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The total curvature of a complete open surface describes certain
properties of the Riemannian structure which defines it. We study
relationships between the total curvature and the mass of rays on
a finitely connected complete open surface and obtain some integral
formulas.

0. Introduction. Throughout this paper let A be a connected,
finitely connected, oriented, complete and noncompact Riemannian
2-manifold without boundary. The total curvature c(M) of M is
defined to be an improper integral over M of Gaussian curvature G
with respect to the area element dM of M. A well-known theorem
due to Cohn-Vossen [1] states that if A admits total curvature, then
2ax(M) — c(M) > 0, where x(M) is the Euler characteristic of M .
Clearly ¢(M) depends on the choice of Riemannian metric. This phe-
nomenon gives rise to the idea that the value 27y (M) —c(M) should
describe certain properties of Riemannian metric which defines it.

A ray (respectively, a straight line) on M is by definition a unit
speed geodesic parametrized on [0, oo) (respectively, on R) every
subarc of which realizes distance between its terminal points. For a
point p € M let S,(1) be the unit circle centered at the origin of the
tangent space M, to M at p. Let A(p) be the set of all unit vectors
tangent to rays emanating from p. A(p) 1s closed in S,(1). Let
9 be the natural measure on S,(1) induced from the Riemannian
metric. A relation between the mass of rays and the total curvature
was first investigated by Maeda in [6], [7]. He proved that if M is
homeomorphic to R? and if G > 0, then Mo A4 > 2n—c(M), and in
particular infy; 9Mo A = 2n — c(M). These results were extended by
Shiga in [10], [11] to Riemannian planes whose Gaussian curvatures
change sign, and later by Oguchi [9] to finitely connected M with
one endpoint. In connection with an isoperimetric problem discussed
by Fiala [3] and Hartman [4], the first-named author proved in [14]
that if M has one end and if 2ny(M) — ¢(M) < 2z, then for every
monotone increasing sequence {K;} of compact sets with | JK; = M,
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The proof of this equation essentially depends on the fact that A ad-
mits no straight lines. This property is guaranteed by the assumptions
on the total curvature and the uniqueness of endpoint of M .

It should also be noted that all results mentioned above are obtained
under the assumption that M has one endpoint. In the case where
M has more than one endpoint (and this is the case where we are
interested in this paper), it will be natural to consider that each end-
point shares the value 2ny(M)—c(M) in the following sense. Let M
have k endpoints and let K C M be a compact set with the property
that M\ Int(K) consists of k tubes U, ..., Uy such that each U;
is homeomorphic to S! x [0, oo) and that each AU, is a piecewise
smooth simply closed curve. Then the Gauss-Bonnet theorem states
that ¢(K) + Y5, k(8U;) = 2mx(M), where ¢(K) = [, GdM and
Kk (0U;) denotes the curvature integral over the boundary curve oU;.
Foreach i=1, ..., k the value

S,‘(M) = K(a Ui) — C(Ui)

is nonnegative and independent of the choice of tube. Moreover

Zs, =2y (M) — c(M).

For details see [15]. Thus one observes that each endpoint correspond-
ing to U; shares the value 2ny(M) — c(M).
With these notations our main results will be stated as follows.

THEOREM A. Assume that M admits total curvature and has k end-

points. If s;(M) < 2m holds for each i = 1, ..., k, then for every
monotone increasing sequence {K;} of compact sets with | JK; = M,
S K MoAddM
112/111<nk si(M) < JILII; inf w——
fK 9311 o AdM
< s S MO

THEOREM B. Assume that M admits total curvature and has k
endpoints. Let € be a simply closed smooth curve in M and let
B(t) ={xeM;dx,€) <t} and S(t) ={xe M;d(x, ) =t},
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where d is the distance function induced from Riemannian metric. If

si(M) < 2xm holds foreach i =1, ..., k, then
k2
Mo AdM LieiSi(M) _
lim fB(z) — | g (M) = D) if2nxy(M)—c(M) >0,
=00 fB(z) aMm

0 if2rny(M)—c(M) = 0.

REMARK 1. Shiohama first proved an inequality in Theorem B un-
der the stronger assumption that s;(M) < 2z. But subsequent im-
provement on the asymptotic behavior of 9t o A was obtained by
Shioya and Tanaka. It turns out that the existence of straight lines on
M is no objection at all. Tanaka’s proof for the asymptotic behavior
of Mo A by assuming s;(M) = 2 will be provided in Lemma 1.1.
Shioya has extended this result to the case where +oo > s;(M) > 2x:.
This result will be published independently because the proof is fas-
cinating and of independent interest in itself.

