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We consider the problem of representing the variation |m| of a
vector measure /1 as an integral in the Dinculeanu sense with respect
to M.

Throughout this paper (S, X) denotes a measurable space. If X
is a Banach space, we write X* for the dual space and Ky for the
closed unit ball of X . We use brackets ( , ) for the pairing between
a Banach space and its dual. Let m: £ — X be a vector measure
with finite variation |m|. Recall that a strongly measurable function
f:8 — X* issaid to be integrable in Dinculeanu’s sense if there exists
a sequence {f,},>; of simple functions converging |m|-a.e. to f such
that

lim /ufn ~ flldim] =0,

n,p—o0

i.e., the function | f|| is |m|-integrable. Further, D- [, fdm denotes
the Dinculeanu integral of the function f with respect to m over the
set 4.

It was proved in [2] that for every ¢ > 0O there exists an X*-
valued strongly measurable function f defined on the set .S such that
Ifll £ 1 + ¢|lm|-ae. and |m|(4) = D-f, fdm for each 4 € X.
We are interested in the following question: For which Banach spaces
may we obtain the preceding equality when we insist that || f]| = 1
a.e. |m|?

We begin our investigation by introducing the following property
of Banach spaces. The Banach space X has property (DV) if for
every equivalent norm on x, for every measurable space (S, X) for
every equivalent norm on X and every vector measure m: X — X
with finite variation |m| there exists a strongly measurable function
f:18 — X* with || fl|=1 |m]-a.e. such that |m|(4) =D- [, fdm for
each A€X.

THEOREM 1. Ifboth X and X* have the Radon-Nikodym Property,
then X has property (DV).
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Proof. Let (S, X) be a measurable space and m: X — X be a
measure with finite variation |m|. Since X has RNP, there exists a
strongly measurable function f: § — X suchthat m(4) =B- [, fdm
for each 4 € X. (B- [, fdm denotes the Bochner integral of f with
respect to m over the set 4.) For every x € X let

G(x) ={x" € Ky [x*|| = 1 and (x, x*) = ||x]|}.

Then G is a set-valued mapping, and G(x) is non-empty and w*-
compact for every x € X. We now see that G is upper semi-
continuous if X is endowed with the norm topology and Ky- is
endowed with the w*-topology. Indeed, let H be a w*-closed subset
of Ky-. It suffices to show that

{xeX: G(x)NH # I}

isnormclosed in X . Let ||x,—x|| — O, and suppose that G(x,)NH #
&, 1e., for every n there exists x; € H such that ||x;|| = 1 and
lxnll = (xn, x;;). Let x* be any w*-cluster point of {x;}. It is not
difficult to see that for every ¢ > 0 we have | ||x]| — (x, x)| < €;
i.e. the set is norm closed. Following [7, Theorem 8], we see that the
set-valued mapping G has a selector which is of the first Baire class
when X* is equipped with the norm topology. Then using [1, Lemma
4.11.13] we see that the function A: S — X* defined by 7 = go f
is strongly measurable. (The preceding lemma and the fact that f
is strongly measurable ensures that ~ has essentially separable range;
the strong measurability of f and the fact that g belongs to the first
Baire class ensures that 42~!(u) is an element of the |m|-completion
of X for every set u which is open in the norm topology on x*.) But
for every 4 € £ we have

m)(4 / 11l dim].

Therefore following [4, Theorem 3.4.II], we have
mid)= [ 1F1diml = [ (7). ) dimi(s)
s = D-/ hdfim| = D-/ hdm.
A A

PROPOSITION 2. If X has property (DV), then every subspace Y of
X has property (DV).



RADON-NIKODYM PROBLEM 295

Proof. Let m: £ — Y be a vector measure with |m| < co. Since X
has property (DV), there exists a strongly measurable function f: S —
X* with || f(x)|| =1 |m|-a.e. such that |m|(4) =D- [, fdm for each
A€ X. Define g: S — Y* by g(s) = f(s)|y- (the restriction of f(s)
to Y ). Of course g is strongly measurable and || g(s)|| < ||f(s)]| =1.
For every 4 € X we have D- [, gdm=D- [, fdm since m takes its
values in Y. But

im|(d4) = D- /A fdm=D- /A gdm < /A lell diml < mi(4);

therefore ||g(s)|| =1 |m|-a.e.

