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An integer-valued function on R" is shown to decrease along tra-
jectories of certain linear systems of ordinary differential equations.

1. Introduction. Recently, there has been a greal deal of success
in obtaining very striking results on the global behavior of both fi-
nite and infinite dimensional dynamical systems through the use of
integer-valued Lyapunov functions which decrease in value along tra-
jectories. Matano [6] uses the lap number (originally discovered by
Nickel [7]), a measure of the number of zeros of a solution of a scalar
reaction diffusion equation on an interval, and the fact that it does
not increase, to show that solutions converge to equilibria. Henry [3]
and Angenent [1] exploit this further to obtain the Morse-Smale prop-
erty for scalar reaction diffusion equations. For functional differential
equations, Mallet-Paret [4] shows that a count of the number of zeros
of a solution in an interval is an integer valued Lyapunov function for
a certain class of equations. He exploits this fact to obtain a Morse
decomposition of the global attractor. Smillie [8] uses the fact that
the number of sign changes in the components Xx;, X;, ..., X, does
not increase with time for cooperative, tridiagonal systems of ordinary
differential equations to conclude that all bounded solutions converge.
Fusco and Oliva [2] use a similar integer-valued Lyapunov function
to identify a class of ordinary differential equations with the Morse-
Smale property. The author and Mallet-Paret [S] use such a function
to obtain a Poincaré-Bendixson type result for a class of ordinary dif-
ferential equations in R"”, n > 2. It is clear that these various (and
related) integer-valued Lyapunov functions put severe constraints on
the global asymptotic behavior of the various systems.

We note that for many of the applications cited above, the crucial
point is to have an appropriate integer valued Lyapunov function for
the variational equation along an orbit, or for a class of linear systems
which contain the variational equation. For then one can argue that
the Lyapunov function decreases along the difference of two solutions.
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346 HAL L. SMITH

This paper will be devoted to showing that the integer-valued Lya-
punov function described in [S] applies to a larger class of linear sys-
tems than those described there. Consider the linear system of ordi-
nary differential equations

(L.1) xi(2) = dja;—1 () x;—1(2) + aii(£)x;(£) + 0i41@iir1 () Xi41(2)
1<i<n, i modulo n.

Concerning (1.1), we assume hereafter that the ag;; are continuous
functions and

51'6{—1’ +l}> aii-l(t)ZO, aii+l(t)203
1<i<n, i modulo n.

Further assumptions will be described below. Since it will be necessary
throughout this paper to identify indices i modulo n (e.g. 0 = n,
n+1 =1, etc.), we adopt it as a standing practice and make no
further mention of it.
Following [5], define the function N, taking valuesin {0, 1,2, ...,
n} by
N(y) = card{i: é;y;yi—1 < 0}, yeR", yi#0alli.

It is easy to see that the domain of definition of N can be extended
to the maximal domain ./ on which N remains continuous where
/" is the open set given by

N ={yeR": ify;=0, then 6;11d;yi;1yi-1 <0}
For those y with y; #0, 1 <i <n, we have

n n
(DN =sign[[dyiioi = [[di = A

i=1 i=1
Hence, N takes only even values if A = +1 and only odd values if
A = —1. We say (1.1) has positive (negative) feedback if A= +1 (A=
—1). The significance of this terminology becomes apparent if we
make the change of variables y; = y;x; in (1.1) where u; € {-1, +1}.
The resulting system for y is again of the form (1.1); the only change
is that the new J; are given by 8; = pu;u;_10;. It is not hard to see
that the u; may be chosen so that §; = +1, 2<i<n,and §;, =A.
If A= +1, the resulting system has all positive feedbacks. If A = -1,
the system contains a pair of negative feedbacks.

In addition to the standing assumptions above, we make the follow-

ing additional assumptions involving the matrix A(¢) = (a;;(¢)) where
a,‘jEO lf] ¢ {l——l,l,l'f'l}
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(I) A(¢) is irreducible for each ¢, and
(V) If a;;_1(2) (aji;1(2)) vanishes at some ¢ = #y then

ai-(f) _ g
=4 (E=to)"=2

Given the special form of the matrix A(z), (I) holds true if and
only if one of the following holds for each value of ¢:

(1.2) (a) ﬁaii—l(t)>0, or
im1

(b) ﬁaii+1(t)>0, or
i1

n—1 n
© Jlain®]]ai-1(t)>0.
i=1 i=2

We remind the reader of our convention that indices are interpreted
modulo n sothat n+1~1 and O~ n.

