties Vg are homogeneous affine subvarieties of K** the
intersection formula for homogeneous varieties implies

n—1
dim Vg M = dim [ Ve(L(:)")
i=0
>n-1)4n-4)+4n-2—-(n—-1)4n > 2,

which contradicts periodicity by [3], 7.6 and 8.1. mi
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REMARK. This proposition together with (1.4) implies Theorem
(1.3), and it is clear, since GF = (GF)' if type (a) of the exceptions is
excluded, how to get (0.1).

3. The Ree and Suzuki groups. In this section we deal with the cases,
where R isof type G,, F4 and B,, which were excluded earlier. Here
twisted groups of Lie type can exist only if the characteristic of K is
3, 2 and 2 respectively, and 7 always has order 2, interchanging the
long and short roots.

ProrosITiON (3.1). Let R be G, or F,,charK = 3 or 2 respec-
tively and T = GF, GF /Z(GF), or (GF)'; then every periodic simple
KT-module is projective, and either isomorphic to Str or to a Clifford
component of Stgr |r if T'=(GF) <«GF and T # GF.

Proof. We first prove this for I' = GF . By a result of Steinberg
[18], §12, an analogue of (1.2) applies here, with X (7)) replaced by
X(T)Y =X{={pu=2rik € Xi(T)laell and r, =0 if a isa
long root } .

Case 1. GF = 2G5(q?)sc. with ¢> =3", n=2m+1 and chark =
3,R = {+a, £(2a + 38), £(a + 38) (long roots), =, £(a + B),
+(a + 28) (short roots) }, and the Dynkin diagram is:

ao==f§

Here X{(T) = {(0,0), (0,1),(0,2)} and dimL(1) =1, 7, 27 for
A€ X (T) respectively. See [18], §12.
Let £ = {x(u, v)lu, v eFs} with

x(U, V) = Xor38(U) Xar g (U )X20138(V)Xay2p(0).

Then E is elementary abelian of rank 2n. With regard to the dimen-
sions it is enough to look at A = (0, 2). Then L(4) has the following
“monomial basis” with highest weight vector v} :

n
{x_‘(a+ﬂ)X (a+2mX o]0 < n; <23},

where X_, are root vectors in Lie(G).

If y is any positive root, x,: K — G the corresponding root ho-
momorphism and V), a weight subspace to the weight u of some G
module V', then one knows:

Xy(t) o vu € @ V;l-i—i])'

IEN
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Since A is the highest weight of L(4) and E consists of unipotent
elements, E must fix the three basis vectors v}, X_szv, X 2 ﬂv;{” If
d :=dim Vg(L(0, 2)), then as in the proof of (2.4), a suitable shifted
elementary abelian E~ < (KE)* with |[E~| = 3279 acts freely on
L(0, 2) and we get dim L(0, 2)/|E~| = 39-2"*3 > 3 and hence d >
2n — 2. By elementary properties of rank varieties, Vg(L(1)) = K?"
for 4 = (0,0) or (0, 1). The analogue of (1.2) together with the
intersection theorem for affine varieties yields dim V(M) > 2 for all
M # Str.

Case 2. GF = 2F4(¢%),q*> =2",n =2m+ 1 and charK = 2.
Here X(T) = {(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1, 1)}
with dimensions for L(4): 1, 26, 246, 2!2 respectively (see [20]). Let
: K — K,x — x?; we consider the following elements of
R (M={a;, &y, a3, as}):

1 i=a) + 200 + 3az + 2045 Y2 =204 + 3an + das + 2ay4;
01 :=a; + 2ay + 3a3 + ayg; 0y = a1 + 3ar + 4a3 + 2a4;
€1 :=a; + 20y + 203 + ay; & :=a) + 20 +4a3 + 204;

@1 :=a; +ar+ 2a3+ ag; 02 = a1 + 2ar + 2a3 + 2a4;
Wi1i=ap+ax+a3+ay; W2 = o + oy + 203 + 204.
Notice that y,, dy, ... are short and y,, d», ... are long.
Let
. 26\ . . 26
xi(uy) = x, (ur) o xy,(uy") s x2(uz) := x5 (u2) 0 X5 (43" ;
x3(us) 1= X (u3) o X, (u) 5 Xa(ug) i=xp (s) 0 Xy (uf);

xs(us) = Xy, (us) 0 Xy (u3®);  with u; € Fpr.

Notice that these elements commute because of char K = 2, and hence
the group E = (x;(u;)|li=1,2,3,4,5; u; € Fy») is an elementary
abelian subgroup of G¥ of rank 5n.

For L(0,0,1,1) there is a monomial basis, consisting of ele-
ments of the form xn o X"z UA with n; € {0, 1}, where
{wy, wy, ..., w0} 18 the set of short pos1t1ve roots.

