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The only known absolute invariant for a general system of pde is
its maximal character. The purpose of this paper is to prove that
conservation laws are also absolute invariants, that is, they are pre-
served under partial prolongations in a natural way. We also show
that the property, closely related to soliton behavior, of having an
infinite number of conservation laws is an absolute invariant.

1. Introduction and background. Partial prolongations of systems of
pde were introduced by E. Cartan to define when two continuous in-
finite dimensional transformation pseudogroups are equivalent as ab-
stract groups [1, p. 625ff]. With this relation he was able to classify
the simple infinite pseudogroups [1, p. 8571f].

In [1, p. 1133] Cartan studied partial prolongations of general sys-
tems of pde and used them to make precise the notion due to D.
Hilbert of when two systems possess a one-to-one correspondence be-
tween their solutions [6]. Two systems are “absolutely equivalent”
when they can be joined by a finite sequence of systems where for
each adjacent pair in the sequence, one is a partial prolongation of
the other.

Thus, the main use of partial prolongations is geometric: a property
associated with systems of pde is an “absolute invariant” property
when it is shared by both systems in any partial prolongation.

In a series of papers the author showed that several classical con-
cepts (hyperbolicity, characteristics) are not, in fact, absoluted invari-
ants [7, 8,9, 10, 11]. This means that these concepts are not necessarily
intrinsically related to the systems they are defined on: if one changes
the form of the system by a partial prolongation, such concepts may
change or no longer exist. Any theory based on these non-absolute
invariants may predict different kinds of behavior for systems which
are in fact completely and naturally equivalent.

In physics the problem is even more crucial. Concepts which are
not absolute invariants of the systems of pde that describe the physical
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process are not “physical” at all, since they could change or disappear
if one alters the describing system of pde in some inessential way:
they depend on how you happen to write down the pde. Just as mod-
ern physics commonly seeks quantities which are shared by systems
equivalent under geometric Lie groups, they ought to also check for
invariance under partial prolongations.

A rare concept which does turn out to be an absolute invariant
would thus be particularly important and the focus of special interest.
Until the present paper, the only known absolute invariant is the max-
imal character, which determines, roughly, the number of arbitrary
functions in a maximal number of independent variables which can
be assigned arbitrarily in the initial value problem [10, p. 237]. In this
paper we prove conservations laws to be absolutely invariant.

In some works, pde which are derived from a conservation law are
studied [12]. Our viewpoint is the opposite: to study the conserva-
tion laws associated with a given system of pde. Studies of the KdV
equation and others reveal that they have conservation laws related to
soliton solutions.

Solitons are special solutions associated with certain pde [2]. Since
we shall show that there is a one-to-one correspondence between the
solutions of absolutely equivalent systems, the property of having soli-
ton solutions is an absolute invariant. The property of having infinitely
many different conservation laws seems closely connected with exis-
tence of solitons [2, p. 36]. We show that this property is also an
absolute invariant, thus strengthening this conjectured connection.

To make this paper as readable and self-contained as possible, we
illustrate the ideas with numerous examples and often use local coor-
dinates. Experts can easily translate the proofs into the language of
abstract fiber spaces and bundles.

We do take for granted a familiarity with the calculus of exterior
differential forms, however [4].

I1. Examples of conservation laws.

EXAMPLE 2.1 [2, p. 32]. Let a compressible fluid of density r(x, ¢)
be flowing with velocity u(x, t) in the x-direction at time ¢. Then

or 9o(ru)

E“" ax =0

(2.1)
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Consider the 1-form C =rdx — (ru)dt. If we compute dC, the
exterior derivative of C, using exterior algebra and calculus, we get

dc = (ﬂdx + th) A dx — (‘9(”‘)dx + ‘9(’”)dz> A dt
ax ot

ox ot
_ (0r  0(ru) _
__(.5;+ 8x)dt/\dx—0,

when one “takes into account” equation (2.1).
When E is a plane region in (x, f)-space with oriented boundary

oF,
fe=[fac=o
oE E

If £E={(x,t)]—00<x<o00,t <t<t} then the last equation
says the total mass at time #; equals the total mass at time ¢, .