The assumption (I) limits the set of functions a;;—(¢), a;;41(f),
1 < i < n, which can vanish at a particular value of ¢. The assump-
tion (V) on the other hand, describes how a;;,;(¢) may vanish at a
point. It requires that if a;;_; (a;;+1) vanishes at fy then it must
vanish to sufficiently high order. Note that (V) certainly holds if

(V') a;;_i(a;i;1) never vanishes or vanishes identically.

Our main result is the following (compare [2, 5, 8]).

THEOREM. If (1.1) satisfies (I) and (V) and if x(t) is a nontrivial
solution of (1.1) then

(i) x(t) € # except possibly for isolated values of t.
(ii) If x(s) ¢ A4 then N(x(s+)) < N(x(s-)).

Assertion (i) implies that if x(s) ¢ ./ then x(¢) € # for 0 <
|t — 5| < ¢ for some positive ¢. It follows from the continuity of N
on .# that N(x(t)) is constanton (s—¢&, s) andon (s, s+e¢). It will
be established that N decreases by a multiple of two as ¢ increases
through ¢t ==s.

The proof of the theorem will be deferred to §2. We make several
remarks below.

The hypothesis that (I) holds is crucial for the theorem to hold.
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Consider the constant coefficient system

aj; app 0
X = 0 ay; a3 | X
0 az as

where aj; > 0, a3 > 0 and a3 > 0. Observe that (I) fails and that
x(t) = e%(1,0, 0) is a solution satisfying x(z) ¢ .#° for all ¢.

The assumption (V) is probably unnecessary. In §2 it is shown
that if A(¢) is analytic in ¢ then (V) can be dropped entirely. We
conjecture that the theorem holds without (V). Observe that if n =3
and A(¢) is C! in ¢ then (V) holds. Indeed, in this case, if a;;_;
vanishes at ¢ = ¢y then a;;,_;(¢y) = 0 since a;;—1(¢) >0 so a;;_i(t) =
o(t—1ty) as t— 1.

The theorem implies the invariance of certain families of wedge-
like subsets of " under the forward flow associated with (1.1). Let
d(t, s) be the fundamental matrix solution of (1.1) satisfying ®(s, s)
= I, where I is the identity matrix. For definiteness, assume that
A = —1 and that k£ is an odd integer less than n.

The set

H, = clos{x € ®R": there exists a neighborhood U of x
such that N(y) < k foreveryy e UNn/"}

is a nonempty set with the property that ax € H, whenever x € H
and a # 0. Here, closB denotes the closure of the set B and intB
denotes the interior of B. The theorem implies that

(1, 5)(H\{0}) CintH,,  t>s.

This invariance property has strong implications for the Floquet the-
ory for (1.1) if A(z) is T-periodic. For example, N is defined and
constant on the set of nonzero vectors belonging to the real part of
the direct sum of those generalized eigenspaces of ®(7T + s, s) cor-
responding to Floquet multipliers having a fixed modulus. Moreover,
such subspaces can be at most two dimensional (see [S, Lemma 2.2
and Lemma 2.5]).

Our theorem has strong implications for the nonlinear system of
differential equations

(1.3) Yi(t) = fivi-1(2), yi(8) , yir1(2))
in the case that

aﬁ aﬁ'
(1 ) 18 1 Z Y, l+19 i1 Z
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hold throughout an invariant region for (1.3). Here, we merely note
the more obvious implications and refer the reader to [2, §, 8] for
more thorough considerations under different hypotheses.

In order to simplify our exposition, assume that the f; are analytic
functions and that the Jacobian matrix of the vector field is an irre-
ducible matrix for each x. If y(¢) and y(¢) are distinct solutions of
(1.3) then x(¢) = y(t) — ¥(t) is a nontrivial solution of (1.1) where

13 i
ai(t) = [ 3—fj<ui_1<s, ), (s, 1), wiri(s, 1) ds,

ui(s, t) = syi(t) + (1 - 5)y;(2).

