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Let X be a nonsingular real algebraic subset of R”. There are
known several results concerning analytic subsets of X which are
analytically or C” equivalent to algebraic sets, i.e., which can be
transformed by an analytic or C" diffeomorphism, »r =0, 1,2, ...,
of X onto algebraic subsets. In general, C" equivalence does not
imply analytic equivalence. however, we show in this paper that C”
equivalence often can be replaced by, much stronger, “almost analytic”
equivalence.

1. The main result. In this paper real algebraic varieties and mor-
phisms between them are understood in the sense of Serre [15] (Serre
considers algebraic varieties over an algebraically closed field but his
basic definitions make sense over any field). The reader may consult
a detailed exposition [7] for properties of real algebraic varieties, es-
pecially in connection with real algebraic blow-ups (cf. also [1]). All
subvarieties will be assumed closed but not necessarily irreducible.

Let Y be an affine real algebraic variety and let Z be a subvariety
of Y. Then the algebraic blow-up n: B — Y of Y along Z has the
following properties: B is an affine real algebraic variety, 7 is a real
algebraic morphism whose restriction to B\n~1(Z) is an algebraic
isomorphism onto Y\Z, and n is a proper map if B and Y are
equipped with the Euclidean topology. Moreover, B is nonsingular
and 7 is surjective if Y and Z are nonsingular varieties.

Let X and X be affine nonsingular real algebraic varieties and let
D be a subvariety of X . An algebraic morphism x: X — X is called
a k-fold algebraic multiblowup of X along D if 7 is the composition
7T =7 o---0m , where

~ n ,_ T T
X=Xy 5 Xy = >X - X=X,

7, 1s the algebraic blow-up of X along a nonsingular subvariety of D
and n;,; isthe algebraic blow-up of X; along a nonsingular subvariety
of X; contained in (7;0---om;)" (D) for i=1,...,k—1. Note
that the restriction of 7 to X \n~!(D) is an algebraic isomorphism
onto X\D.
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To formulate the main result, we need one more notion.

Given a compact (in the Euclidean topology) affine real algebraic
variety X and a nonnegative integer k, we denote by Hzlg(X , 2/2)
the subgroup of the homology group H, (X, Z/2) generated by the
homology classes represented by the algebraic k-dimensional subva-
rieties of X (cf. [7], Chap. 11 or [8]). If V' is a k-dimensional
analytic subset of X, then [V] will stand for the homology class in
H, (X, Z/2) represented by V' [8].

THEOREM 1.1. Let X be a compact affine nonsingular real algebraic
variety of dimension n. Let Vi, ..., V; be coherent analytic subsets
of X . Assume that there exists a finite subset D of X such that V;\D
is an analytic submanifold of X of codimension 1 for i=1,...,d
and the submanifolds {V,\D},_, . 4 are in general position. Also as-
sume that [V;] belongs to H;lfl(X, Z/2) forall i=1,...,d. Then
there exists an algebraic multiblowup n: X — X of X along D with
the property that for each nonnegative integer r, one can find a C’
diffeomorphism ¢:X — X and an analytic diffeomorphism 6:X — X
such that moé = oomn and o(V;) is an algebraic subvariety of X for
i=1,...,d.

Of course, “general position” in Theorem 1.1 has the usual meaning
(cf. for instance [6], p. 2).

In the present work we adopt the point of view suggested by T. C.
Kuo (cf. [11], [12], [13], [14] and also [9]) who searched for equiva-
lence relations weaker than analytic equivalence but still preserving its
nice features. Note that, in Theorem 1.1, ¢|X\D is analytic. More-
over, g is “almost analytic” at D in the sense that the obstruction
which prevents it from being analytic at D is of a very special nature.
Namely, ¢ can be “lifted” to an analytic difffomorphism & of X.
Observe also that the analytic subsets z~1(V;) of X,i=1,...,d,
can be simultaneously analytically transformed onto algebraic subva-
rieties of X . More precisely, G(n~Y(V})), i=1,...,d, are algebraic
subvarieties of X . We should also mention that @ cannot, in general,
be chosen analytic (cf. [S], p. 118, Example 3).

