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We show that the power 3/2 appearing in the estimate of analytic
capacity is best possible.

1. Introduction. For a compact set E in the complex plane C,
H<*(E*) denotes the Banach space of bounded analytic functions in
E¢ = CU{oo} —E with supremum norm ||-||g~ . The analytic capacity
of E is defined by

Y(E) = sup{|f'(0o)|; [l fllg= < 1, f € H(E)},
where f'(00) = lim;—o 2(f(2)—f(00)), i.e., f'(c0) isthe (1/z)-coeffi-
cient of the Taylor expansion of f(z) at infinity. It is easily seen that
y(E) < |E|, where |E| is the (generalized) length of E; if E is a
subset of the real line R, then |E| equals its 1-dimension Lebesgue
measure (cf. Garnett [4, Chap. III]). Vitushkin [12] constructed an
example Qy such that y(Qx) = 0 and |Q| > 0 (cf. [4, p. 87]).
Denjoy [3] showed that y(E) > 0 if E is a subset of a rectifiable curve
such that |E| > 0. But his proof has a serious gap, and his theorem
was, for a while, called the Denjoy conjecture. As is easily seen, we
may assume that E is a subset of a rectifiable graph. Let pr E denote
the projection of E to R. Since pr is a contraction [6, p. 377], it is
natural to try the lower estimate of y(E) by y(prE). Pommerenke
[11] showed that y(prE) = |pr E|/4. Hence this approach is equiv-
alent to comparing y(E) with |prE|. To do this, the study of the
Cauchy-Hilbert transform on C! graphs is necessary (Davie [2]). In
1977, Calderén [1] succeeded in proving its boundedness, and, using
his theorem, Marshall [8] finally settled the Denjoy conjecture in the
affirmative. After Marshall’s theorem, we are concerned with studying
further relations between y(E) and |prE|. Using an estimate of the
Cauchy-Hilbert transform on Lipschitz graphs [10, p. 53], the author
[9] showed that
y(E) > Co| prE*

if E is a subset of a rectifiable graph I' satisfying |I'| = 1, where Cj
is an absolute constant. The main purpose of this paper is to show
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314 TAKAFUMI MURAI

that the power 3/2 is best possible. Our method gives a new approach
to the computation of analytic capacity, and suggests that analytic
capacity 1s related to the theory of fractals (Mandelbrot [7]).

For an integer p > 2, we put

B,,(x):%ﬂ—(—l)k} (ng k%o<k<p—l>

For an n-tuple (p;, ..., p,) of integers larger than or equal to 2, we
put

n
A3 D1y s Do) = 3 By (¥)

A set I' C C is called a crank of degree n if it is expressed in the
form

F=T(p1,...,pn)={x+iA(x;p1,...,Dn); 0<x < 1}

for some n-tuple (p;, ..., pn) of integers larger than or equal to 2.
(The class of cranks in this paper is smaller than a class defined in [10,
Chap. III}.) We shall show

THEOREM. Forany n > 1, there exists a crank T, of degree n such

that
1

<y £ Clﬁ,

1 1
Ciyn
where C, is an absolute constant.

Once this theorem is established, we can deduce the exactness of the
power 3/2 as follows. Adding some segments (perpendicular to the x-
axis) to I',, we obtain an arc connecting O and 1. Then the length of
this arc is less than or equal to n+ 1. Hence we can define a rectifiable
graph I, so that |I',| < 3n, |prE;| > 1/2, where E, =T, nI",.
Then y(E},) < y(I'n) < Cy/v/n. Contracting Ej,, I",, we define EIl,
I? so that |I')] = 1. Then

P(E}) = 9(Ep)/ITy| < V3G T3
< 22V3C{ prEy /Iy = 22V3C [ pr Ej2,

which shows that the power 3/2 cannot be replaced by any number
less than 3/2.

To prove our theorem, it is necessary to investigate cranks care-
fully. In §2, we shall give a formula ((1) in Proposition 1) to compute
analytic capacity. Proposition 2 is a generalization of Garnett’s ex-
ample [4, p. 87], and will be used to prove our theorem. Using the
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method in the proof of the formula, we shall, in §3, give the proof of
our theorem. In the last section, we shall give a new proof of Pom-
merenke’s theorem [11] as another application of Proposition 1; our
method shows how to construct the extremal functions.

2. A formula for the computation of y(-). Let L2(I") denote the L2
space of functions on a finite union I" of smooth arcs with respect
to the length element |dz|. The norm is denoted by || - || 1r) - The

Cauchy-Hilbert transform Z/i- from L2(I) to itself is defined by

#1(2) = rov. [ L% jdu),

where p.v. is the principal value. This is a bounded operator and the
norm is denoted by | Zf| ;2 ;). An operator Z'r is defined by

Zrf =2f,and 4 is the identity operator. We show

ProPOSITION 1. Let T’ be a finite union of smooth arcs. Then, for
any 0<e< I/H%HLZ(F),LZ(F) ,

(1) y(r)=%{|r|+2<1—e s g (DD (’+m’d2,+2(%>},
m=0

m!
1=0
where
doy () = /r HF)1ldz] (120, (HFD) = A)

and (I+1)---(l+m)/m! =1 if m=0. (First Y 72, is taken, and
next Yo is taken.) If | A + Z | 2y 12y < 2, then

(2) {|F| + Z 27m IZ ( )d21+2 ;?f)}
where (0) = 1. If lim;_, o, dy(F) = 0, then

3) A0 = 23 dy ().
=0

This is a version of Garabedian’s theorem [4, p. 22] to . Equality
(3) is applicable to give a new proof of Pommerenke’s theorem. (See
§4.) Notice that % + Zr# = 0, where # is the Hilbert transform
on R. Hence (2) is applicable to compact sets I" on a Lipschitz graph
which is a small perturbation of R. For any M > 0, there exists a
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crank I" such that d,(#~) > M [10, p. 84]. Then Cauchy-Schwarz’
inequality yields that
dy(#) > dy()* 2 MY (12 1),

Hence (1) is necessary in this case.

