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GENUS FOUR DOUBLE COVERS OF

ELLIPTIC CURVES IS RATIONAL

FABIO BARDELLI AND ANDREA DEL CENTINA ι

This paper is devoted to a proof of the rationality of the moduli
space of those genus four smooth complex projective curves which
are double covers of some elliptic curve. The study of the canonical
model of a genus four curve as above allows to reduce the initial mod-
uli problem to a simple one in plane projective geometry; this last
formulation leads to compute an explicit representation of a certain
group on a vector space and its corresponding field of invariants.

Let C be an irreducible, smooth, projective curve defined over the
field of complex numbers.

We call C elliptic-hyperelliptic (e.h. for short) if it admits a degree
two morphism π:C -+ E onto an elliptic curve. We denote by Jfgh

the moduli space of e.h. curves of genus g. The aim of this note is
to present a proof of the following:

THEOREM. ^ 4

e h is rational

We proceed as follows.
In § 1 the canonical model of a generic e.h. curve C (of genus 4)

is shown to be complete intersection of a unique cubic cone R and a
unique quadric. By looking at the tangent space to the canonical space
at the vertex of R, in §2, we associate to C a pair (Z, γ), where Z
and γ are smooth coplanar curves of degree 3 and 2 respectively, and
we are able to show that ^ e h is birational to

{(Z,y)}/PGL(3).

After fixing a quadratic form defining γ we can prove that
{(Z , y)}/PGL(3) is birational to

where G/ is a C*-extension of Z2.

1 The authors are members of the GNSAGA of the CNR
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In §3 we compute the representation of G/ on H°(Pι, ff^\ (6)) and
we show that its G\ -invariant field is purely transcendental over C,
completing the proof of the theorem. We wish to thank the referee
for pointing out a mistake that we made in the first draft of the paper
and for his helpful comments.

NOTATION. AS usual we denote by <9χ and Ωx the structure sheaf
and the canonical sheaf of the irreducible, smooth, projective variety
X. For any invertible sheaf & on X we denote by | ^ | * the pro-
jectivized dual of H°(X 9 5Γ). We denote by Jtg the moduli space
of smooth projective curves of genus g, and by [C] the point of Jtg

representing the isomorphism class of the smooth curve C of genus
g-

If a is an element of a certain group we denote by (a) the subgroup

generated by a.

1. Some geometry of elliptic-hyperelliptic curves. Let us start with
some recalls on elliptic-hyperelliptic curves of genus g > 4 (see [3]
for details).

Let π: C -> E be the ramified double cover associated to an elliptic
involution / on C (Is is the quotient of C by (/)). To such a cover
one can associate the branch locus B on E, which is an effective
divisor of even degree on E, and a half sf of the divisor class of B,
defined uniquely so that π*j/ = &c{π~ι(B)) The canonical model
C c |Ωc|* of C lies on the elliptic normal cone

pec

where PiP denotes the line joining conjugated points under /. From
the natural decomposition

H°(C, Ωc) = H°(E, ΩE)®H°(E,tf)

it follows that R is the cone with vertex |Ω^|* and projecting the
elliptic normal curve E c \s/\*. |Ω^|* and \s/\* c |ΩC |* are the
fixed subspaces for the projective transformation of |Ωc|* inducing /
onC.

C is also the complete intersection of R and of a suitable quadric
containing C.

The branch points on E are exactly the intersection | j / |* n C so
that on E they are cut by any quadric through C not containing E.

We set
<*t = {[C]e^g:C is e.h.}.
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By considering the family of all elliptic normal cones in P^" 1 and
the family of all quadrics in the same P^" 1 one can construct the flat
family of all e.h. smooth genus g canonical curves # —•38. Therefore
there is a natural morphism c: 3§ —> Jtg and we get jf*h = Im c. It
follows that Jίgh is a subvariety of Jtg which by [2] is irreducible and
of dimension 2g — 2. We observe, for the benefit of the reader, that
J?gh coincides, in the notation of [2] with 5(2, 1 1, . . . , 1). Obvi-
ously Jff* can be regarded as the coarse moduli space for (families
of) genus g e.h. curves.

Furthermore [2, Thm. 1] implies immediately the following state-
ment:

1.2. The generic e.h. curve of genus g >3 carries exactly one elliptic
involution.

Here by "generic" we mean "outside a Zariski closed set."

2. A birational model of ^ e h . Let U be the open subset of ^ e h

corresponding to curves admitting a unique elliptic involution.
For C a canonical curve such that [C]eU we set:

Q = {the unique quadric containing C},

R = {the unique cubic cone containing C},

V = {the vertex of R},

TCV(R) = {the tangent cone to R at V},

TV(R) = {the tangent space to R at V}.

So in PTV(R) we find an elliptic curve Z = PTCy(R) and a conic
γ = p(v G Ty(R): lv Q is not reduced), where lv is the line {λυ} .

It is clear that if C is isomorphic to C the pair ( Z ; , γ') gotten
from C is projectively equivalent to the pair ( Z , γ). Hence we get
a rational map

t/-+{(Z,y)}/PGL(3).

In order to construct an inverse of the map above we start with a
pair ( Z , γ), we consider the set {P\, . . . , P6} = Znγ and the double
cover C of Z branched at {P\, . . . , P^} with associated line bundle

It is straightforward to check that this construction gives the inverse
we were looking for, so we have proved

LEMMA 2.1. .# 4

e h and {(Z, y)}/PGL(3) are birationally isomor-
phic.
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It is clear that our theorem will follow by proving the rationality of
{(Z,y)}/PGL(3).

