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ON THE GENERALIZED DIFFERENCE POLYNOMIALS

L. PANAITOPOL AND D. STEFANESCU

We study some factorization properties of a family of polynomials
which includes the generalized difference polynomials. We deduce
new irreducibility criteria for polynomials in two variables with coef-
ficients in an algebraically closed field. We also obtain new proofs
for the irreducibility criteria of Ehrenfeucht and Angermuller.

Let k be a commutative algebraically closed field. A polynomial in
two variables P(X, Y) e k[X, Y] is called a difference polynomial if
P(X, Y) = f{X) - g(Y), where f,ge k[X]\k.

A. Ehrenfeucht [6] and H. Tverberg [11] studied a case of irre-
ducibility of the difference polynomials and A. Schinzel [10] estab-
lished conditions for the factorization of the difference polynomials.
L. A. Rubel and S. S. Abhyankar [2], L. A. Rubel, A. Schinzel and H.
Tverberg [8] and G. Angermuller [3] studied some factorization and
irreducibility conditions of the larger class of the generalized difference
polynomials

ι = l

where c e k\{0}, n e N*, degPn(X) = m > 1 and degP, (JΓ) < mi/n
for every /, 1 < / < n - 1.

In this paper we study factorization properties of polynomials of
the form

( * * )

where c e k\{0}, P^X) e k[X], n > 1.
The family of the polynomials (**) includes the class of the gen-

eralized difference polynomials (*). We introduce a rational number
PY{F) associated with a polynomial F(X, Y) e k[X, Y] that satisfies
(**). We shall establish some properties of pγ{F) using a Newton
polygon argument. We deduce irreducibility criteria for the polyno-
mials (**). We also obtain new proofs of the criteria of Ehrenfeucht
and Angermuller.
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DEFINITION. Let J , 7 be two indeterminates over k and let

n

F(X, Y) = cYn + Y^Pi{X)Yn~i e k[X, Y],
i=\

where c e A:\{0}, n>\, Pι{X) e k[X].

We call the degree index of the polynomial F(X, Y) the rational
number

pγ(F) = max

REMARKS, (i) p r ^ ) = 0 if and only if F{X, Y) e k[Y].
(ii) If

^Iί. \<i<n-\\
i )

and p γ { F ) > r Ά Λ
n [

then F(X, Y) is a generalized difference polynomial.

THEOREM 1. Let

n

F(X, Y) = cYn + ΣPi(X)Yn-χ ek[X, Y],
7 = 1

where c e k\{0}, P^X) e k[X], n>\. If F = FXF2, with F{,F2e
k[X, Y]\k, then p = max(/?i, p2), where p = pγ(F), px = pγ(Fχ),
P2=PY(F2).

Proof. We shall prove that p can be obtained as a suitable num-
ber associated with the polynomial G(X, Y) := y ^ ί X " 1 , 7"1) e
k((X))[Y]. (G is a polynomial in 7 with the coefficients meromor-
phic formal power series in X.)

Let

, 7) = Σ/Hi(X)Yi e
ι=0

where /f/(Z) G fe((Jr)). Let r, = ordz///(Z) and let

But
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Hence r 0 = 0 and r, = oτdχ Pi( χ) = - deg(P/) for / = 1, 2 , . . . , « .
Therefore r 0 - rx = 0 - ( - deg(P/)) = deg(P, ) a n d it follows that

(1) e(G)=pγ(F).

If the characteristic of the field k is zero or is positive and does
not divide the degree n of the polynomial G(X 9 Y) then e(G) is the
smallest exponent of a Puiseux series

y(X) = Σ CiX1 e U k((X^m)) such that G(X, y) = 0.

(Such a series exists because A: is algebraically closed and the charac-
teristic of k does not divide n .)

If the characteristic of k is positive and divides n then a root
y{X) of the equation G(X, y) = 0 is not necessary a Puiseux series,
as it was remarked by C. Chevalley in [4], p. 64. In this case a
root of the equation G(X 9 y) = 0 is a general power series y{X) =
ΣieS{f)ciχi G M(^Q))> where the support S{f) is a well ordered
subset of Q. Let z'o be the smallest of the exponents of y(X). Then
z'o can be obtained with a Newton polygon argument (cf. [7] pp. 42-
48) as

iϊ,-maxίΓ°~Γ l Γ°"Γ 2 r o ~

Indeed, it suffices to remark that the determination of /Q above
does not depend on the characteristic. Therefore io = e(G).

Let Gχ(X, Y), G2(X, Y) e k((X))[Y] corresponding to the poly-
nomials F\ and F2 respectively. From a result of G. Dumas relative
to the Newton polygon of the product of two polynomials ([5], pp.
216-217) it follows that e(G) = max(e(G\) 9 e(G2)). From (1) we
deduce that p — max(/?i, p2).

PROPOSITION 2. Let

n

F{X, Y) = cYn+^2Pi(X)Yn-iek[X, Y],
i=\

where c € k*, n > \ and let m = deg Pn (X). Let us suppose that
Pγ(F) = m/n.IfF = FXF2, with FuF2e k[X, Y]\k then pγ(F) =

= pγ(F2).

Proof. Let

Fi(x, γ) = aYa> + Σ
7=1
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where a e k*, Pij(X) e k[X] and let m, = degP/>2 (/ = 1, 2). Then
n\+ri2 = n, rri\ + rri2 = m .

From Theorem 1 it follows that

But

We deduce that
Therefore

m2n

m

m2

711

1 ί

< m
n

m

n

: m{n2

m\ + n
m2

and —-
n2

m\ + m2

n\ + /?2

> m2nx,

n2

<m
~~ n

and

n2

hence

«2

It follows that m/n = m2/ri2, and hence pγ(F2) = pγ(F). In the
same way we deduce that pγ{F\) = pγ(F).