Proof of Proposition 1. Let
4) ) = inf{|L+ Al )+ Al s k€ LA}
We begin by showing that

1,
(5) () = v (7).
For a compact set E bounded by a finite number of smooth Jordan
curves, we have

(6) y(E) = —l—inf{/ |g(2)|? |dz|; g(oo) = 1, g is analytic in EC}
2n S9E

[4, p. 22]. Hence a standard argument yields that (6) holds with E
replaced by I'; in this case, the boundary JI' has two sides. We
define a smooth curve .# tending to infinity so that I" ¢ ¥ and that
< = R outside a large disk. Then . divides C into two domains
Q. . For an analytic function g(z) in I'“ such that g(oco) =1 and
for|&(2)?ldz] < 0o, we can write

_ 1 h(w)
g(z)— 1+;[_/1" d’ll),

w—z

where the orientation of dw is chosen so that Q. lies to the left. Let
g+(z) be the nontangential limits of g at z € I' with respect to Q. ,
respectively. Then

B 1 h(w) .
gi(z)=1+ Ep.v./rmdw +ih(z)
=1+2r(hy)(z) +ih(z) (z€D),
where y(z) =dz/|dz|. Analogously,

g—( )=1+2(hy)(z) —ih(z) (z€T).
Thus

2 _ 2 2
[ lPdzl = gl + -1
=1 +Z/r(hw +ihll2 oy L+ () ~
2
= 2{“1 +% hl// “iz(r) + Ilhl//“iz(r)}

Rz
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because |y (z)] = 1 (z € I'). This shows that the quantity in the
right-hand side of (6) (E =T") equals %y*(%) , L.e., (5) holds.

We next compute y*(#). Fatou’s lemma shows that there exists
hr € L*(I") which attains the infimum in (4). A variational method
yields that (1 + #hr, #h) + (hr, h) = 0 for all & € L*(T"), where
(-, ) is the (complex) inner product with respect to |dz|. Since the
adjoint operator of /% is —#Zr, this shows that

(7 (A — Zri)hr = Zrl.

Suppose that A} € L?(T) also attains the infimum in (4). Then A}
satisfies (7), and hence

0= (S — Zri)(hr — hr), hr — hr)
= ”hl" - hi"“il(r) + ”;?i‘(hr - h{’)”iz(r)

This shows that s = Ar. Thus Ar is uniquely determined. By (7),
we have

®)  »*() = Il +Fhrllf ) + Ihrll72
= (14 Zhr, 1) + (S — Zra)hy — Zrl, hr)
= [+ Ay,
Let
Tt = (F ~ &)
Then we can write

(o]
Ty =Y & (@ra)
1=0

because 0 < & < 1/|l% | 21y, 12y - We have, for any h e LX(T),
ITrhlZz iy < ITTAIZ 2 + €217 Trhll 2
= ((ﬁ — 82%1"%) Trh, Trh) = (h, Trh) < ||h||L2(F)”Trh”L2(I‘)

which shows that ||Tr||,2 2 < 1. Equality (7) can be rewritten
as

%) (S — EZ 1A )hr = (1 - &%)hr + &2 Zrl.
Observing this equality, we inductively define (4,)5_, by hg =
=Tr{(1 —&Hhp_ + EZrl} (m>1).



318 TAKAFUMI MURAI

Then
Amsr = bl g2y = (1= € TrCm = Al 2y
< (1= &*)|lhm - Pm—1ll (-

Hence lim,,_ 4, exists and satisfies (9), i.e., (7). Thus hp =
lim,;,— o0 Am . Since
Pmst = hm = (1 =€) Tr(hm — hpp_y) = -+ = (1 = )" T
=eX(1 - )" T #Zrl,

we have

hr = Z(hmﬂ — ) = &2 Z(l _82)mTI{n+17F1.

m=0 m=0

I

Consequently, (8) yields that

o0
y ) =D+ S (16" [ AT Prjde]
m=0

00 00 m+1
=T+ > (1 —82)'"/ra27/f {Z 82’(;%%)’} Zrl|dz|
m=0

=0

= IF( + Z(l — gz)m 2821+2 (l + 1) m’(l + m) A(%_yr)l+l 1le|
m=0 =0 )

—in+ -ty e UM g
m=0 1=0 )

Using (5), we obtain (1).
We can write
S - Zrig = 2{F - 5(S + ZrA)}

Hence, if ||%F + ;?}ZT-HLz(r)’Lz(r) < 2, then

hr =) 27™( A+ Zrag)" (37 )1
m=0
Thus (5) and (8) yield (2).
Equality (7) shows that Zfhr = % Zr1 + #4Zr#hr, and hence,
by (8),
P () = /r (1 + A7l + AT rathr}|dz).
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Repeating this argument, we have

L
Y(r) = /r {Z(%7F)[1 +%(7r%)Lhr} |dz|
1=0

=Zdw% /{%%r%}l Vhr(2)|dz|.
If lim; ., d>y () =0, then

Jim | [t @ he()dz|

< 1}1_{130 H(%%;F)L%I”Lz(r)”hI‘”LZ(l‘)
= lim dy2(#) 2 hr 3y = O

Hence (5) gives (3). This completes the proof of our proposition.
We now give a remark. There exists an analytic function gr(z) in

I'¢ such that gr(co) =1 and y(I') = (1/2n) [, lgr(2)||dz| [4, p. 19].