On the other hand, when E = {(x, f)jx; < x <X, —00 <t < 00},
it expresses conservation of total flux across two planes at x; and x,.

The 3-dimensional analogue works the same way, only now C is a
3-form.

EXAMPLE 2.2. The plane motion of N particles of masses m,; at
(x?, y') under gravity is governed by
d?x! x) —x!
(2.2) M =k Y ——mim;,
j# Y
d2y yi —yi
mi—r =k ) ——mim;,
'#i ij

where

. . . . 13/2
dij:[(xl_xl)2+(yl_yj)2] , i,j=1,..., N.

Let N
dyt  .dx!
_ | i Yl
L_;:lm,(x T ydt)'
If we replace

i i 2,
dx dx) b dxdt, etc.

i ax ax hutliadl
dx' by 77 dt, d(dt PTE
then dL = 0 when we “take into account” equations (2.2).
Notice that we must treat dx’/dt and dy'/dt as variables in some

extended space. Ehresmann’s “jet” manifolds are just such a space [3]
where, indeed, they are coordinates.
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ExaMPLE 2.3 (KdV Equation).

oy 9y 8y _
50 Yox Tt T
This is known to have soliton solutions [2, pp. 3-8]. Then, if

(2.3) 0.

92y 5
C=ydx—<w—3y ) dt,

dC=d /\dx—(d(—a—ij—)>—6 d)/\dt
=dy 522 ydy

_(9y dy
= <5;dx + E‘df) A dx
93y 93y 8y dy
- [6x3dx+ 8x28tdl — 6y <5—£dx + Edtﬂ A dt
_(0y O3 oy B
= (i + g o) dinax=o,

if one “takes into account” (2.3).

ExaMPLE 2.4. Consider next the “formal derivative” of C in the
last example:

0y a3y Ay
By using not only equation (2.3) but the derivative of equation (2.3)
with respect to x, one finds that d(d,C) = 0 if one replaces

dy a2y 9%y
d| — .
(8x> by 532 dx + Bxatdl’ etc
We thus find that the formal derivative of the conservation law C is
also a conservation law. This is true in general. The KdV equation is
unusual in that it has an infinite number of conservation laws which
are not formal derivatives of some lower order laws [2, pp. 34-36].

EXAMPLE 2.5.

0%y (YN L0y
29 g0 C=(55%) axts e
Then
oy 8%y 8%y 2 1
c = [2 (8x1> <8x18x2) ~ axtoxz PN A0 =0

when one uses equation (2.5).
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We observe that in each case an exterior form C over the differen-
tials of the independent variables is given, whose coefficients are func-
tions of the dependent and independent variables and certain partial
derivatives. Moreover, in computing the exterior derivative of C one
must use certain 1-forms to obtain dC in terms of the differentials of
the independent variables. Then, when the original equation or some
of its formal derivatives are “taken into account,” dC = 0.

We want first to make this process precise and reduced to ordinary
computations on the geometry of manifolds. This can be done using
Ehresmann’s jet spaces.

I1. Jet spaces. C. Ehresmann’s theory of jets [3] enables us to solve
problems about the structure of pde by differential geometric methods
[13]. We introduce notations and state elementary results that will be
needed.

If X = R” has coordinates (x!, ..., x?) and Y = R” has coordi-
nates (y!, ..., y™) then the space J, of p-jets of maps from X to
Y has coordinates that correspond to the variables in a pde of order p
with dependent variables y/ and independent variables x’, namely,

x', ¥/, v, v);,... up through order p

(where yj . represents ayljax"axk , etc.)