REMARK 2. Theorem B does not hold for any monotone increas-
ing sequence {K;} of compact sets with |JK; = M. For example,
consider a surface M of revolution in R3: Let f: R — (0, co) be
a positive smooth function satisfying f(¢) = 1 for t < -1, f(t) =
(t-tan@ + 1) for ¢t > 1, where 0 is a constant in (0, 7/2). M is
defined as

M={(x,y,z)eR;y*+ 2" = f(x)?, x €R}.

Then s,(M) and s,(M) are 0 and 2znsinf and 2ny(M) — c(M) =
2nsin @ . For any given ¢ > 0 there exists a positive number ¢, such
that if p € M satisfies x(p) < —¢;, then Mo A(p) < &, and such that
if x(p) > t¢, then Mo A(p) € (52(M)—¢, s2(M)+¢). For an arbitrary
fixed number a > 0 choose a monotone increasing sequence {K JC.’} of
compact sets of M with |JK¢ = M such that

Area{p € K¢; x(p) > 0}/ Area{p € K¢; x(p) < 0} = a.
Then, computation will show that

o S T A (M) + asy (M) _ 2mx(M) = c(M))a
jmoo  [ge dM a+1 a+l '

Since a > 0 is arbitrary, this example will suggest the validity of
Theorem A.
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1. Preliminaries. Let K C M be a compact set with the property
that M\ Int(K) consists of k tubes Uy, ..., Uy such that each dU;
is a piecewise smooth closed curve. For a point p € M\ Int(K) taken
sufficiently away from K, A(p) is divided into two subsets Ag(p)
and A%(p) as follows: For u € A(p) set y,(¢) :=exp,tu, t >0.

Ak (p) :={u € A(p); u([0, 00)) NK # T},
Ak (p) = {u € A(p); 7([0, 00)) N Int(K) = @}.

Both Ag(p) and A% (p) areclosedin S,(1). It follows from minimiz-
ing property of rays emanating from p that Ax(p) N A% (p) consists
of at most two elements. Therefore

Mo A(p) = Mo Ax(p) + Mo Ak (p).

It was proved in §§2 and 3 in [14] that if 0 < s5;(M) < 2x, then for
any given ¢ > 0 there exists an R(¢) such that for every p € U; with
d(p, K) > R(e)

(*) 5i(M) ~ & < Mo Ak (p) < si(M) +e.

A crucial step of the proof of Theorems A and B is to obtain the
asymptotic behavior of 9o A. What is left for this purpose is to
prove forall i=1,..., k and for all p € U; with d(p, K) > R(e),

(*x) Mo dg(p) <e

and the following

LEmMA 1.1 (Tanaka). Assume that s;(M) = 2rn. Then there exists
a compact set K with the property that for any ¢ > 0 there exists an
R;(¢) > 0 such that if p € U; satisfies d(p, K) > R;(e), then

Mo Ax(p) > 21 —¢.

Making use of a slightly extended version of an idea developed in the
proof of Theorem C in [12], (xx) is proved for a more general closed
subinterval S,(D(p)) of S,(1) which contains Ag(p). For p € U;
and for u, v € Ax(p) let D, ,(p) be the disk domain in U; bounded
by the subarcs of y, and y, between p = y,(0) = y,(0) and their first
intersections with K and a subarc of dU; between them. Let D(p)
be the maximal disk domain among {D, ,(p): u,v € Ax(p)} and
Sp(D(p)) C Sp(1) the set of all unit vectors at p tangent to D(p).
Define an angle

0k (p) = M(S,(D(p))).

Then the proof of (*x) is a direct consequence of the following.
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LEMMA 1.2 (Shioya). Let K C M be as above and assume that
si(M) < 400 holds forall i =1,...,k. Forany ¢ > 0 there exists
an R(g) > 0 such that if p € M\K satisfies d(p, K) > R(e), then

Ok (p) <e.

2. Proof of Theorems A and B by assuming Lemmas 1.1 and 1.2. First
of all consider the case where the total area of M is bounded. Then
a slight modification of Lemma 3.1 in [14] implies that there exist
k distinct Busemann functions on M, each of which corresponds to
an endpoint of M . A Busemann function is differentiable except a
set of measure zero since it is Lipschitz continuous. This fact means
that there exists a measure zero set £ on M such that A(p) for ev-
ery p € M\E consists of exactly k£ elements. Furthermore one has
2rx(M)—c(M) = 0 if the total area of M is bounded (see Theorem
12 in [S] and Corollary of Theorem A in [13]). Therefore the proof
of theorems in this case is complete.

Assume that the total area of M is unbounded. Let

R(¢) := Max R;(e).
() Max i)
Let a be the area of closed R(e)-ball around K and b the integral

of Mo A over this closed ball. It follows from (*), Lemmas 1.1 and
1.2 that for all sufficiently large j

b+ (Miny i<k 5:(M) — &) { [, aM - a}
T aM

j Jx Mo AdM . b+ (Max ;s 5i(M) + &) {fK dM — a}
=T dM - T aM '

The proof of Theorem A is complete since ¢ is any and the total area
of M is unbounded.