This is called the Garabedian function of I'. Equality (5) shows that

i) = {1 b [ A1

There exists fr € H*(I'“) such that || frfjg= =1 and f{(c0) = y(I')
[4, p. 18]. This is called the Ahlfors function of I". We have

__{ ldul /%rhr o |}
1) fi(s) = — T
| mycory

To see this, let f(z) denote the function in the right-hand side. Since
gr(z) does not take 0 in I, f(z) is analytic in I'¢ [4, p. 21]. We
have f'(c0) = +7*(#) = y(I') and

fi(z) = _AN(2) iy (z) + AArhr(z) £ iZrhr(2)9(2)

* I+ #rhr(z) £ ihr(2)§/(2) ’
where W(z) = |dz|/dz and fi(z) are the nontangential limits of f
at z € I' with respect to Q, , respectively. Equality (7) shows that

AN+ i + HZrhr + i (Z/rhr)

= 1+ 1y + (hr — 7 1) + i(Zrhr)y
= iy + i(Zrhr)y + hr = i§{1 + Fhr + ihry},
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which yields that |fi(z)| =1 on I'. Analogously, {f_(z)]=1 on I'.
Thus || f]|g=~ = 1. This shows that f = fr.
For the proof of our theorem, we note

PROPOSITION 2. Let 0 < dg < 1 and let (qn), be a sequence of
integers larger than or equal to 2 such that

o0
S (gia) <d (=1
n=j
Then
hm Sup})(r(pl 9 sy pn)) = 07
n—oo
where the supremum is taken over all n-tuples (p,, --- , pn) satisfying

pi>2q; (1<j<n).

This is a generalization of Garnett’s example [4, p. 87], and used
later. Notice that }_° ;27" = 1. A sequence (I'(2,))%2, (2, isthe n-
tuple of 2) topologically converges to a segment {x+ix; 0 <x < 1},
and these cranks behave like cranks of degree 1 with respect to this
segment. Hence we have limsup,_,., 7(I'(2,)) > 0. This shows that
our proposition is sharp in a sense. Since a minor change of the
argument in [10, p. 81] yields the required equality, we omit the
proof (cf. Jones [5]).

3. Proof of Theorem. In this section, we give the proof of our theo-
rem. Let L7 denote the L? space of functions on [0, 1) with respect
to the 1-dimension Lebesgue measure |-] (1 < g < oo0). For a kernel
K=K(x,y) on [0, 1)x[0, 1), we simply write by the same notation
K an operator defined by this kernel, and write by K an operator de-

fined by K(x, y); |K|| 1o e denotes the norm of K as an operator
from L4 to L7 . The identity operator is denoted by Id. A kernel K
is anti-symmetric if K(x, y) = -K(y, x) (x #y). A kernel K is of
type O if

} < oo.

Akernel K isof type 1 if ||K]|;« ;+ < oo and if there exists a sequence
(Kj)32, of kernels of type O such that

9 )
sup K(x, +|—Kx, l+)—Kx,
s G )l + | K, )|+ | 5K G )

lim |K; - K =0, suplK; < 0.
Hx)ll =Kl jZI;H jllpe pe
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Kernels used in this section are bounded as operators from L9¢ to
itself for all 1 < g < oco. Let

y*(K) =inf{||1 + Kh|2, + |hl|2.; h € L},
1

dz,(K)=/ (KB)1dx  (I>0, (KK =1d).
0

Recall the function A(x; p;, ..., pn) in the introduction. Let

1 1
H(Xay)z%(x9y)=;y_x’

H[pla"'apn]('xay)
1 1

T x=X)F AV PLs s Pn) A DLy oo D)
A[pla-'- ’pn]:H[pla--- 7pn]_'H[p1= -~-apn~1] (nZ 1)’
where H[p,,...,pn1]1=H if n=1. Then

n
Hpi,....pal=H+Y Alpi, ..., pjl
j=1

Since all components/segments of I'(p,,---, p,) are parallel to
the x-axis, we can identify A, ,.p,) > L*T(py, ..., ps)) with
Hipy, ..., psl, L?, respectively. We have |H[py, ..., palll;2 ;2 <

Cy+/n for some absolute constant C, [10, p. 84]. Hence Proposition
1 shows that

(1) 9T @rs ey pa) = 2 (HD1 s pa)

{1+§:(1—e§)m

m=0

Q=

Il

w2+ 1) (I +m)
n m!

[]8

X &

dy2(Hpy, ... ,pn])} ,

/

I
o

where ¢, = (2C,y/n)~!. We shall inductively estimate
lim - lim y*(H[py, ..., pal),

p,—o0 p,—0
where lim, _o 1s taken first and lim, o is taken last. For E C R,
xE denotes its characteristic function, and, for x € R, i1(x) denotes
its integral part. Here are some lemmas necessary for the estimate.
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LeEMMA 3. For two kernels K and K',

P'(K +K) <20+ K2 29 (K),

Proof. We have, for any h € L?,

1L+ (K + KA + 1A17: < 201+ K72 )01+ KAl + [1Al17:},

17
which yields the required inequality.
LEMMA 4. Let K be an anti-symmetric kernel such that
Eg dy(K) = 0.
Then

(12) yK) = dy(K
=0

Since this is a version of (3) to K, we omit the proof.