Ehresmann gave the elegant definition: a p-jet at x € X is the
equivalence class j,(f)(x) of alocal C* function f: X — Y whose
domain includes x, the equivalence relation being:

f =~ g if f(x) = g(x) and all partials of f and g are the same at
x up to and including order p. Then in coordinates the jet j,(f)(x)

1s
. . j 2
(. 0. SE, o, ).

The fact that yljk = y,{i complicates things. A very convenient
notation from pde theory is

Vi = ~ arfj - =0;..; f/
iy, a(xl)lla(xz)zz.__a(xn)z” 1
rather than y;..5»..,. For this “ n-tuple” notation we designate v =
(iy, ..., Iy) where i, are non-negative integers, so
yl]",...,i” = yl; = Byfj.
Let [v|=i+---+1i,. If welet yé,..o = y/, then the coordinates of
Jy are (x', y1), for v <p.
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It is understood that the i and j depend on dimensions of X and
Y . We often omit these upper indices i, j which greatly simplifies the
notation, and merely write (x, y,), |v| < p for coordinates in J, [14,
15].

We also simplify things by using the summation convention.

The reason why it is necessary to involve the geometry of J, is that
we want results independent of choice of coordinateson X or Y. If
we allow changes of variables of the form )y’ = F(x, y), x' = G(x),
we are really studying jets X — E, where E is a fibered manifold
n: E — X . That is the viewpoint in [14, 15].

(The physicist may need even more general coordinate changes )’ =
F(x,y), x' = G(x, y). The author knows of no extension of jet for-
malism to this situation. Cartan’s theory of exterior systems of equa-
tions is, however, of this genre, since it makes no implicit designation
of independent variables.)

Notation. If v = (iy, ..., In), then
(31) V+1j=(i1,...,ij+1,...,in).

If f: X —7Y isalocal C* function then x — j,(f)(x) defines a
map from X to J,, given by

X=x,
Julf ={ o
=gy =aufs v= ity s i),
For such an f,
n
dyl/=Zau+llfdxl:2yu+lldxla |V|<p.

i=1
Hence, the “pull-backs” by j,(f) of the 1-forms

wy =dy, =Y yo1,dx', | <p,
are all zero: j,(f)*(w,) =0.

DEFINITION 3.1. The 1-forms wy, = d yi — yi i1 dx!, are the contact
1-forms of J, . They generate the contact ideal Q, on J,. Itis known
that g: X — J, equals j,(f) for some f: X — Y if and only if
g*(2,) =0 [13, p. 20ff].

Now we consider real-valued functions ®: J, — R.

DEeFINITION 3.2. The formal (partial) derivative of @ with respect
to x is 8®(jps1(f(x))) = [2@_81&] (x). This is well-defined, and
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in coordinates looks like
od
a¢ ax +Zayyyl/+l

lv|<p
EXAMPLE 3.1. Let p=2, dimX =2, dimY =1. Let

®(x', x2, ¥, Y10, Yoi» Y20 V11> Yo2) = X' Vo1 + yao¥11-

Then 0;® = yo; + x'yi1 + V3oy11 + V3oYi1 + Y20¥21-
We could also use the n-tuple notation 9;o® instead of 9,®. More

generally, for any n-tuple u, 9,®: J,,, — R. is defined, and
ProrosITION 3.1. 0,(0,P) = 0,(0,P) = 0y, P.
Instead of studying systems of equations on J, we study their zero

sets, which we assume to be submanifolds of J,.

DEFINITION 3.3. A system of pde of order p is a submanifold R,
of J,. Alocal map f: X — Y is a solution of R, when, for all

x € domain(f), j,(f)(x) €R,.

The “prolongation” R,,; of R, is obtained by formally differenti-
ating the equations that define R,. For example, (2.4) would be one
of the equations defining the prolongation of the KdV equation.