COROLLARY 3. Let

n

F(X, Y) = cYn+J2Pi(X)Yn-iek[X, 7],

where c e k*, Pi(X) e k[X], n > 1 and let m = dcgPn(X). If
PY(F) = m/n and (ra, ή) = 1 then the polynomial F(X, Y) is irre-
ducible in k[X, Y].

Proof. Let us suppose that there are F\, i^ G k[X, Γ]\/c such that
F = F\F2. We suppose F i , F2 expressed as in the proof of the
former proposition.

Because pγ(F) = pγ{F\) = pγ(F2) = m/n there is i e {1, 2, . . . ,
n\} such that

deg(fi/) = m
i n *

Therefore im = n deg(Λ/). Since (m, n) = I there is s e N* such
that / = sn. It follows that i = m = n and deg(Pi, ) = deg(Piπ ) =
deg(/>i«) = w . Therefore Fι{X, 7) G £[X] and we deduce that
Pn(X) = Pln(X)F2(X, Y). We conclude that F2(X, 7 ) G f c , a con-
tradiction. It follows that i^Λf, 7) is irreducible in k[X, 7 ] .

REMARKS, (i) If the characteristic of A: does not divide n one can
prove Corollary 3 using the Newton-Puiseux expansion theorem [1],
5.14.
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(ii) The class of the polynomials

n

F(X, Y) = cYn + ΣPi(X)Yn~i ek[X,Y], cek*,
ι = l

Pi(X)ek[X], n> 1

such that
deg(Pn)

PY(F) = — - —
includes the family of the generalized difference polynomials. There-
fore Corollary 3 establishes an irreducibility criterion for the general-
ized difference polynomials.

LEMMA 4. Let

n

F(X, Y) = cYn+ΣPi(X)Yn-ιek[X,y], cek*, Pi(X)ek[X]
;=1

and let f e [X]\k, g e k[Y]\k. Then

Proof. Let u = deg(/) ,v = deg(g) and H(X, Y) = F(f(X), g(Y)).
Then

H(X, Y) = c[g(Y)]n + Pι(f{X))[g(Y)] H-1

iv
it follows that

ί a t i υ < s < n υ

But degPi(f) = u • deg(Pi). Therefore

COROLLARY 5. Let

n

F{X, Y) = cYn + Y^Pi{X)Yn-i ek[X, Y], cek*,

Pi(X)ek[X], n>\
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such that m = deg(Pn) > 1 and pγ(F) = m/n. If f e k[X]\k and
g G k[X]\k are such that (m deg(/), n deg(#)) = 1 then the
polynomial F(f, g) is irreducible in k[X, Y].

Proof. Let H(X, Y) = F(f,g). From the above lemma it follows
that pγ(G) = m deg(/)/w deg(g ). From Corollary 3 it follows that
F(f, g) is irreducible in k[X, Y].

REMARK. Corollary 5 was obtained by G. Angermϋller in [3] with
different methods in the special case F(X, Y) is a generalized differ-
ence polynomial.

THEOREM 6. Let

n

F(X, Y) = cYn + Y^Pi{X)Yn~i e k[X, Y], cek*,

let a = d e g ^ F ( X , 7 ) . If pY(F) = a/b, (a9b) = I, then the

polynomial F(X9 Y) is irreducible in k[X, Y] or it has a factor from

k[Y].

Proof. Let us suppose that there are F\, Fι € fc[AΓ, y]\/c such that
= F{F2. Let

7=1

P / 7(Z)G/t[X] ( ι = l , 2 ) .

From Theorem 1 it follows that we may suppose that pγ(F\) =
PY(F) . Hence there is j G {1, 2, . . . , n\} such that deg(P\j)/j =
β/Z?, i.e. ai = b deg(Piy ) .

Since (α, fc) = 1 it follows α divides deg(P υ ) . But 0 < deg(Pυ) <
deg^(F) = a. Therefore deg(Pi7) = 0 or a.

If deg(Pi7 ) = 0 then pγ(F\) = 0; hence pγ(F) = 0 and it follows
that F(X, Y)ek[Y].

If deg(Piy) = a then degx(i72) = 0. Therefore F2 is a polynomial
from fc[7].

If follows that F(X, Y) is irreducible or has a factor from k[Y].

REMARKS, (i) If the polynomial F(X, Y) has a factor from k[Y]
then this factor is the greatest common divisor of the polynomials
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Qi € k[Y] such that

i=0

(ii) If pγ{F) = m/n, where m = deg(i^), then m/n > deg(P/)/z
for every / = 1, 2, ... , n . Hence m > (n/i) deg/^ > deg JPZ and it
follows that m = a = degx(F). Therefore the class of the generalized
difference polynomials is contained in the family of the polynomials
satisfying the assumptions from Theorem 6.

COROLLARY 7. Let

n

F(X, Y) = cYn + ΣPi{X)Yn-i e k[X\ Y],

where c e k*, P/(X) e k[X], n > 1, let a = deg x F(Z, 7) /
k[X]\k, g e k[X]\k. Ifpγ(F) = a/b and (α deg(/)? b-deg(g)) = 1
Λ i 7 (/ ? g) is irreducible in k[X, Γ] or /ί /zα̂  a factor from k[Y].

. Let u = deg(/) ,v - deg(^) and //(X, 7) - F(/(X), g(Y)).
From Lemma 4 it follows that pγ(H) = ua/vb. Since degx(/f) =
deg(/) degx(F) = i/α and (ua,vb) = l we conclude by Theorem 6.
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