Theorem 1.1 immediately implies the following corollary.

COROLLARY 1.2. If V is a coherent analytic subset of X such that
V' is of pure dimension n — 1 at each point, the set of singular points
Sign(V) of V is finite, and [V belongs to Hf:lfl(X , Z/2), then the
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conclusion of Theorem 1.1 holds true with d =1, Vi =V and D =
Sing(V).

REMARK 1.3. The assumptions “[V;] belongs to H;‘l_gl(X , Z/2)” in

Theorem 1.1 and “[V7] belongs to H;‘lfl(X , Z/2)” in Corollary 1.2
cannot be dropped (cf. [5], p. 116, Example 1).

2. The key proposition. We start by recalling the following impor-
tant result.

LEMMA 2.1. Let Y be a closed analytic submanifold of an analytic
manifold X and let n: B — X be the analytic blow-up of X along Y .
Let v be an analytic vector field on X which is k-flat at Y for some
positive integer k. Then the vector field v* on B defined by

e [ @m) N (v(n(p)) forpeB\n~\(Y),
g (p)—{ 0 forpen (YY)

is analytic and (k — 1)-flat at n='(Y). If v analytically depends on a
parameter, then v* also analytically depends on the parameter.

Proof. This result, which is well known, is of a local nature and
follows from a straightforward calculation in local coordinates.

Every manifold considered below will be equipped, even if we do
not explicitly say so, with a fixed Riemannian metric. If A/ is a man-
ifold, x is a point in M and D is a subset of M, then dist(x, D)
will denote the distance from x to D with respect to the fixed Rie-
mannian metric on M .

Our next auxiliary result is a consequence of Hironaka’s desingu-
larization theorem.

LEMMA 2.2. Let X be a compact affine nonsingular real algebraic
variety and let f:X — R be an analytic function with f~1(0) = D
finite. Then there exists an algebraic multiblowup n: X — X of X
along D such that f o n is locally a normal crossing, i.e., each point
p in X has a local analytic coordinate system (Up, Y15 .- Yn) With

origin at p such that fon|U, = 8y{‘(1) oy where & U —Risa
nowhere vanishing analytic function and u(l), ..., u(n) are nonneg-

ative integers.

Proof. By the Lojasiewicz inequality [16],
(2.2.1) |f(x)| > a dist(x, D) forall x in X,
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where a > 0 and m is a positive integer. Let ¢: X — R be a regular
function close to f in the C* topology, such that f — ¢ is m-flat
at D (cf. [4], Corollary 1). We may assume that ¢~!(0) = D. By
Hironaka’s desingularization theorem [10], there exists an algebraic
multiblowup 7: X — X of X along D such that @ om is locally a
normal crossing.

We claim that f o m is also locally a normal crossing. Indeed,
let p be a point in X and let (Up, y1,-...,Yn) be an analytic lo-
cal coordinate system on X with center at p such that ¢ o n|U, =
Jy{‘(l) .- y#" where 6:U, — R is an analytic nowhere vanishing
function and u(1), ..., u(n) are nonnegative integers. Since f sat-
isfies (2.2.1) and f — ¢ is m-flat at D, we obtain that for every
point x in X and every analytic map-germ y: (R, 0) — (X, x), both
foy and ¢ oy have the same order of flatness at 0. Clearly, the
analogous observation is valid for fozn o9 and ¢ om o §, where
7: (R, 0) — (X’ , ) 1s an analytic map-germ, g € X . It follows that
fon|U, = aYl"(l) .--yM") for some analytic nowhere vanishing func-
tion e:U, — R. Hence, f o is locally a normal crossing and the
lemma is proved.