DEFINITION 3.4. Let R, = {(x, y,)|g(x, ¥,) =0}. Then
Rp1 ={(x, yu) € Jp1lg(x,¥1) =0, 0,8(x, y,) =0, 1< j < n}
is the first prolongation of R,. More generally
Rpig={(x, yu) € JpsqlOvg(x,yu) =0,0< |v[ < g}.
Let I1579: J,,4 — J, be the projection. Then obviously
ProrosiTioN 3.2. T (R,.4) CR,.

Moreover, it can be shown that

ProposITION 3.3. If F: J, » R iszeroon Ry, then 8,F: Jy4 g — R
is zero on Ryiq4, for all |v| < q. (Note that though R, is assumed to
be a manifold, R,., need not be.)

More generally, suppose Y’ is another manifold and J; is the man-
ifold of r-jets of maps f': X — Y'. We need to consider maps
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F:J,— X xY' which preserve X, i.e., F(j,(f)(x))=(x, ') (same
point x). In coordinates:

F { X=X,
Ly =ex,v). A<D
DEFINITION 3.5. Let F: J, — X x Y’ preserve X . In this case the
prolongation of F, py(F): Jyq — Jy, is defined by
X=X,
Pall): { Vu=0uP(x,p9), [0l<p+aq,|ul<q.
(For invariant definitions of 3.4 and 3.5 see [14, pp. 40, 49].)

PROPOSITION 3.4. Let F: J, — XxY' preserve X . Suppose R4 C
Jprq and Ry C J, are defined as the zero sets of some functions. If
Pe(F)(Rpiq) € Ry, then, for all r >0,

Pa+r(F)(Rpsq+r) C Ry

IV. Partial prolongations. To explain the idea of a partial prolonga-

tion consider the following examples.

ExXAMPLE 4.1. Let dimX =2, dimY =1, R, C J, defined by
_9%
dx1ox2

Let R} be the systemon X x Y x Z, dimZ = 2, defined by

=y =0.

TS R 2 T 52
Ry:z" =y, Z° = Yo1 , Zg; = 219 = 0.

Obviously, R, and R/ are related. The new variables zl, z? are

the first derivatives of the variable y in R,. The last equations of
R' say the same thing as the equation y;; = 0. R/ is called a partial
prolongation of R;.

(This device of introducing new variables for lower order derivatives
of variables in a pde can be used to reduce any pde to a first order
system, called its “lowered system” [14, p. 109ff].)

EXAMPLE 4.2.
Ry:yn =0,
Ri:yor=y—Az, y9—Az;0=0 (A = constant).

Suppose y(x!, x?), z(x', x?) solves R). Differentiating the first
equation that defines R gives y;; = yj0—Az10 =0, 50 y solves R;.
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On the other hand, when y solves R,, if z = (y — yp;)/A4 then
yio— Az =0, s0 (y, z) solves R|. There is thus a natural one-to-
one correspondence between the solutions of the two systems. R/ is
a “partial prolongation” of R,.

ExXAMPLE 4.3.

| 2 2 3 1
Ri:yo =0, Yo =Vio. Yor=DYio>

T | =0 2 2 3 _ .1 B | =0
1°Yor=VY, Yor=XYio» Yor=Yio> Z=Yio> Zo1=VU.

Again, there is a one-to-one natural correspondence between the
solutions of R; and R].

DEFINITION 4.1. Let R, C J, be a system with independent vari-
able manifold X and dependent variable manifold Y. Let Z be a
manifold and

F:Jp,—-XxYxZ forsomeO<r<p-1.