LEMMA 5. For an anti-symmetric kernel K, 0 < &y < (3||K]| 2 ;2)7!
and weU={{eC;|{|<2,|argl| <n/4},

> = I+1)---(I+m
(13) 1+ Z(l _ 8(2))m szl+28(2)l+2( ) m'( )d21+2(K)
m=0 =0 )

(=7 (w; K), say)
exists and y*(w; K) is analyticin U.
Proof. Let
T(w; K) = (Id —w?eKK)™ L.
Then

o0

(I + [+
Z w42 2/+2 1) m!( m)d2,+2(K)
=0

because 2¢p||K||;> ;2 < 1. Evidently, this is analytic in U. Since K

is anti-symmetric and Rew? > 0 (w € U, Rew? is the real part of
w?), we have, in the same manner as in the proof of (1),

(14) ITw; Kl o<1 (we).
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Thus the convergence of Y~ , in (13) is uniform in U, which shows
that y*(w; K) exists and is analyticin U .

LEMMA 6. Forany [ >0,
)Lrgo dy(Alp]) (= dy(Aloo]), say)

exists and
1

(15) dy(A[oo]) < 5557

Proof. We put
1 1 1
R(S’Z)”E{t—s+l+i_t—s+l}

_gi f—s+ 141 B t—s+1
n 4m2 —(t—s+1+10)2 4m?2 - (t—s+1)2

m=1
and show that
. 1 /! —
(16) lim do(Alp)) = 5/0 (R + R 1) ds.

Let

m m+1 m m+1
W"ZU{F’ p)’ W”Izu[? p)’

m,odd m ,even
p—i(logp)—1
m m+1
6= U [5.5).
_ D D
m=1(logp)

sy=px—1px) (0<x<1, p=2).

Notice that |[0, 1) —X,| <2 1(logp)/p and ||A[p]||;+ ,+« < 10. Since
Alpl(x,y)=0 (x,y€eW,; x,y € W,), we have

1 O —_— [
(819D = [ (MpIBTY) Al Kot BlpTa; + s B Liw, ) i
1 —— —_— —_—
— | (@I Ao}, BTt + 2y BT
+0 ((k’ip) 1/4) .
D

We now study A[plx,(x) (x € W,NX,). Without loss of generality,
we may assume that p is even. Since x € W,NX,, 1(px) is even and
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1(logp) < 1(px) < p —1i(logp) — 1. We may assume that i(logp) <
1(px) < p/2. We have

Alplaw, (x) = %/W {y—xl— i/p —y1X} @

1 1
a n/w y- X+1/p—i/p_y—x+1/p}dy
®/D-1 1) |
./0 {(2m/p +y)— ((px)/p+x —1(px)/p) + 1/p —i/p
1
R e R R I l/p} @

11(1»6) 1 (p/2)-1
=-2 17 Y. =Li+L,

m=0 m=1(px)+1

m=0

1 1 1 1 1

TJo (t—Sx+1-i t—-sx+1 nogmgz(px),m#(pxw
1

1/ 11 dt

TJo Lt—=sx+1—i t—s,+1

_g"‘i)/z/l t—se 41—
n o 4m2—(t—s,+1-1i)2

m=1

t—sx+1
4m2—(t—sx+1)2} a

= Rl(sx) + O (loi;p)

(p/2)-1

1
Z / Cm—i1(px))+(t—sx+1-1)

m=1(px)+1
dt

1
“@m = ipx) + (- sx + 1) 20(@> ’

ts‘
N
Il
|
N~

which shows that A[p]x,-(x) = R1(sx) + O(1/logp) (x € W,N X,).
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In the same manner, A[plxw (x) = Rl(sx) + O(1/logp) (x € w,n
Xp). Thus

dyy(Alp]) = / (AT Alp Yz, ox, R1(S) + o R1()} e

+0(———1 )
logp

/ (AP IAT])'~ Alp 1w, RA(s) + s R1(5)}

1
0 (g5
1 [
= | @I (w0, AP Yt R1(5))
+ T AL 1w R1(5))}
1
(1og7):

Since R1(sy) is a periodic function with period 1/p, we have, in the
same manner as above,

AP RIS() = L) +0 (o) (xeWpnX,),

AP RIS =Rl +0 (o) (xeWn ).

Repeating this argument, we have

1
dyy(Alp)) = / Lo, VR 1(52) + 2 (0) R )}dx+o( ! )

logp
1
R¥1+ R ds+0( >
/{ J logp

which gives (16).
We have

1 & 1 1
Ris. =7 ; {2m+1+t—s+z 2m+1+t—s}

> |
Z Cm+1+t—s5){2m+1+t—-5)2+1}

kll'—

s
T Cm+1+t-5)2+1

m=—oo

= —R'(s,t)—iR"(s, 1), say.
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Then R’ is anti-symmetric and R” is symmetric, i.e., R'(s,t) =
R’(t,s). Thus

1
dy(A[oo]) = Re / R?1ds
0
- Re/l(—R'l +iR"1)(R'L + iR"1) ds
/ {RI R" )Z}dg

<L /‘ a e L
= w2 )y |Jo (1+t—-5)2+1 = 257%

Thus (15) holds.