For f,n and(U,,y1,...,ys) as in Lemma 2.2, the integer
h(f, m, p)=max{u(l), ..., u(n)} does not depend on the choice of
(Up, ¥1,.--,¥n)- Since n~!1(D) is compact,

h(f, ) =sup{h(f, =, p)lp € X}

is finite. The integer A(f, ) will play an important role later on.
Given a map F:X x [0, 1] — Y and a point ¢ in [0, 1], let F;
denote the map F(-, ¢).

LEMMA 2.3. Let X be an affine nonsingular real algebraic variety
and let 1: X — X be an algebraic k-fold multiblowup of X along a
finite subset D of X. Let f:X x[0,1]—> R and §: X x[0, 1] =R
be analytic functions. Assume that foon is locally a normal crossing
and

f(x,t) >adist(x, D)" forall (x,t)in X x[0, 1],

where a > 0 and m is a positive integer. Also assume that f,'(0) =
D, fi—fy is m-flatat D, and & is h(fy, n)-flat at n=1(0) forall t in
[0, 1]. Then there exists an analytic function h: X x [0, 1] — R which
vanishes on n=1(D) x [0, 1] and satisfies h(p, 1) f(n(p), t) = &(p, t)
for (p,t) in X %[0, 1].
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Proof. As in the proof of Lemma 2.2, one easily sees that f(n(p), ?)
= i(p, t)fo(n(p)), where : X x [0, 1] — R is a nowhere vanishing
analytic function. The proof is concluded since the A(fy, n)-flatness
of g at n=~1(D) implies that k(p, Hfo(n(p)) = g(p, t), where k: X x
[0, 1] — R is an analytic function vanishing on 7~!(D) x [0, 1].

We now proceed towards the main result of this section.

Let X be a real analytic manifold. Denote by D"(X) the group of
C" diffetomorphisms of X, r=0,1,2, ..., @, where w stands for
analytic. The ring of analytic functions from X to R will be denoted
by #(X) and the ring of analytic function-germs (X, x) — R at x
in X by g,(X).

Let £ = (E, p, X) be an analytic vector bundle over X. Denote
by I'"(£) the space of C" sections of & and by E, the fibre of & at
x. If s is a section of ¢, then s~1(0) will denote the set of zeros of
s. If s is analytic, then we define the ideal /(s) of #(X) as follows:
Given x in X, let (s;,..., Sx) be a system of germs at x of analytic
sections of £ such that (s;(x), ..., si(x)) is a basis for E,. Then
the germ s, of s at x can be written as s, = fis1 +--- + fis; for
some f; in &@x(X). We define I(s) to be the unique ideal of #(X)
satisfying

k
I(5)8:(X) =Y fiox(X)
i=1

for all x in X. Observe that the set of zeros of I(s) is equal to
s~1(0). Analogously, if ® is an analytic section over X x [0, 1]
of &, ie., ® is an analytic map from X x [0, 1] to E such that
O, = ®(-,t) is a section of & for all ¢ in [0, 1], then the germ
D, of @ at (x, 1) can be written as D, ;) = Fis;+ -+ Fs; for
some F; in g (X x[0, 1]). We define I(P) to be the unique ideal
of @#(X x [0, 1]) satisfying

k

(D), (X x [0, 1) =Y F&x »(X x [0, 1])

i=1
forall (x,t?) in X x [0, 1].