For the proof of Theorem B one applies the Fiala-Hartman type
isoperimetric inequality which was refined by Shiohama in [12] and
[13]. Fix a compact set K containing € as in Lemmas 1.1 and 1.2.
Forevery i =1, ..., k and for sufficiently large ¢ > 0 let L;(¢) and
A;(t) be the length of S(z)NU; and the area of B(¢)NU;. Because M
admits total curvature S(¢) N U; is homeomorphic to a circle for all
large ¢ (see Theorem B in [13]) and is piecewise smooth for almost
all ¢. Note that A4;(¢) — = [i Li(u)du. Forevery i=1,...,k

lim -Ifi@ = lim 2A’(’) = 5;(M).

i—oo I t—oo  t2
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By choosing R(e) sufficiently large so as to fulfil
si(M)—¢e < L’T(t) <si(M)+e

forall i=1,..., k and for all £ > R(e), one obtains

b+ Y (5i(M) = 26)(si(M) — &) —RED2 [y Mo AdM
Sk (5:(M) + &) P-R@®)/2 4 g = fB "
bHYE (51 + 20) (5, (M )+8)(’2‘R(5) )2
K (5:(M) — &) P=R&D2 1 g

This completes the proof of Theorem B.

3. Proof of Lemmas. A general formula for the mass of rays ema-
nating from a point p € M is obtained by using an idea developed
by Shiga in [10]. This is stated as

(*%x) Mo A(p) = 2nx (M) — c(M\Fp)

where F, := {exp,tu;u € A(p),t > 0}. This formula plays an
essential role for the proof of Lemma 1.1.

For the proof of (x*x) fix a point p € M and let T > 0 be a
sufficiently large number such that S(p, T) := {x € M;d(p, x) =

T} consists of k piecewise smooth closed curves Ci, ..., C; in
Ui, ..., Ug and such that the break points X; 1, ..., X; m@i) of C;
are joined to p by exactly two distinct minimizing geodesics a1,
af 1hes0p m(i) > a:rm(l) with o ,(0) = of ,(0) = p, o; ,(T) =
al*m(T) = Xi,m and Xx; , is not conjugate o p along al ,» and
a;“ .- This is possible whenever T is taken to be a suﬁic1ent1y large
non-exceptional value (see [4], [13]). Let F; , (i =1, , k,

1 < m < m(i)) be a disk domain surrounded by o] , ([0, T]) the
smooth subarc of S(p, T') with terminal points x; ,, and Xi m+1 and

o erl([0 T]), and 6;,, the angle between -q; ,(7) and
—a, (T). If x; , is the curvature integral of the subarc on

OF;, mNS(p, T), then
c(Fi,m) = M(Sp(Fi,m)) — Ki,m-
If B(p, T) is the closed T-ball around p, then

k m(i) k m(i)

B, T)+> > Kim—Y_ > 0im=21x(M).

i=1 m=1 =1 m=1
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It follows from construction that J;J,, Sy(F;,») is monotone de-
creasing with 7" and converges to A(p) as T — oo. The proof of
(¥*x) is complete since limz_, o, Zle ZZ(__’)I 0;.m = 0 (see Theorem

C: [12]) and 11mT——>oo C(B(p ’ T)\Uz Um E,m) = C(M\Fp) .

Proof of Lemma 1.1. For a compact set C such that M\C consists
of k tubes, we choose a K containing C such that every minimiz-
ing geodesic joining points in C does not meet K. Let M, be a
complete open 2-manifold having one end with the properties that
there exists an isometric embedding : of K U U; into M; and that
M\i(K U U;) consists of kK — 1 disks. From construction it follows
that 2ny(M;) — c(M;) = s;(M) and x(M;) = (M) + (k - 1). With-
out loss of generality one may identify points in U; with those images
in M; as well as other objects. For p € U; let A;(p), Ak, i(p) and
Ay ;(p) be the set of all unit vectors tangent to rays on M; from p
with the same properties as defined in M. Then Ay ;(p) = Ax(p)
follows from the choice of K. There is no strict relatiohship between
Ak . i(p) and Ak(p). But both of them will be estimated in Lemma
1.2. Since Mo A(p) = (Mo Ag(p) — Mo Ax i(p)) + Mo A;(p) and
the first term in the right-hand side turns out to be small by Lemma
1.2, one only needs to show that Mo A4;(p) > 2n — ¢ if p is taken
sufficiently away from K in M;.