Let J! be the r-jets of maps X — Y xZ. Denoteby II,: XxYxZ —
X x Y the projection.
Let R, C J; beasystem of pde, R, its (p—r) th projection. Assume

(1) yoF=IK":J,_,»XXxY,

(2) »p ( ): Jp — Jy satisfies p,(F)(R,) C R},

(3) pp(Hy) J, — Jp satisfies p,(I1,)(R},) C R, , and
(4) Foll ,opp(Hy) J, > X xY x Z satisfies

17
Foll_,0p,(Il,) = n’P on R,.

Then we call R} a partial prolongation of R,

COMMUTATIVE DIAGRAM

COORDINATES
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Choose (x) on X, (¥) on Y and (z) on Z. Then condition (1)
implies

X=X,

X=X
(4.1) F:{y=y, Hy:{yzy
z=¢(x,y9), 0| <p-r
X=x,
(42) Pr(F): yll=yl/a ]V| Sra

ZV=(6V¢)(x>yl)s |/1|Sr+p—-r=p

xX=x,
(43) @ {57 e,
Condition (2) says
(44) if(x,y)€R, then(x,yy, (Ovp)(x, ;) ER.
Condition (3) says
(4.5) if (x, y;, z1) €R, then (x,y;) €R,.
Condition (4) says
(4.6) if (x, y3, z;) €R, then z = ¢(x, yg) for [§] <p —r.
Thatis, z—¢(x, y9) =0 on R},.

EXAMPLE 4.1. (See above.)

X=X,
y=y,
e ' =y=0'(x,n),
2t =yor = 0*(x, »),
pL(F): W=y, =1,
Z}o=J’20,
Z(l)l =Yi1,
Z%o=y11,
251=y02-

Condition (2): if (x, y;) € Ry, y11 =0, s0 z}, = z2,; =0, and hence

(xa Yv, ZV)‘:pl(F)(x’yi)eRIl'
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Condition (3): R’ is defined by the equations defining R/ together
with Zlg = 10, 0'= 2y = v = 2, Yoo = 2, 2, = Ty =
zd, =22, = 0. If (x,y;, z;) € R}, then y;; must be zero; hence
(x,y1) €ER;.

Condition (4): if (x, y;, z;) € R, then z! = y;0 = ¢!(x, yp) and
z2 = yo; = ¢*(x, yy), since these equations are among the defining
equations of R).

ExAMPLE 4.2. This is equally easy to check, using

F:x=x,y=y,z=y;y°l=(/)(x,yo),
mwr{ !

Yo=YV Vo=V
Yv=Yv, Z10 = 54, zop = L2

A A

ExXAMPLE 4.3. Here, r=1, p—~r =1, so p should be 2. To fit the
definition we must first prolong R; to R,. Then R| can be shown
to be a partial prolongation of R;.

We next show how the solutions of a system and a partial prolon-
gation correspond in a natural one-to-one way.

Let R, and R] be as in Definition 4.1.

THEOREM 4.1. For every local solution f: X —-Y of Ry,
P(f)=M,.0Fo0jpr(f): X>Jpy > XXYXZ—=YxZ
is a solution of R'.
For every local solution f': X - Y xZ of R;,
QY=o f X >YXZ—Y

is a solution of R, .
Furthermore, Po Q(f") = f" and Qo P(f)=f.

Proof. Most of the complexity in this proof is notational, arising
out of the usual confusion between functions and their graphs. In the
local coordinates that follow Definition 4.1 it is quite transparent.

Fix=x, y=y, z=0¢(x,y), |0|<p-r,
f:y=f(x) hence,

y=f(x),

(4.7) PU%{Z=¢WAMﬁw»
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so by Definition 3.5,

X=Xx,
Jr(P(f)) Vv = (]Vf)(x) s
zy = (0, 9)(x, (Jaf)(x)).

Since f solves R,, (x, (jif)(x)) € R, for all x € domain(f), and

by (4.4) (x, 0, f(x), (Bve)(x, (Jif)(x))) € R}, so P(f) solves R;.
Let

/. y:h(x)’ 7o vy —
(438) r {7 e ey =)

Since f* solves R;, it also solves R}, and hence
(x, (Jah)(x), (jak)(x)) €R, for|A|<p

for all x € domain(f’). By (4.5), (x, (Jih)(x)) € R, and hence
Q(f") solves R, .