Let 7: X — X be an analytic map between real analytic manifolds
(in our applications, X will be an affine real algebraic variety and #
will be an algebraic multiblowup of X along a subvariety consisting of
finitely many points). Let &; = (E;, p;, X), i=1, ..., d, be analytic
vector bundles over X, ranké; = c(i), and let & = (E, p, X) =
é 1D ® é 4
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The set
G'(&)={(y,0) € D'(E) x D'(X)|poy=0o0p,
PE)CE;fori=1,..., and y|Ex: Ex — E;y)
is a linear isomorphism for x € X'}

is a subgroup of D"(E) x D"(X). The action of G"(¢) on I"(&) is
defined by
(y,0)-s=yosog™!

for (y, o) in G"(¢) and s in I"(&). Let G"(&, n) be the subgroup
of G"(£) consisting of all elements (y, o) in G"(£) such that there
is an analytic diffeomorphism &:X — X satisfying 6o = mo§.
We say that two sections in I'7(¢) are m-analytically C" equivalent
if they are in the same G'(&, m)-orbit. Note thatif s =5, ®--- ® s,
and u=u; ®---®uy are C" sections of & and u = (y, g) -s, then
o(s71(0) =u7!(0) for i=1,...,d.

Let ¢ = (c(1),...,c(d)) and |c] = ¢(1) + -+ + c(d). Denote by
G(c) the subgroup of Gl(|c|, R) consisting of all matrices of the form

B, 0
B,

0 B,
where B; isin Gl(c(i),R), i=1,...,d.let {4;}, j=1,...,4q,
g = c¢(1)> 4+ --- + ¢(d)?, be a basis for the tangent space T;G(c) of
G(c) at the identity |c|x |c| matrix I (we consider 7;G(c) embedded
in the space of all |c| x |c| matrices). Given

F=Us s ficqys eoes Jars - s fae(a))

in @#(X)ll, we define J(f) to be the ideal of #(X) generated by all
lc| x |c| minors of the [c| x (m + ¢q) matrix L(f) with A, f, ...,
Ag- . f, ..., Y f as columns,

Lfy=(A-fooosdg- [0S0, Y f),
where {Y;},-; . m are analytic vector fields on X generating the
@ (X)-module I'*(TX). Similarly, if

F = (Fll, cee s Flc(l)s ceey Fdls ey ch(d))
isin #(X x [0, 1))l and the Y; are considered, in the obvious way,

)
as elements of I'°(7(X x [0, 1])), then we let J(F) denote the ideal
of #(X x [0, 1]) generated by all |c| x |c| minors of the matrix

L(Fy=(A4,-F,..., Ay - F, \/F,..., Y, F).
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Given an analytic section s = s; @ --- @ s; of &, let J(s) denote
the ideal of #(X) generated by all J(f) with f;; in I(s;) for i =
1,...,d,j=1,...,¢c(i). f ®=®, @ - - D, is an analytic section
over X x[0, 1] of &, then J(®) will denote the ideal of #(X x[0, 1])
generated by all J(F) with F;; in I(®;) for i =1,...,d, j =
b, ..., c(i).

The geometric significance of the ideal J(s) is explained below
(J(®) is introduced for technical reasons).

LEMMA 2.4. Let s =51 ®---®s; be an analytic section of & and
let Zi=s7'0), i=1,...,d. Assume that I(s;) is equal to the ideal
of all functions in @(X) vanishing on Z; and codim Z; = c(i). Then
the following conditions are equivalent.

(1) Each Z; is an analytic submanifold of X and the family
{Zy, ..., Zy} is in general position.
(i1) The set of zeros of J(s) is empty.

Proof. An elementary argument of linear algebra.
We are now ready to prove the main result of this section.

PrOPOSITION 2.5. Let X be a compact affine nonsingular real alge-
braic variety. Let & = (E;, pi, X), i=1,...,d, be analytic vector
bundles over X and let s = 51 ® --- ® s; be an analytic section of

=& ®---dE. Let & be an element of J(s) such that the set
6~Y(0) = D is finite and

d(x) > adist(x, D)™ forall xin X,

where a > 0 and m is a positive integer. Let n: X — X be an alge-
braic k-fold multiblowup of X along D such that don is locally a nor-
mal crossing. Then there exists a neighborhood 7 of 0 in T“(&) (in
the C* topology) such that for every positive integer r and every
analytic section u of &, if u—s belongs to 7° and is I-flat at D,
[ =max{k+h(d, n), (r+ 1)m}, then u is mw-analytically C" equiva-
lent to s.