Let (xo' X\'-X2) be homogeneous coordinates in P7>(i?) = P 2 .
We fix once and for all the quadratic form Γo = XQ - 4x\x2 in
H°(P2, ^fp2(2)), let M be its matrix and γo be the conic of equa-
tion Γo = 0.

Since PGL(3) acts transitively on an open dense subset of
Pi/°(P 2 , <0p2(2)), we get the following birational isomorphism:

{(Z, yo)}/Autγ0 = P//°(P2,

Let G be the special orthogonal group of the quadratic form ΓQ
i.e.:

G = {A, 3 x 3 matrices:AM1 A = M, detA = 1}.

It is a well known fact that:

G = Autγ0

so we get

Since G acts on the conic yo — P 1 a n d equivariantly on H°(P2 , p

we get an induced action of G on H°(γo,#γ (3)) and so an action of

G on ° 1

PROPOSITION 2.2. Let G/o 6^ ί/ze subgroup of G which fixes the line

of equation x0 = 0. ΓΛe/i °{(Z, yo)}/^ αnrf H°{Pι, ^

birationally isomorphic.

Proof. We will proceed in several steps.
(1) From the exact sequence

where Jyo denotes the ideal sheaf of γo in P 2 (so Jγo =
we get the exact sequence:

0 -> i/°(P 2, J^o(3)) - , i/°(P 2, *pz(3)) - //°(7o, ^ 0 (3)) - 0.

Let 5 = H°(P2, J^o(3)): we remark that S = H°(P2,
One can see immediately that S is an invariant subspace for the

action of G on H°(P2, ^ ( 3 ) ) .
Therefore by [4, Chap, iv] there is a subspace W c i/°(P 2,

complementary to S and invariant for G.
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Clearly

and the action of G on both spaces is equivariant with respect to this
isomorphism.

(2) We fix once and for all the linear form x0 in J7°(P2,
and we let IQ be the line of equation XQ = 0.

Set

Oγ — \A G CzΓ JΊ.XQ — AXQ , Λ G L J ,

One can readily see that

/i o o \
α € C *

one finds that G/ = Go U GQ and also that GQ = Go(m) where

We consider the subspace

1 © W is invariant under the induced action of Gy and we have a
(natural) rational map

φ: P(l © W)/Gιo -+ P(S θ iF)/G.

We claim that φ is birational.
φ is dominant: in fact for Γo/ +w G P(6rφ W) there is an element

σ in G such that σ(/) = /0 and so σ(Γ 0 /+^) = ΓQ/O+W' G P(lΘίF).
0 is also injective on the set of elements for which a Φ 0: we may
assume a = 1, if ΓQXQ + ?// and TQXQ + w" are equivalent with
respect to G, there are σ G G and α G C* such that σ(ΓoXo + w') =
α(Γo.xo + w") in S@ W.

Since σ(xo) = OLXQ , σ G G/ and we are done.
Ό
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(3) There is an obvious birational map

W/G1Q ^

and by using the isomorphisms

W = H°(γo,*

(which are equivariant for the G/ -action) we conclude the proof.

3. The rationality of ^ e h . To finish the proof of our theorem we
have just to prove that H°(Pι, &pi(6))/Glo is rational.

Let (t\:t2) be homogeneous coordinates in P 1 and consider the
Veronese map

P 1 - yo C P 2

given by:

x\ =t\,
x2 = t\.

Since the action of Go on P 2 is given by:

X\ •-> ax\,

(for a e C*), we get on the ίf 's:

0 < i < 6,

so that the induced action of GQ on H°(Pι, ^pi(6)) can be repre-
sented by the diagonal matrix:

a
a

a
-1

.,-2
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By the same argument, the action of the element m e G/ can be
represented by the matrix

lλ
- 1

- 1

- 1

J
Now let for i = 0, 1, 2, 3 and z l o_, = for
/ = 4, 5, 6 so that the G/ -action is given by the standard product of
the two matrices above by the vector \z3, z2, z i , z 0 , z 6 , z 5 , z 4 ) .
Then the G0-invariant field of / ^ ( P 1 , ^>i(6)) is

where

ti i = z 0 ,

w2 = z 4 z 3 ,

w3 = z5z2,

W4 =

w6 = z 3 z" 3 .

In fact, it is enough to observe that the orbit of an element w' with
z\ Φ 0 contains a unique element w with z\ = I (which is gotten
by acting on w' via the element of Go having a = z\x) and that the
coordinates of w are

~3
~2

z 0 ,(z 3 z~ 3 , z2z

The Go-invariant functions
ily from these coordinates of w .

Now we consider the action of (m) on the
seen that m acts as the identity on w2,w3,

given above are gotten eas-

j 's. It is immediately

4, whereas

m(w6) = —-. — ,
wl w6

m(w5) = ~-4 .
wl w5
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Let us consider the functions

y W 2

/l = W6 +

and

They are clearly invariant for the action of (m) furthermore the
following relations hold:

(3.1)
w-A

(A)\
\WχJ

(3.2)

^-3 = 0 ,

By (3.2) C ( ^ l 9 . . . ? ^ 6 ) < m > = C(ty?, ^ 2 5 ^ 3 , w4, fλ, / 2 , / 3 , / 4 ) ,
and by (3.1) this last field is isomorphic to C(w\ ,WA, f\, fi> h, fά)
which is purely transcendental over C: thus yielding the proof of our
theorem.
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