By (4.6), when (x, y;, z;) = (x, (uh)(x), (jik)(x)) € R,, z =
k(x) = ¢(x, (joh)(x)). Hence, Po Q(f") = f".

By (4.7) and (4.8), Qo P(f) = f. O

V. Conservation laws.

DEeFINITION 5.1. Let R, C J, be a system of pde. Let C be an
exterior differential k-form on J; which depends only on the differ-
entials of the independent variables (dx!, ..., dx"). Let ¢ > s, and
consider d[(I1?)*(C)]. Modulo the contact forms on J, , this exterior
derivative is congruent to a unique (k + 1)-form in the differentials of
the independent variables. We denote it by dC/Q, .

Then C is defined to be a conservation law for R, when, for some
q where g >p and g > s,

if (x,y;) € R, thendC/Qq(x,y;)=0.

(This is a slightly more general definition than given in [5, p. 253].)

LocAaL COORDINATES
Let

/
C:Z ArdXx?, Ar(x, yu): Js — R, |lu| <s.
I

Here, I = (iy,i2,...,0), 1 <1 i £+ <n=dimX, and the
'’ means summation over all such ordered k-tuples, and dX/ means
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dx' ' A---A dx’ . Then

(I19)*(C) = Z/ A;dX'  (same expression),
1

a9 (0)] =Y da;ndx’
I

-5 (Z %dxj S gAldy,,) A dXT
1 J

vj<s 7Y

(04 04 o
= ZI ; (W + ZV: E'Eyy_,.]j) dx’' AN dX mod Qq

(5.1) dC/Q, ="' S (8;41)dx) A dX".

I j

Hence, C is a conservation law for R, iff

(52) (X, ) €ER; =Y S (BAn)(x, y)dx) AdX =0,
I
for all |[A| <g, |u| <s+ 1. By exterior algebra, this in fact means
k+1

(53) (x,y)eER;= Zaiinl,,_.; s YT (L, y) =0

- [T R A EY|
J=1

for every sequence i} < i; < --- < I;,; and where i ; means that this
item is missing in the list.

LemMa 5.1. If C is a conservation law for Ry, then it is a conser-
vation law for all R, when t > p.

Proof. When p < t < q, this follows from Definition 5.1. For
t > q, recall that (IT})(R;) C R, by Proposition 3.2, so (5.2) must
hold when (x, y;) € R;. a

ExAMPLE 2.1. Replace (¢, x, r, u) by (x!, x2, y!, y?).
Ri:ylo+y3, +y4 =0, C=y'dx?—y'y?rdx!

on Jy=XxY,s0s=0.
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dC =dy' A dx* — (y'dy? +y*dy" ) A dx!,
(Mg)*(dC) = (yjodx' + yj, dx*) A dx!
- [yl(yfo dx' 4+ y3, dx?)
+y2(iodx' + g, a'xz)] Adx' modQ,
dC/Q = o+ vy +y2i)dx' A dx* =0

when (x,y;) € R;.

ExampLE 2.2. Replace (¢, x!, y!, ..., xV, y¥) by (x, !, 2, ...,
y2N—1’y2N)_ Then

N
C = Z m,-(yZ’“’yfl _y2zy%z—l)
i=1
is a O-form (function) on J;, so s = 1. One finds that
dC/Q, = Z m(y2=1y2i - yZiygi—l) dx!
and, with some algebra, this is zero when (x, y;) € R,.

To each conservation law C belongs an infinite set of its formal
derivatives, each of which is also a conservation law, as we now show.