LEMMA 7. Let K be an anti-symmetric kernel of type 1, and
let (8p)y2y, (hp)pl, be two sequences in L* such that ||gpll;« < 1,
apl| o < 1. Then for any 1 >0,

(17)  lim { / K g, - (Alp]A[p]) Khy dx

I
—dzl(A[OO])/O Kgy - Khy dx} =0,

(18) tim [ Ky - APIAWIBTY Ky d = .

p—00 Jo

Equalities (17) and (18) hold with Kg, replaced by 1.

Proof. First we assume that K is of type 0. Let

Alpl(x, y) = Apl(x, Mx. vy =)  (p=2),

where N = i(logp). Then [|A[p] — A'[p]|i;2 ;2 = O(1/logp) (cf.
Lemma 6), and hence

1
|| Ka - (Ap1ST) K, dx
—/IK (A'[P)ATP) KA dx+0(L)
T T g logp /"

Notice that
(A'PIAD (x,y)=0  (ly—x|>2IN/p),
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and that (A'[p]A’[p])/1 is a periodic function on [2/N/p, 1—(2IN/p))
with period 2/p. Let

2(m+1)/p

o =2 (W PIETY) 1 dx - dyy(Afoo])
2 2m/p

(0<m<a(p/2) - 1).
Then #7{™ =y (IN <m <1(p/2)—IN—1). Lemma 6 shows that
lim sup [1y"™'| = lim sup |y (A'[p}) — dy(Aloo])|
p—00 p—o0

= 1i;rli1:p |d21(Alp]) — dy(Aloc])| =0

Since K is of type 0, we have

KA() = KhG| o

[y — x| 5,t€[0,1)

—8—K(s, t)‘ < 00,

sup Js

where the supremum in the left-hand side is taken over all x,y €
[0, 1) and all h € L* satisfying ||A||;+ < 1. Thus

1 —_— J—
| Kep- (AlpIBGY) Ky ds
1-(2IN/p)
=/ Kgy(x)
2IN/p
x / (N[pINTRY) (x, ) K hyp(y) dy dx + o(1)
ly—x|<2IN/p

1—(2/N/p) _
_ / Kg, - Khy - (A'pINTPI) 1 dx + o(1)
2IN/p

Wp/2)-

2 (Z2) Ky (22) 0 + datstoon + o)

p m=IN
= dy(A[oo]) / Kg, - Khydx + 0™y + o(1)

= dyy(Aloo]) /O Kgy - Khy dx +o(1),

which shows that (17) holds. Let K be of type 1. Then there exists a
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sequence (K;)52, of kernels of type O such that

IK = Kjll« g2 < (G2 1), sup|Kjlly«, z« < oo.
]2

1
J
Then

1 1 I
l /0 Kgy - (AlpJADPY) Khy dx — /0 K;g, - (AlpIAD) 'K jhy dx| < C3/,

1 1 .
'/0 Kgp-thdx—/O Kigy Kihydx| < C3/j (j=1)

for some constant C; independent of p and j. Since (17) holds for
all K; (j > 1), this shows that (17) holds.
Since A[p](A[pJA[p]) is anti-symmetric, we have

1 PE— [R—
/0 A1(AlIA])' 1 dx = 0.

Hence, in the same manner as above, we obtain (18). Analogously,
we can replace Kg, by 1.

LEMMA 8. Let K be an anti-symmetric kernel of type 1. Then, for
any 1 >0,

lim dy(Alp] + K) (= dy(Aloo] + K), say)

exists, and we can write
(19) dy(Aloo] + K) = ZCZk dy—ok(K
so that cé',:’) (0< k <1(m/2), m > 0) satisfy

(20) =1, & =dy(Aloc]) (m>0,k>0),

c2k Zczrlj . l)dZJ (Afoo])
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Proof. We say that a 2/-tuple (74, .. r2,) 7; = +1 is negligible if
there exist two integers jo, j (1 < jo < jy < 2/) such that jy—jo—1
isodd, 7, = -1 (jo < Jj < jy) and Tjp-1 = Tjryy = = 1. (We put
To = Ty4 = 1. Hence 7, =1 if jo =1, and Tyl = 1 if

Jo = 2l.) Let t(Alp]) = -1 (p > 2), ©(K) =1. Lemmas 6 and 7
show that dj;(A[oo] + K) exists and

1
dy(Aloco]l + K) = le Z / Klfz---Kzl_lfyldx
(K, Ky) K,=Alp] K ¥ ©

1
= lim Z/() KIT(_Z"-Kzl_IKz[ldx,
)

p—o0

where Z(p) is the summation over all 2/-tuples (K, ..., Ky;), K; =
A[p], K suchthat (1(K;), ..., T1(Ky)) is not negligible. If (7(K,),...,
7(K3;)) 1s not negligible, then K appears even timesin (K, ..., Ky;).
We can choose j; < j» < --- < jp, so that Kj“ =K (1 <u<2),

Kj=Alp] (j ¢ {ju}i2))- Then ji—1, ju—ju—1 (1< p<20-1),
2/ — j,, are even. Notice that

doj (K /(KKfldx (j > 0).