Proof. First we shall replace the vector bundles &; by trivial vector
bundles over a “larger” manifold Q.

Let {( , ); be an analytic Riemannian metric on &; and let c(i) =
rank &;. The set

Q={(8,X)€Ef(l)X---XEz(d)XX|8=(81,...,8d),
g; is an orthonormal basis for E;,, i=1,...,d}
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is a compact analytic submanifold of Ef(l) X e X Ej(d) x X and the
map
AQ—- X, Ale, x)=x

is an analytic, locally trivial fibration. The fibres of A are diffeomor-
phic to the product V' (RED) x ... x V' (R4)) where V(RK) stands for
the Stiefel manifold of orthonormal bases for R¥ .

Let O(c) = O(c(1)) x --- x O(c(d)) , where O(k) denotes the group
of orthogonal k x k matrices. We shall consider O(c) as a subgroup
of G(c). Define the action of O(c) on Q by the following formula:

a-(e,x)=(a-¢&,Xx),

where o isin O(c), (¢, x) isin £ and ¢ is considered as a |c| x 1
matrix.

For each i = 1,...,d, the pull-back vector bundle A*¢;, =
(A*E;, A*p;, Q) is trivial. Indeed, by definition

NE;={(w,e) € Qx Ej|Aw) = pie)}
and the analytic sections
5ij:Q — A'E;
of A*¢; given by
sij(e, x) = ((¢, x), &),

where ¢ = (&1, ..., &), & = (&1, ..., &ic(;)), are linearly indepen-
dent at every point (¢, x) in Q for j=1,..., c(i).

Given a section v =v; ®---d vy of &, let

Jo= o1ty eees oretys -+ s Jodrs -+ > Jodea))
be the element of #(Q)/¢! determined by the equations

c(i)
A*'U,-=va,~js,-j, i=1,...,d,
Jj=1

where A*v;:Q — A*E; is the pull-back of v;, that is,
(A™v;)(w) = (o, vi(A(w)))

for w in Q.

One sees immediately that f, (considered as a map from Q to
Rl‘) is O(c)-equivariant, where the action of O(c) on Rl is the
usual matrix multiplication.
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Now, let u be an analytic section of ¢ such that u —s is /-flat at
D. Set d(x, 1) = (1-1)s(x)+tu(x) for (x, t) in X x[0, 1] and pick
an element A in J(®) such that Ay =0 and A, —¢ is (/ — 1)-flat at
D for t in [0, 1]. If u is sufficiently close to s (where the closeness
does not depend on ), then A !'(0) =D for ¢ in [0, 1] and

(2.5.1) A(x, t) > b dist(x, D)™ forall (x, t) in X x [0, 1],

where b > 0.
Define F:Q x [0, 1]— Rl and Z:Q x [0, 1] — R by

F(Cl), t) :fq) (CU)
A

S, 1) = A(A (@), 1

i

for (w,t) in Q x [0, 1]. Computing in a local coordinate system,
one easily sees that for each point (w, ) in Qx[0, 1] the germ of £
at (w, t) isin J(F)Gy,n(Q2 x [0, 1]). It follows that X is in J(F)
and, by Cramer’s rule, for every element H of #(Q x [0, 1])l!, the
product £H is a linear combination with coefficients in #(Q x [0, 1])
of the columns of the matrix L(F). Hence

(2.5.2) (o, t)%?(w, t) = duF(V(w, 1) +K'(w, {) - F(w, 1),

where v’ is a time-dependent analytic vector field on Q and x': Q x
[0, 1] — T;G(c) is an analytic map. Moreover, since 0F /9t is [-flat
at A~Y(D) for all ¢ in [0, 1], we may assume that

(2.5.3) v! and k| are [-flat at A~Y(D) for ¢ in [0, 1].