DEeFINITION 5.2. Let C on J; be a conservation law for R, :

C=Z'A1dX’, Ar(x, yo): Js = R.
I

Define 9,C = Y7(0,4;)dX!, 1 < h < n =dimX. This is called
the formal derivative of C with respect to x" . More generally, 8,C =
le(ayA[)dXI, VvV = (il 5 soe in).
Note: since A;: Js — R, 0,4;: Sy 2> R, 80 9,C isa k-form on
JS+|1/| .
ExXAMPLEs 2.3, 2.4. Change (¢, x, y) to (x!, x%,y), so
R3: y10— 6y yor +yo3 = 0.
C=ydx*— (yp, - 3y*)dx' on J.
Instead of 9,C we have
8,C = 801C = yo1 dx* = (yo3 — 6y yo1)dx' on Ji.
d(0,C)/Qy = [J’n + Yos — 6(vo1)* — 6y J’02] dx' A dx?.

But on Ry o1 (V10— 6Y Vo1 + ¥03) = Y11 — 6(¥o1)* — 6y Y02 +Yos = 0;
we conclude that (x, y;) € Ry implies d(0,C)/Qu(x,y;) =0.
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ProrosiTiON 5.1. If the k-form C is a conservation law for R, ,
then 0,C is also a conservation law for R, .

Proof. Using local coordinates with C = Y, A;d X', where A4;:
J; — R, we know that for some g > s, when (x, y;) € R;, by (5.3),

k+1
{Zal -M(—l)j_l} (x,¥2)=0.

Hence by Proposition 3.3, if (x, ;) € Ry then

k+1
O {Z 0 4; ,...,2/,...,,-“1("1)’—1} (x,y1)=0
=1

k+1 .
= Zaz’/(ahAil,,,,,ij,,‘_,im(“l)]_l (x,y2)=0
j=1
by Proposition 3.1. So, by (5.1) and (5.2) when (x, y;) € Rg41,
d(BhC)/Qq+1 =0. 0

DEFINITION 5.3. R, has an infinite number of conservation laws if
its conservation laws cannot be generated algebraically from laws at
some level J, using formal derivatives.

We now prove our main goal, that when R/ is a partial prolongation
of R,, then a conservation law for one of these systems corresponds
in a natural way to a conservation law for the other.

Let R, and R, be as in Definition 4.1. Let C on J; be a conser-
vation law for R, so that, for some ¢ > s, g > p,

C=Y"4;dX and dC/Q =YY (84 dx; A dX
1 1 i

and (x, y;) € R; implies dC/Q4(x, y;)=0.
In fact, of course, 9;4; depends only on J; ; =II

?.1(Jg) . We also
have Il,: Jy=XxY xZ — Jy=X xY and

X=X
ps(I1,): 2 JP - ul <s.
S\ELY {y#__:yﬂ} s s |l

Let P(C) = ps(I1,)*(C) = Y_'; A;d X' . In these coordinates, <, the
contact form on J, ! contams all the forms in Q,, so

d [(I19) 0 ps(T)*(C)] = 3 Y (8i4r) dx' A dX! mod @,

hence d(P(C))/€2 = py(ILy)*(dC/Qy).
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By condition (3) of Definition 4.1 and Proposition 3.4, p,(I1,)(R},) C
Ry, s0if (x,y,, z1) € Ry, then (x, y;) € R, and since dP(C)/€Y,
and dC/€), have exactly the same expressions which depend only on
(x,¥1), (x,¥i,2;) € Ry implies that dP(C)/Q(x, y;,z)) = 0.
We have proved

PrROPOSITION 5.2. If C is a conservation law for R, then C corre-
sponds in a natural way to a conservation law P(C) for R).