Thus we can write
dy(Aloo] + K) = ZCZk dy1—a (K

Let x( be an operator defined by h € L2 — ( fol hdx)x,1). We put
Y, (=1,

fo m/21 dx (m is even),
Yy, m(t) = (m=1)/2 .
fo Ko+ tA[PDK,", ldx (misodd),

where K, ; = (ko+tA[p])(xo+tA[p]) . Then Yoo m(2) = limp—oo ¥p m(?)
exists, and c(2 ) equals the 12*-coefficient of Y, 2(t). Evidently, (20)
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holds. Since fol Alp1(A[p)AIp])/1dx =0 (j > 0), we have inductively
Yy 2(t) = ¥ 2oy(0) + 1 / Alpl(o + (ATPDKL ! dx

=Y, 01 (2) + 1 / AlpJA[pIK)} 1 dx
=Y, 2-1(t) + *dy(Alp]))Y, 21-5(2)

+1 / AlpIA[PIALP) (ko + tA[P])K) 71 dx
=Y, 2-1(0) + 2da(Alp) Y, 2-5(1)

+ 4 / (Alp]A[P])* K} 71 dx

/

= =Y 1y (APDY, 21-2j-1 (1),

Jj=0

Letting p tend to infinity, we have

!
Yoo 2(t) = D 17 dy (A[00]) Yoo 2y—2j-1(1).
=0

In the same manner,

/
Yoo 2101 (0) = > 13d5j(A[00]) Yoo 512, (1)
j=0

Thus
1(m/2)

Yoom(t) = Y 1¥dy;(Al00]) Yoo m—2,-1(2).
=0

Comparing the #**-coefficients of both sides, we obtain (21).

LEMMA 9. Let K be an anti-symmetric kernel of type 1. Then, for
any 0<od <1,

Jim, 7*(6A[p] +0K) (= y*(6A[oc] +0K), say)
exists;, we write y*(0A[o0]) if K = 0. Moreover,
(22) y*(6A[oo] + 6K) = y*(dA[o0])7" (7" (6A[c0])0 K).

Proof. First we show that p*(dA[oc] + 0K) and p*(dA[o0])
exist. Define y*(w; Alp]l+ K), T(w; Alp]+ K) (w € U) for ¢ =
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(12 + 3||K||L2,Lz)_l in the same manner as in Lemma 5; we have
g0 < (3l|A[p] + K| ;> ;2)~" because [A[p]fl,> ,» < 4. Lemma § shows
that

lim w?e3 /I(A[p] + K)T(w; Al[p] + K)"Y(A[p] + K)1 dx
0

p—00

> I+1)---(I+
_ szmsgm( ) m'( m)d21+2(A[oo] +K)  (m>0).
1=0 '

Since (14) holds with K replaced by any A[p]+ K (p > 2), (13)
exists with K replaced by Af[oo] + K, i.e.,

(23)  lim y*(w; Alp]+ K) (= 7" (w; Aloo] + X)), say)

exists. Since
7*(0; Alp]+ K) = y*(6Alp]1 +6K)  (p >2),

Y*(0A[col +0K) (= y*(d; Aloo] + K)) exists. Putting K =0, we see
that y*(dA[oo]) exists.

Next we show that y*(w; Afoo] + K) and y*(y*(w; Aloo])w ; K)
are analytic in a domain containing (0, 1]. The convergence of (23)
is uniform in U. By Lemma 5, y*(w; A[p] + K) is analytic in U,
and hence y*(w; A[oo]+ K) is analytic in U . The definition of y*(-)
immediately shows that

7 (Rew; Alp]) = y*(RewAlp) <1 (w e V).
Letting p tend to infinity, we have y*(Rew ;A[oc]) <1 (w € U).
Since y*(w; A[oo]) is analytic in U, there exists 0 < n < n/8 such
that 4

[P(wsAloo])[ < 3, argy™(w; Aleo])| <
in U,={wecC;|w|<4/3, |argw| < n}. Then y*(w; Aloo])w € U
(w € Uy). Thus, by Lemma 5, y*(y*(w; Aloo])w ; K) is analytic in
Uy.

By the theorem of identity, it is sufficient to show that (22) holds
for 0 <d < (8+2||K||,: ;2)~". Since

lim dy;(8A[p)) = lim d(3A[p] + IK) =0,

ool 8

(12) holds for dA[p], dA[p]+JK (p > 2). Letting p tend to infinity,
we have

y*(6A[oo]) = 3 dyy(6A[oo]) = 3 6%ds (Aloo)),
=0 =0
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y*(6A[o0] + 0K) = Y _ 6% dy(Aloo] + K).
=0
Let

Zaz’ccz’;’“" (m>0),
where cg(”) (0<k <i(m/2), m > 0) are numbers in Lemma 8. Then
Z 6% K = y*(5A[o0)),

by (20). Equality (21) yields that

x

=Z 2k2c§;”+§f 27 Vd,(A00])

oo ‘ 00 iy B i
= 0%dy;(Aloo]) Y 52k H )
Jj=0 k=j
= HUm-1H0 (m=>1),
which gives
tm = H§ =77 (SAl)™ ! (m > 1),
Thus, by (21),

y*(6A[oo] + 6K) = i 6% dy (A[oo] + K)
=0

/ oo 00
J° Zczk)dﬂ % (K Zzézlczk dy—21(K)
k=0 k=0 1=k

-~
i
(=]

2j+2k (21+2k
) Cop

Mg
Mg

2]5 ]d2]
j=0

>
1l
[ew]

[
Il
(=]

y*(8A[oo])¥ 6% dy;(K) = y*(8A[00])y* (7" (§A[00])IK).

H

~
I
(=

Lemma 10. We inductively define a sequence (y;)%, of positive
numbers by

vi =77 (Al]),  vp = Va7 (PamAlec])  (n 2 2).
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Then
lim lim --- lim y*(H[py,...,pn]l—H)=7y; (n>1),

pl—voopz—»oo pn—>oo

where limy, e is taken first and limpl_.o(> is taken last.