Using the fact that F, is O(c)-equivariant and eventually replacing
in (2.5.2) v/ =v'(-, t) by its O(c)-average and x'(w, t) by

/ oV Kk'e-w,t) adu,
0(c)

where « isin O(c) and p is the Haar measure on O(c) with [ du =
1, we may assume that v/ is an O(c)-equivariant vector field and x’
satisfies

(2.5.4) Ko o, t)=a k'(w,t)-a ",
Since A is a fibration, one easily sees that

Xw, t) >d dist(w, A~H(D))" for (w, t)in Qx [0, 1]
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where d > 0 (cf. (2.5.1)). It follows from this inequality and (2.5.3)
that the time-dependent vector field

. Viw, t)/E(w, t) for (w,t) e (Qx[0, 1)\Z"1(0),
g (w’t)={o for (x, £) € 2-1(0)
is of class C” and
. K'(w,t)/Z(w, 1) for (w,t)e (Qx[0, 1D\Z"1(0),
K (“”’):{o for (@, 1) € 2-1(0)
is also of class C". From (2.5.2) we obtain
(2.5.5) aF(a), t) =dyFi(v*(w, 1)+ k" (w, t)- F(w, t).

~ar

Let {o; =0*(-, t)}, t €[0, 1], be the C" diffeotopy of Q deter-
mined by v*, that is,

{ 99" 0, 1) = v*(a*(®, 1), 1),

ot
0*(w,0)=w

(2.5.6)

and let R*: Qx[0,1] — GL(|c|, R) be the resolvent of —x*(0*(w, t),1),
that is, R* is a unique C” map satisfying

(2.5.7) a1

R*(w, 0) = I (the identity matrix).
Since k*(o*(w, t), t) is in T;G(c), we obtain that R*(w, t) is in
G(c) forall (w,t) in Q x [0, 1].
Using (2.5.5), (2.5.6) and (2.5.7), we obtain immediately

(2.5.8) (Fioa/)(w) =R*(w, t) - Fy(w)

for (w,t) in Q x [0, 1].

Clearly, {0/} is O(c)-equivariant. Hence there exists a unique C”
diffeotopy {o;} of X satisfying ;0 A=Aocag/.

Let

{ ?ﬁ(w’ t) = —x*(a*(w, t)’ t) -R*(Cl), t)’

CO=(£,X)€Q, 8=(81,...,8d), 8i=(8i1,...,8ic(,')),

of(w)= (", 0(x)€Q, & =(ef,..., €, e=(y,..., ch(,-)).

We define y,: E — E as follows: Given ¢ in E=E, &---® E;, we

can write
d c(i)

e=Y > Aijtij)s

i=1 j(i)=1
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where 4;;;) € R are uniquely determined. Let

= (A11s eee s Ae(lys o+ s Adls -+ > Ade(a))
and
R*(w, t)(4) =
where
A=A, ... ,A’lc(l), N S ...,lfic(d)).

Define y;: E — E by

d c(i)
=2 2 B
i=1 =1

This construction makes sense (i.e., y; is well-defined and of class
C") since o; 1s O(c)-equivariant and, by (2.5.4), R* satisfies

Ra-w,t)=a R (w,t)-a”!

for all (w,t) in Q x[0, 1] and a in O(c). Observe that (y;, g;) is
in G'(&). Using (2.5.8), one obtains

D, = (y, g1) - Po.
Since ®; =s and ®; = u, we have, in particular,

u=(y,o)-s.

Thus to complete the proof it suffices to show that (y;, g;) belongs
to G'(¢, ).

