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Let X be an irreducible rational nodal curve of arithmetic genus
g > 2, and let S* be a non-special, effective invertible sheaf on
X . Let W(=S?) denote the set of smooth Weierstrass points of 3?
and all its positive tensor powers on I . In this paper, we study
the distribution of W{3?) on X. In particular, we will show that

is not dense on X, generalizing an example of R. F. Lax.

1. Introduction. In a recent series of papers ([2], [3], [4]), R. F. Lax
and C. Widland have defined Weierstrass points for invertible sheaves
on integral, projective Gorenstein curves over C. They use a method
generalizing the classical definition of the Weierstrass points of the
canonical sheaf on a smooth curve via Wronskians. In particular,
they show that if X is an integral, projective Gorenstein curve, and
S? is an invertible sheaf on X, then a smooth point P £ X is a
Weierstrass point of 3* if and only if

where s = dimH°(X, 3). On the other hand, if s > 2, the singu-
lar points of X are automatically Weierstrass points of 3 of high
Weierstrass weight. (See Propositions 2 and 3 of [3].)

The goal of the present note is to prove a general result about the
distribution of the smooth Weierstrass points of an invertible sheaf S?
and all its positive tensor powers in the case that X is an irreducible
rational nodal curve. This particular question was suggested by an
example in [3], in which it is shown that for a particular ^ o n a
particular rational nodal curve of arithmetic genus 2, the set

= {P e X I X is a smooth Weierstrass point
for some n > 1}

avoids a small disk in the normalization of X (that is, P1). This
situation is quite different from the case of smooth curves X, where
B. Olsen ([6]) had previously shown that if deg(i?) > 0, then the
analogous set W{<2?) is dense in the complex topology on X.

131



132 JOHN B. LITTLE AND KATHRYN A. FURIO

We will show that if X is any irreducible rational nodal curve of
arithmetic genus g > 2, and & is any invertible sheaf on X with
dim//°(X, &) > 0, and άimHx{X, &) = 0, then W{&) is never
dense in I . In fact, we will show that the limit points of W{J?)
always lie on a real one-dimensional subset of X. (On the normal-
ization of X—P1 viewed as the Riemann sphere—this set is a union
of circles). The proof uses an explicit form of the equation of the
theta-divisor in the generalized Jacobian of X, given in Mumford's
book [5], and a characterization of the smooth Weierstrass points of
Sf borrowed from Olsen's work for smooth X.

In §2 we fix our notation and gather some preliminary results. The
proof of our main result follows in §3.

2. Weierstrass points on rational nodal curves. Let X be the irre-
ducible rational nodal curve formed by identifying g pairs of distinct
points {bi, Ci} on P1 (the Riemann sphere, or extended complex
plane). For notational simplicity, we assume that none of the points
bi or a is oo.

Let ω denote the dualizing sheaf of X. Then H°(X, ω) is spanned
by the differentials ω 7 = dz/(z - bj) - dz/(z - cj) (j = 1, .. . , g).
Moreover, with this choice of basis, the period lattice Λ of X is gener-
ated by the g vectors in {(2πi, 0, .. . , 0), (0, 2πi, 0, ... , 0), ... ,
(0, . . . , 0, 2π/)}. Hence the generalized Jacobian J(X) = C^/Λ
may be identified with (C*)* .

Let XQ denote the set of smooth points of X, and let Xo = oo e XQ .
As on smooth curves, we define an Abel mapping φ: XQ —• J{X), using
xo as basepoint, by

ωx J, ... ,exp( / ω^j )

= ((x - bx)l{x - ci), ... , (x - bg)/(x - cg)).

We may extend φ to a mapping on effective divisors with support in
XQ using the group operation in J{X):

φ:χW-+J{X),

-bg)/{xk-cg)]nAj.
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Finally, if D = D\ - D2 with Z>/ effective we define

The image of XQS~^ under φ , or its Zariski closure in a compact-
ification of J(X), is the analog of the theta divisor in the Jacobian
of a smooth curve, and as Mumford shows in [5], we can obtain an
analog of the theta function, whose zero locus Θ c J(X) contains

LEMMA 1 ([5], pp. 250-251). Let kt = ezι (i = 1, . . . , g) be coor-
dinates on J(X), and let

-Λi ••• l-λg

\ — C\λ\ ' ' ' bσ — Cσλσ

τx(λι,...,λg) = det

Then τχ(λ\, . . . , λg) = 0 defines an irreducible divisor Θ c J(X)

that contains φ(XJf~ι)).

We will use the theta function %χ to obtain a criterion for smooth
Weierstrass points as follows. This is analogous to a result used by
Olsen ([6], p. 362), and generalizes Lemma 2 of [3].

LEMMA 2. Let 3* be an invertible sheaf on X such that
dimHι{X,3) = 0, and s = dxmH°(X9&) > 0. If P e Xo is a
smooth Weierstrass point of 3>, then φ{£?)(φ{P))~s e θ .