From now on one identifies M; with M . Forany ¢ > 0 let K, Cc M
be a compact set containing K such that

/ G| dM < e.
M\K,

By means of (xx*x) it suffices for the proof of Lemma 1.1 to show
c(M\F,) < c(M) + 5¢ for p € M with d(p, K) > R(e). It follows
from finite connectivity of M that there are at most finitely many
non-overlapping sectors Vi(p), ..., V;(p) in M with the following
properties: (1) Vi(p) N K, # D, (2) 0V;(p) consists of two rays em-
anating from p, (3) Vj(p) is homeomorphic to a closed half-plane,
and (4) every ray emanating from p is contained in some Vj(p) if
it intersects K,. Vj(p) has the property that if V/(p) C V;(p) is a
subsector such that there is no ray emanating from p and passing
through a point on Int(¥}(p)), then c(¥V(p)) = M(S,(V;(p))). Let
{pn} be a divergent sequence of points in M\K, such that {Vj(p,)}
foreach j=1,...,/ hasalimit V; as n — oo. This V} is a strip
if it has a nonempty interior. If ¥/ C V; is a substrip such that there
exists no straight line contained entirely in Int(V}), then ¢(V}) = 0.
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Set V=MW U-—-UV. c(M\F,) < c(Ke) —c(KeNF,)+¢ and
{c(KeNFp )}n tends to (K. NV) as n — oo. Thus for all sufficiently
large numbers n, ¢(M\F,) < c¢(M\V) + 4¢. Since V; is a strip,
a result of Cohn- Vossen (see Satz 3, [2]) implies that c( 7) <0 for
all j = .., /. This implies that ¢(M\V;) < 27:)((M\V) —4r.
But since x(M \V;) = x(M) + 1 the above inequality reduces to
c(M\V;) < 2nx(M)—2r. It follows from the assumption for c(M)
that ¢(M\V,) < ¢(M), and in particular ¢(V;) = 0 for all j =
I,..., 1. Therefore ¢(M\F,) < c(M\V) + 48 < c¢(M) + Se. This
together with (%) proves Lemma 1.1.

Proof of Lemma 1.2. A contradiction will be derived by suppos-
ing that there exists a divergent sequence {p,} of points such that
Ok (pn) > €y holds for all » and for some &y > 0. Without loss of
generality we may consider that {p,} is contained in a tube U .

To derive a contradiction consider the universal Riemannian cov-
ering U of U whose covering projection is denoted by m. Let
7: [0, 0c0) — M be a ray emanating from a point on dU such that

7([0, o0)) is contained entirely in U. Cut open U along 7([0, o0))
and let U_l , UO, U1, ... be the fundamental domains of U lying
in this order in U. Let T [0, oo) - U be the lifted l ray of 7 such
that its image lies in BUZ 1 N 8Ul and W := Uo U U1 U U2 Then
W consists of two rays 7o([0, o0)), 73([0, o0)) and a subarc of oU
whose terminal points are %((0) and 73(0).

The intersection of the two minimizing segments on 9 D(p,) with
oU will be denoted by Xn and y,. Set D, = D(p,) and let p, :=

‘l(pn)ﬂUl and D, c U the lift up of D, satisfying p, € oD, . Let
Zni=n1"Yx,)NOD, and y, :=1"1(y,) N 8D, . It follows from min-
imizing property of rays that the lifted minimizing geodesics joining
Pn to %, and p, to J, intersect =~ !(t) at most at one point. This
fact means that these geodesics are in W, and in particular, X, and
Yn are on OWnNouU. By choosing a subsequence, if necessary, one
may consider that {X,}, {y,} and {D,} convergeto X, y and to an
unbounded domain D in W . Two cases occur in the convergence of
{l~)n} In the first case, assume that {p,} is contained in the closure
of D. Then one may consider that {D,} is monotone increasing and
UDn =D. A slight modification of Theorem C in [12] implies that
{0k (pn)} converges to 0, a contradiction. In the second case, assume
that {p,} is not contained in the closure of D . Without loss of gen-
erality one may consider that the lifted minimizing geodesic joining
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Pn to X, intersects oD at a point 7#,. Set En = 5,1\5 and let
an € (0, m) be the angle at 7, of the corner of 5n nD. By construc-
tion, {7,} contains a divergent subsequence. Then Cohn-Vossen’s
argument (see §5, [2]) implies that {a,} has a limit 0. Let K, C M
be a compact set so as to satisfy

/ G,.dM < e.
M\K,

Then the area of n~ (K, N U) N Evn tends to zero as n — oo and
the curvature integral over E,\n~!(K, N U) is bounded above by «¢.
These facts together with the Gauss-Bonnet theorem for Evn imply
that {0k (p,)} contains a subsequence converging to 0 as n — oo, a
contradiction. This completes the proof of Lemma 1.2.
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