Proof. We define a sequence (4,)52; of positive numbers by 1; =
P*(A[oo]), An = y*(A1...4p—1A[c0]) (n 2 2). Then y; = A1+ 4y
(n > 1). Fixing an (n — 1)-tuple (py,...,ps—1) (n>2) of integers
larger than or equal to 3, we study

lim y*(H[py, ..., pn]— H)
p,—00
=p1i_x'1<1)°y*(A[p1 s Dnl+ (Hlpy, ..., Pp—1] — H)).

Put Ip = [0, 1/(p1---Pn-1))> Ij = (o +Jj/(P1---Pn-1)) (0 < j <
(p1...Dn—1) —1). Then

(H[pla---’pn—l]_H)(x’y)zo (xayEIj),

|(H[pl’ 7pn—I]_H)(x> y)]

<2 +1
_npl *Pn-1

_— xeli,yel,,j#k),
7t|y XI ( y k ]75)

which shows that H[p,, ..., py,—1]— H is of type 1. Let
A,[pl 5 oo 9pn]('x’ y) :A[pl 9 oo 9pn]('xa y)X[O’_AL_)(Iy _xl)’

[Hp,] X, )2, w1y = X))

n
= j=1 pl pn

Ao G
j=1
(N' =1(log(p; -..pn)) . Then

Pll—gnoo”A[pl 5 e :pn] _A,[pl PR ’pn]”L",L4 =0’

i) it

(cf. Lemmas 6 and 7). Since

lim =0
p,—0

L4 1*

n
A'lpy, ..., pal(x, y) = A [Hm} (x,¥)
j=1
(x,ye€l;,0<j<(p1--pn-1)— 1),
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we have

lm
p,—00

A[pl, ce apn]_A |:Hpj}
j=1

= lim
p,—00

—n
A,[p15 cee 9pn]—Al Hp]]

|5 , 12
and hence, in the same manner as in the proof of the existence of
(23),

pli_r}goy*(A[pl,... , Pnl + (H[p1, ..., Pu-1] — H))

= lim " ( Hpj} (Hlpy, ... ,pn—nl—H)) :

Using (22) with 6 =1, K = H[py, ..., pp—1]1— H, we have
plgrlwy*(H[pl, eors Pn] = H) = y*(A[oo] + (H[p1, - .., Pn—1] — H))

= A'ly*()'l(H[pl 3 e pn—l] - H))'
In the same manner, using (22) with 6 =4y, K = H[py, ..., Pp_2] —
H , we have

lim lim y*(H[p,...,pn]— H)

pn—l‘_’oopnﬁ'oo
= A17" (A1Aloo])7* (v* (A1AlooD A (H[p1, ..., Pu—2] — H))
= Aday*(1A2(HIp1 s - .-, Pn2] = H)).
Repeating this argument,

plim --oplim v (H[p1, ..., pn]l — H)

= Ay Apeg WMy (A Aot Bl0]) = Ai oo An = 7

This completes the proof of our lemma.
We now give the proof of our theorem. By Proposition 2, there
exists a positive integer ny such that

(24) supy(T(py, ..., pn) <1075 (n>np),

where the supremum is taken over all n-tuples (py, ..., py) of in-
tegers larger than or equal to 3. By Lemma 10, we can inductively
choose a sequence (pn) ° , of integers larger than or equal to 3 so that

1
37 SVNHDY, .l - H) <2y (n2 1),
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where (y;)%, is the sequence in Lemma 10. We show that I’ =
I‘(pl y eees pn) (n > 1) are required cranks. We may assume that
n > nyg. Lemma 3 shows that

3 HIDY .. 031 H) < 3 (HIBY .., B3
<4y*(H[p), ..., pl - H),
and hence
I <V(HDY, ..., pR)) <
Thus, by (11),

1 8 .
(25) Snyn <y(n) < ~n-

Using (24) and (25), we have y} < 87 -107°. Recall (15), and notice
that dy(Alco]) < 4 (I > 1). Since lim;_o do(7:A[p]) = 0, (12)
holds for y;A[p]. Letting p tend to infinity, we have

oo
Trel = Py (nAloo]) = vy, Y doy(yrAloo])
/=0
s 2 1 [ 2
= 7n 2 n du(Aleo]) < 7; — 52— +Z4
=0 =2

* —3.%
<Vn—10 n >

(o 0)
2041 3 .
Vet 2= 4wz 10y, e,
=1

3 3
o= 1075 <ynp Svp— 1075,

Since this holds for all #n > ny, a simple induction yields that

>
G SHEsGg 2w
for some absolute constant C4. Using (25) again,
1 8
< — > .
87[C4 \/“ = (rn) = C4\/;l' (n = nO)

This completes the proof of our theorem.

REMARK 11. It is not known whether y(-) is semi-additive [4, p
11]. For 0 < 5 < 1, we define Bj(x) replacing 1/2p by n/2p in the
definition of B,(x). Then cranks I'7(p,, ..., py) of degree n are
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analogously defined. We see that there exists a crank I'} of degree
n such that y(I'}) < C,/y/n, where C, is a constant depending only
on 1. Adding some segments (perpendicular to the x-axis) to_ FZ,
we obtain an arc F” connecting 0 and 1. Then the diameter of F
larger than or equal to 1. Since I is connected, (F”) >1/4 [4,
9]. Hence, from the point of view of the above semi-additive problem,
it seems interesting to compute y(I'n —I'}).