Since v/ is O(c)-equivariant, it follows that there exists a time-
dependent C” vector field ¥ on X satisfying

V(A(), 1) = doA(v* (o, 1))

for all (w, t) in Q x [0, 1]. B
We claim that the time-dependent vector field 7 on X defined by
M. 1) = { (dpm)~Yv(n(p), t)) for (p, 1) e (X\n~Y(D)) %[0, 1],
P>U=170 for(p,z)en—l( )x[O,l]

is analytic. Indeed, since v, is O(c)-equivariant, there exists a time-
dependent analytic vector field ! on X satisfying

v (A(w), t) = d,A(V (@, t))
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for all (w,?) in Q x [0, 1]. Clearly, v}! is /-flat at D for all ¢ in

[0, 1] and by Lemma 2.1, the time-dependent vector field 7! on X
defined by

y [ (@m) (N (n(p), 1) for (p, 1) e (X\n"1(D)) %[0, 1],
v (p’ t) - { 0 f -1
or(p,t)en (D) x[0, 1]

is analytic and A(J, n)-flat at D. Since
v p, t)=An(p), )0 (p, 1)

for (p,t) in X x [0, 1], (2.5.1) and Lemma 2.3 imply that 7 is
analytic. Thus the claim is proved.

Note that {o;} is the diffeotopy of X determined by v . If {6;} is
the analytic diffeotopy of X determined by 7, then 7o d; = g;0 7.
Hence (y;, g;) belongs to G"(£, n) and the proof of Proposition 2.5
is finished.

3. Proof of Theorem 1.1. Let X be an affine real algebraic variety
of dimension z. An algebraic vector bundle £ over X is said to be
strongly algebraic if there exists an algebraic vector bundle n over X
such that £ @ n is algebraically trivial, i.e., algebraically isomorphic
to a product vector bundle X x R” (cf. [7], Theorem 12.1.7 or [2]).

Let V' be a coherent analytic subset of X of pure dimension n — 1
at each point. One constructs, in the standard way, an analytic real
line bundle ¢ over X and an analytic section s of £ such that I(s)
is equal to the ideal of all functions in #(X) vanishing on V (in
particular, s~1(0) = V). Then the first Stiefel-Whitney class w (&)
of ¢ is Poincaré dual to the homology class [V] in H,_ (X, Z/2)
represented by V. Recall that £ is topologically (and hence also
analytically) isomorphic to a strongly algebraic line bundle over X if
and only if [V] belongs to Hf:l_gl(X, Z/2) [7], Theorem 12.4.8 or [3].

Proof of Theorem 1.1. Let &; be an analytic line bundle over X
and let s; be an analytic section of &; such that I(s;) is equal to
the ideal of @ (X) of all functions vanishing on ¥;. Since [V]] is
in Hfl‘lfl(X , Z/2), we may assume that &; is a strongly algebraic line
bundle (cf. the remark above). Set & =&,@---®&; and s = 5,0 - -Psy .
By Lemma 2.4, the set of zeros of the ideal J(s) is contained in D.
Thus one can find an element J in J(s) with 671(0) =D and § > 0.
By the Lojasiewicz inequality [16],

d(x) > a dist(x, D) forall x in X,
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where a > 0 and m is a positive integer. It follows from Lemma
2.2 that there exists an algebraic, say, k-fold multiblowup 7: X — X
such that ¢ oz is locally a normal crossing.

Let r be a positive integer and let

[ =max{k +h(d, ), (r+ 1)m}.

Since ¢ is a strongly algebraic vector bundle over X, one can find
an algebraic section u = u; @ --- @ uy; of & such that u is close to
s in the C* topology and u — s is [-flat at D (cf. [4], Corollary
1). By Proposition 2.5, there exists an element (y, o) in G"(&, n)
satisfying u = (7, ¢)-s. Hence, in particular, o(s;(0)) = ul-_l(O) for

i
i=1,..., d and nod = ogon for some analytic diffeomorphism &
of X . Since u;!(0) is an algebraic subvariety of X and V; =s;(0),

i i
the proof of Theorem 1.1 is complete.

Acknowledgment. 1 wish to thank the referee for his or her com-
ments on the first version of this paper.
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