ProPOSITION 3. Banach spaces |, and cy do not have property
(DV).

Proof. Let (I, %) be the unit interval with the Borel o-algebra.

(1) For A€ % define m by m(A4) = (f,(1/2")ry(t)dt)% , , where
r, denotes the nth Rademacher function. Then m is a vector mea-
sure with values in /; such that {m| = A, where A is Lebesgue mea-
sure. (It is enough to verify this last equality on intervals of the form
[1/27, 1/2i=1).) Suppose there exists a strongly measurable function
f:I =1y, f(t) = (fu(2), such that || f(¢)|| = 1 A-a.e. and |m|(4) =
D- [, fdm for each 4. Because of the definition of m, we have

Im|(4) = Fo()(1)2M (1) dt.
[p>

In particular, for 4 = [0, 1] wehave Y 2, f,(£)(1/2")ry(t) =1 A-a.e.
Further, it is easy to see that (f,(z)) = (r,(¢)) is the unique element of
I which satisfies the preceding equality. But the function ¢ — (r,(¢))
from I to /. is not weakly measurable [9].

(2) For A € # define m by m(4) = (f,(n/n+ Dry(t)dt), . It
is easy to verify that m is a vector measure with values in ¢y and
|m| = A. (The last statement follows from the equality sup,(n/n+ 1)
rn(t) =1.) Assume there exists a strongly measurable function f: I —
I, f(1) = (/u(®)) with If(DIl = X532, I/a(5)] = 1 A-ae. such that
|m|(4) =D- [, fdm forevery A €% . Thenfor 4 =[0, 1] we have

1 oo
1= /0 ;fnm(n/m Dra(r)dt,
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i.e., Ygoi fu(®)(n/n+ 1)r,(t) =1 A-a.e. But this is impossible since
for every n we have

Ja(D)(n/n + Dra(t) < [fa(6)(n/n + Dra(0)] < [fa(2)]-

REMARK 1. Propositions 2 and 3 show that none of the assumptions
in Theorem 1 can be omitted. Namely, /; has RNP, ¢, does not have
RNP, and ¢y does not have (DV). Similarly, /; has RNP, /,, does
not have RNP, and /; does not have (DV).

REMARK 2. Since ¢y does not have property (DV) and /; has RNP,
we note that (1) and (2) of the theorem in [3] are, in fact, not equiva-
lent. The difficulty with the proof of this equivalence occurs when the
author concludes that the w*-cluster point of a sequence of strongly
measurable functions is w*-measurable. Indeed, it is well known that
every pointwise cluster point of the sequence of Rademacher functions
is not Lebesgue measurable. We note that there is also a difficulty with
the proof that (3)=-(1) in [3]. The author makes strong use of this
Lemma 1 in this proof, and in the proof of Lemma 1 he concludes that
if X* is not separable, then ((ker{x}} # {6} when the intersection
is taken over a countable set of indices. However, if X =/;, then X*
1s not separable, but it does have a countable total subset. In fact, we
note that this formulation of Lemma 1 is incorrect. To see this, let
X be separable and let B be a countable subset of smooth points of
the unit sphere which is dense in the unit sphere (Mazur’s theorem
provides us with the set B). If there exist nets {x,},.q C B and
{X3}a<q C S(X*), with (x,, x;) =1 and ||x, — xg|| > O as required
in Lemma 1 of [3], then we contradict the smoothness of x, for some
a . Further, Theorem 5.6 of [8] shows that Lemma 2 is also incorrect
as stated.

We are able to deduce a weaker version of Debieve’s conjecture,
however. Using the fact that X* has the weak RNP whenever /,
does not embed in X [6]—and the results of this paper—we obtain
the following result.

COROLLARY. If X has property (DV), then X* has the weak RNP.

Unfortunately, we are not able to decide if X* must have RNP
whenever X has property (DV).
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