Now, let C' on J/ be a conservation law for R). Suppose that
dC'/Q, = 0 at points (x,y;, z;) € R, for some g >, g > r.
There is no reason why we cannot suppose g > p. Let

C’=ZIB1(x,ya, Za)dXI: lalsta
1

ac' i = S S (0iBi)(x, vg, zg)dx' A dXT, 1Bl <t+1,
1 i

and this is zero whenever (x, y,, z;) € R},. Using the notations of
Definition 4.1,

X=X, X=X,
F:{y=y, P(F):{ YVoa=VYa,
z=0(x, vy), Zo = (0a9)(X, V),

where || <p—-r, |o|<t,and |B| <p—r+t, so the “pull-back,”
!
Q(C") = p(F)*(C") =) Bi(x, Ya, (Bap)(X, yp)) dX'
I

is a k-form on J,_,4;.
d{Q(C")]
! .
=" 0 [Bi(x, Ya» (Ba0)(x, ¥p))] dx' A dX'  mod Qp_yyiiy
T

=d[Q(C]/Q
by definition. But

8[BI(X > Ya» (aa(/’)(x ’ yﬂ))
0By [ 0B;9(0.9p) , 0B + 0B 9(0a9)
T 9xi ' 9z, Oxi 6yay°‘+1' 9zo 0yp VB+1,
_ 0B, 0B OB,

= (0:B1)(x, yg, 0s9), Bl <p—r+t.
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Thus, d[Q(C))/Qq = (pis1(F))*[AC'/Q]. If, now, (x,y;) €
Ry—riq, then (x,y,, (8,0)(x, yg)) € R, by Condition (2) of Def-
inition 4.1 and Proposition 3.4. Since C’ is a conservation law, when
(x » Vi (al¢)(x ’ yﬂ)) € Ri] > (dC’/Q;)(X, Vi, (al¢)(x: yﬂ)) =0
But, since dC'/Q;, involves only dx!', ..., dx",

dC'/Q)(x, v, (8:0)(x, yp))

= Pt (F)'[dC [1Q)(x, 1) = d[Q(C)]/Qy.

Hence, the last expression is zero when (x, y;) € Rp—+4, so Q(C')
is a conservation law for R,. We have proved the

ProposITION 5.3. If C' is a conservation law for R, then C' cor-
responds in a natural way to a conservation law for R, .

In order to prove that having an infinite number of conservation
laws is shared by systems and their partial prolongations, we must
show the correspondences P and Q commute with formal differen-
tiation.

ProrosiTION 5.4. If C' on J! is a conservation law for R) then

0,Q(C") = Q(0;C").
Proof. Let C' = Y1 Bi(X, Yo, 24)d X!, |0 < t, s0O

Q(C) = Y Bi(x, va, (Ba0)(x, ¥p))dX',  |Bl<p—r+1,
1

an(C’) = Zl 8j [B](X, Yo (8a¢)(x’ yﬁ))] dX

Z 0By BB] 3(8a(0) i 0By
N Oxi T 9za Ox) | By L

L OB1000), Y gy

8Za ayﬁ yﬂ—l—l/
0B 0B OB
- Z (6xj I a+1 + Zl(aa-HJ(”)) dXI
- 00,0,

ProPOSITION 5.5. If C on Js is a conservation law for R, then
9;P(C) = P(9;C).
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The proof is similar to that of Proposition 5.4. Combining these
results we have the

THEOREM 5.1. There is a natural correspondence between the con-
servation laws of a system of pde and one of its partial prolongations.
This correspondence commutes with formal differentiation.

In particular, if one system has an infinite number of conservation
laws, so does the other.

We now present E. Cartan’s response to D. Hilbert’s question, when
can one say that two systems of pde have a one-to-one correspondence
between their solutions?

DEFINITION 5.4 (Recursive). Two systems R, and R; of pde are
absolutely equivalent if

(1) R} 1s a partial prolongation or prolongation of R,, or

(2) R, is a partial prolongation or prolongation of R}, or

(3) R, is absolutely equivalent to some R} and R{ is absolutely
equivalent to R).
A property of R, is an absolute invariant when it is shared in a natural
way by all systems absolutely equivalent to that system of pde.

We have proved

THEOREM 5.2. The property of having a conservation law is an ab-
solute invariant. The property of having infinitely many conservation
laws is an absolute invariant.
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