4. Another application of Proposition 1. In this section, we show
another application of our method. Let E be a compact set on R.
Pommerenke [11] showed that

(26) V(E) = |E|/4,

@ stz ={1-ew (5 [ )} MHiven (5 [ 25}

We deduce (26), (27) from (3), (10); our method explains a quarter
and (27). Let L2(R) denote the L? space of functions on R, and let
Mg denote the multiplier: & € L*(R) — yh € L*(R), where x = xg.
We inductively deﬁne a sequence (H g"))fno:o of operators from L?(R)

to itself by HY = Mg, HY" = HMgHY"™" (m > 1). Notice that

1,
V(E) = =7 (MgHME),

doy (M HMg) = /E HYydx (>0, 1 =71z).

We also remark that
(28) H(g-Hh)+H(Hg -h)=Hg-Hh—gh (g, heL*R)).
We first show that, forany m > 1,
(29) xHy - HE x=(m+ 1))(H(m+1 2 +mxH(m Dy.
Equality (28) shows that 2H(yHy) = (Hy)? — xx , which gives yHy -
Hl(;l))( = 2XH22)X + XHgo)x. Suppose that (29) holds for m. Using
(28) with g =y, h= ng"))(, we have
xHy - H" Dy —xHx H(xHE" )

= XH{xHHY" x) + Hy - xHY" 0y + 1l xHY 1y

= X HY 4 xH{(m + D HY Vg + myHE Vo) + cHY x

= (m+2)xH P+ (m+ D)HMy, e,
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(29) holds for m + 1. Thus (29) holds forall m > 1.
We next show that

(30) [ pax = +)1 El  (I>0).

We put ay = [, Hg” xdx (I > 0). Evidently, ayp = |E|. Suppose
that ay;_, = {(=1)!"1/(2/ - 1)}|E|. Equality (29) (m = 2/—1) shows
that

/Hx HY Vydx = 21/HE2’>xdx+ /Hzl 2)
= 2lay; + (2] — Day;_,.

Since the adjoint operator of H equals —H , we have
/EHx HF Vydx = —/EH{XH,‘;ZI‘”X}dx = —ay.

Thus —ay; = 2lay; + (21 — 1)ay_, , which yields that
I PV

) S

Now the deduction of (26) is immediate. By (30),

|E].

lim dy(MgHMg) = lim | H? ydx = 0.
[—00 -0 JE

Hence we can apply (3). Leibniz’s formula and (30) yield that

:\

1
V(E) = v (MpHMg) = Zdzl(MEHME)
gy
100
—Z = 7B
I=

Last, we deduce (27) from (10). Equality (10) gives that

1 ds HWhg(s) hi(s)
fE(Z)=‘;{ Em*ﬂ%d‘}/{” EsE_z‘“}’

where hg(s) is the function which attains y*(MpHME). We show
that this equals the function in the right-hand side of (27). Let
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where H}E—I)X =y. Let
o0
=Y Mum(z) (teC,|f|<1).

We begin by showing that
9
ot
Let m > 1. We have, on R,

(31) (1+ )L P(z) =ui(2)P(z) (0<t<1).

léﬁ{umﬂ(‘ + i) + U1 (- + i)}
= H(HY" )+ ixHI x
+H{xHx~Hg"—”x} + ixHx-Hg"‘”x
= H{yH(xH" ")+ Hy - xyHI V3
+ i HHY V) + Hy - xHE Vyy,
limu (- + in)um(- + in)
nl0
= {Hy + ix}{HHY "x) + ixHY Dy}
=Hy HHY Vx) -2 xH Yy
+i{xHHY  V0) + Hy - xHY Vg
Hence (28) (g =%, h= xHém‘l)x) shows that
lgfg{umﬂ(- +in) + V1 (- +in) — i (- + in)um(- +in)} = 0
on R. In particular, this holds on R — E. Hence, by the theorem of

identity, ;,41(2) + Vmy1(2) — u1(2)um(z) = 0. Equality (29) shows
that vy,,1(z) = muy(z) + (m - Du,,—1(z). Thus

(M + Dty (2) + (M = Ditpy—1(2) — w1 (2)um(z) =0 (m2>1),
which yields that

i mt™u,(z) + 12 Z mt"™um(z) = tuy(z i ™ Um (2 ie.,
m=0

m=0 m=0

2 bz >+t3—§—th< 2) = tuy(2)R(2).

This is the required equality (31).
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We can choose xo e R— E, >0 so that P(x) >0, u;(x) >0
forall xe (xg—n,xo+1n), 0<t< 1. Equality (31) shows that

| 0
mul(x)zggP,(x)/Pt(x) (x€xo—n,x+1n), 0<t<1),

which gives that

t
P,(x):exp{/o l—ifs—zul(x)} (xexo—n,x0+1n), 0<t<1)

because Py = 1. By the theorem of identity,

tds
o 1+s2

Pl(z)zexp{ ul(z)} 0O<t< ).

Since P;(z) and exp{(fé(ds/(l + 52))u;(z)} are analytic in the unit
disk as functions of ¢, this equality holds for —1 < 7 < 0 also. Thus

+1/——hE(S)aLg:1+l/—l iH@l“”x(s)ds
nlps—z nlps—zi E
d 1
1 21 R T
= 1}%}1;z uy(2) = 3 1}%}1{13_,(2) + Pi(z2)}

= % {exp (-%ul(z)) + exp (%ul(z))} ;
_ l/ ds__ l/Ef’.fEl_)’i?@ds - %ltigl{P_t(z) ~ P(2)}

nlgs—z & §—z

- 5 {oo (Fu) —ew (Fu()}
which gives (27).
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