The 7 short roots a3z, oy +az, aj+ar+az, ag, az+ay, ey +az+
a4, @y + 2a3 + a4 have not full support in I1. Since the generators of
E are products of x,’s where y is a positive root with full support, an
argument similar to that of Case 1 shows that basis vectors involving
only monomials in those 7 roots have to be fixed by £ and hence by
any shifted subgroup E~ of KE*.
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Since there are 2’7 such monomials, dimL(0, 0,1, )¢ > 27,
If d = dimVg(L(0, 0, 1, 1)) then again we can choose E~ to act
freely on L(0,0,1,1) and to be of order 2579, So we get
dimL(0, 0, 1, 1)/|E~| = 22754 > 27 hence d > 5n — 5. Since
all other Vg(L(4)) for 2 € X;(T) have dimension > 5n — 1 (4 does
not divide dimL(4) for 4 # (0,0, 1, 1)), the analogue of (1.2)
yields:

dim Vg(M) >4 for all M # St.r.

Proof for GF |Z(GF) and GF'. As Z(GF) is a p'-subgroup of GF
the same results hold for I' = GF/Z(GF). Now let GF' # GF ; then
m=0,n=1and ¢>=|GF/GF'|=p=3inCase | and =2 in
Case 2.

By Clifford’s theorem St| G is completely reducible. Let V' be a
simple direct summand of St|_,, with inertia group I := Ig+(V) =
{g € GF|V& = V as GF modules}. Then I = GF . Otherwise
by (8] §9, (9.9), V = WlGF' for a simple Gf module W, which is
isomorphic to St.r, since V' is projective; but then W had to be a
direct summand of the induced module V¢ since W is projective,
which contradicts the indecomposability of ye" given by Green’s
theorem [8] §16. So St|,r = @ge & G V8 and we claim that each

periodic simple GF module is isomorphic to one of these V¢ ’s.
Let S be an irreducible periodic module for G¥ . If I =1.-(S) =

GF then again S = W, for a simple GF¥ module W . In Case

1, E C GF' and in Case 2 EN GF has rank > 4; hence 3 or 23
divides dim W respectively which forces W to be = St.r, leading
to a contradiction. Hence I = GF which implies that SC is simple
periodic for G¥. So S¢ = St;r and S = V¢ fora g € GF by
Frobenius reciprocity. In particular S is projective. O

We conclude the treatment of twisted groups of Lie type, by com-
puting the rank varieties of simple modules for G = 2B,(¢%)sc.,
which includes a classification of periodic simple modules, i.e. those
whose variety has dimension 1.

Let g2 =2",n=2m+1,charK = 2,60 := (72,11 = {a, }.
The Dynkin diagram is o==0. Let P := {x(¢, u)|t, u € Fymn} €
Syl,(GF), with x(z, u) = Xa()X5(t9)X0425(U)Xes (0 + u?); then
|P| = 24m+2 and Z(P) = {x(0, )} is maximal elementary abelian;
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let D := Z(P). Notice that there is only one conjugacy class of
maximal elementary abelian 2-subgroups in G¥. Here X(T) =
{(0, 0), (0, 1)} with dimensions 1 and 4 respectively.

(3.2) PrROPOSITION. Let GF = 2By(q?)sc. and M be an irreducible
KGF-module ; then Vg(M) is linear and dim Vg(M) = n — s, where
s is the number of factors A; = (0, 1) in the tensor product

n—1
M=QL)Y,  ieX(T).
i=0

Proof. We need only to consider L(0, 1) which has a basis B =
vt X_pvt, X_(qepyvt, X_pX_(q4pv7}. A straightforward com-
putation shows, that

x(0, wvt=v"; x(0, ) X_pv* =X_gv";
X(O, M)X_(a+/)>)1)+ = L{GU+ + X—(a+ﬂ)v+
X(O, M)X_ﬂX_(a+ﬂ)V+ =uvt + uHX_ﬂX_(aH,»)V*.

Hence x(0, u) is represented with respect to B by

1

o 1 0

u 0 1

u u? 0 1
Let now {u;} be an F,-basis of F,-, then {x(0, u;) =: x;} is a basis of
E.Fora=(a;,ar,...,an) € K" wedefine u, :=1+5 a;(x; - 1).

Then we get, using Lemma 4.2 of [3]:
Ve(L(0, 1)) ={a€ K"[tku, — 1 < $4} = {a € K”lZal-u? = O}.
The analogue of (1.2) now gives the result. O

REMARK. It may be interesting to notice that non-projective sim-
ple periodic modules only occur in finite groups of Lie type, if the
group has a split BN-pair of rank one. But 2G, shows, they need not
necessarily occur in this case.
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