Proof. We begin with a comment regarding the notation φ{<5?) in
the statement of the lemma. The generalized Jacobian J(X) is iso-
morphic to Pic°(X), the group of isomorphism classes of invertible
sheaves of degree 0 on X. Given any invertible sheaf i 7 on I ,
S? = @χ{D) for some divisor D supported in XQ . Moreover, if Dγ
and D2 are linearly equivalent divisors supported in Xo, then the
Abel Theorem for X implies that φ{D\) = φ(D2). Thus, we may
define φ(J?) to be the image φ(D) for any D supported on XQ with
oS?7 = #χ(D). Similarly, we can define φ{D) for any Cartier divisor
D on X.

Now, we consider the situation described in the hypotheses of the
lemma. Since P is a smooth Weierstrass point of 3*, there exists a
nonzero section σ e H°(X, 3(-sP)). Then E = div(σ) - sP is an
effective Cartier divisor on X. Its degree is deg(^) = s = g-l by the
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Riemann-Roch Theorem for Gorenstein curves (using the assumption
that S* is non-special).

Even though E may not be supported entirely in XQ , since it is
a Cartier divisor, E can be viewed as a limit of effective divisors
of degree g - 1 supported in XQ, as in [1]. The image φ{E) can
then be computed by a limiting process as follows. By the linearity
of the abelian sums, we can reduce to the case in which Q is a node
of X , E is supported at β , and f E#χtQ is a local equation for
E. For ε e C\{0} sufficiently small in absolute value, the divisor
Eε = div(/-ε) will consist of deg(£) smooth points. As in Theorem
2 of [1], we will have φ(E) = lim e_ 0 ψ{Ee).

Thus φ(^f)(φ(P))~s = φ{E) is in the closure of φ(XJf~ι)) in
J(X), and the lemma is proved. D

We will use the following notation. When we expand the determi-
nant for τx, we have:

τx(λι,...,λg) = Σ
..,g} iei

for some a\ Φ 0 in C. (See [5], page 252. 0{i,...,£} is the Van-
dermonde determinant defined by the Cj, a® is the Vandermonde
determinant of the bj , and the other coefficients are various "mixed"
Vandermonde determinants in the Cj and bj.)

Say φ(&) = (d\, . . . , dg) e J(X). Then we have the following
corollary.

COROLLARY 3. Let S* be as in Lemma 2. If P is a smooth Weier-
strass point of order n of\2f (that ist a Weierstrass point of the invert-
ible sheaf £?®n), and s(n) = dimH°(X, £?®n), then

(*) °= Σ */ Π
..,s} iei

where vt is the reciprocal of the ith component of φ(x), that is,

3. The limit points of W{&). We let W(&) denote the set of all
smooth Weierstrass points of <Sf®n , for all n > 1, as in the introduc-
tion. By Lemma 3, W{&) is the set of roots of all the equations (*)
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for all n > 1. By the Riemann-Roch Theorem, we have

s(n) = dimH°(X,5?) = n deg(^) + 1 - g.

In this section, we will prove the following result about the distribution
of the limit points of W{&) on X.

THEOREM 4. Let pj = {dj]'1/6^^ for each j = 1, . . . , g. Then
the limit points of W(S?) all lie on the locus L = {x \ \VJ(X)\ = Pj for
some j}. (Via the normalization map, on the Riemann sphere, this
locus consists of (at most) g circles.)

Proof. Let x e P1 be any point lying outside the locus L. We claim
that for all n sufficiently large (the bound depending on the location
of x), x is not a Weierstrass point of order n of &. We will prove
this by showing that for all n sufficiently large, x cannot be a root of

(*).
Consider first the case where | ^ ( x ) | > pj for all j . Then for all

n, \dj\n\Vj\n'άe^ > 1. Hence by taking n large,

can be made arbitrarily large. Thus, in the expression on the right-
hand side in equation (*), the term a{\9tmm9gy Πf=i dfvf^ is the one
that grows the fastest with n, and for n large enough, we can make
its absolute value larger than the sum of the absolute values of the
other terms. By the triangle inequality, x cannot be a root of (*) if
n is chosen to be large enough.

Now, if |v/Qc)| < pj for some j , we use the same argument, but the
fastest growing term will be the one for which I — {j \\VJ(X)\> pj} .
In all cases, for all n sufficiently large, we see that x cannot be a root
of (*).

Thus the limit points of W(&) must all lie on the locus L c P1 .D

As a result, W(&) is never dense in X. Some numerical experi-
ments we have performed seem to indicate that the set of limit points
of W{&) may have a very complicated structure, but we are unable
to say more at this time.

The first author has recently proved an analogous result for cuspidal
rational curves as well, which will appear elsewhere. In that case too,
the set W(&) fails to be dense.
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