Observe that A(¢z) is analytic and (I) holds. Similarly, if y(¢) is a
nonconstant solution of (1.3) then y(¢) satisfies the variational equa-
tion which has the form (1.1). It follows from the theorem that the
function ¢ — N(y(¢)—¥(¢)) is defined except possibly at a finite num-
ber of points (no more than [#/2]+1 points) of the common domain,
I, of y(-) and y(-). Points, if any, at which the function is not de-
fined, separate adjacent open subintervals of I on each of which the
function N is constant and N decreases by a multiple of two as ¢
increases through such a point.

If y(¢) and y(¢) are defined for ¢ > O then the theorem implies
that y(t) —y(t) € # for all large ¢, say ¢ > fo. This in turn implies
that the two curves ¢ — (¢, y;(¢), yi+1(¢)) and ¢ — (¢, ¥;(2), Vi1 (1))
do not meet for each i and suggest the possiblity of a phase plane
analysis (see [S, sec. 3]).

2. Proof of the Theorem. This section will be devoted to the proof
of the theorem. We must show that if x(s) ¢ .7 then there exists
e > 0 such that x(t) € # for 0 < |t —s| < ¢ and that (ii) holds.
Without loss of generality we may assume that s = 0 for we can
always perform a translation in 7. We begin with some definitions
similar to those in [8] except that we do not require differentiability.

DeFINITION. For 1 < i< n,define k(i) = k, a nonnegative integer,
if there exists a real number p; # 0 such that

xi(t) =p;tk + o(tk) R ast— 0.

That is,
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If there does not exist such a k and p; then k(i) is not defined. Let
+1 ifp; >0,

P":Sign"”':{ 1 ifpi>0
_ >0,

Observe that k(i) and p; are uniquely defined and that if k(i) is
defined, then ¢ =0 is an isolated zero of x;(¢).
The following lemma will be the key to our proof.

LEMMA. Let y(t) be the solution of the initial value problem

(2.1) yo)=Bt)y+gt), y0)=0

where B(t)(g(t)) is a continuous matrix (vector)-valued function on
some neighborhood of t = 0. Let ¢(t) be a vector-valued continuous
Sfunction on some neighborhood of t = 0 and let u(t) be a positive
scalar-valued continuous function on a neighborhood of t = 0 such
that |(1)| < u(t) and

. |g(t) — (1) _
lim ou( 0
Let y(t) = [y ¢(s)ds and x(t) =| [y u(s)ds|.
Ther (1) — w(9)]
.y - B
= -

Proof. The solution y(t) satisfies the integral equation

o= [ "g(s)ds + / "B(s)y(s) ds

Hence for ¢t > 0,
t
Y() - w(t)| < / 18(s) - ()| ds + /0 1B(s)|[w(s)|ds
+ / IB(s)|[y(s) — w(s)] ds.
0
By Gronwall’s inequality, for ¢ > 0,
t t
p(0) - vl < a0+ [ 1BO)ats) (exp / |B(u>|du) ds

where

t t
olt) = /O 18(s) — $(s)] ds + /0 |B(s)||w(s)| ds.
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Hereafter, we consider only ¢ > 0 as a similar argument applies when
t < 0. Now, if B, = sup|B(s)| over some interval containing zero
then

a(t) < / 18(5) — ¢(5)|ds + B / lw(s)|ds
18(5) — $(5)
< /0 —T(S—u(S)dS+Bm / / \¢(r)| dr ds
S[sup EORLICIN / / d,ds]

0<s<t u(s )

|g(s) — ¢(s)|
< | sup =20 4 Bt x(2).
[ogs‘; 0 R KA
Hence 0
. alt
=0+ x(1) 0
Similarly,
t
/ 1B(s)as dsexp/ \B(u)| du < Bypebn! / o(s) ds
0
< Bmt < Bmt Lt)_
< Bje°r'ta(t) < Bye tx(t)X(t)'
Hence
t_>0+ 0] / |B(s |a(s)dsexp/ |B(u)|du = 0.
This completes our proof. O

An important special case of the lemma occurs when g(¢) = gnt™ +
o(t™) as t — 0, where m is a nonnegative integer and g, € R". Put
o(t) = gmt™ and u(t) = uplt|™, uo > |gm|. Then the lemma implies
that

+ m+1
Returning to the proof of the theorem, let Z = {i: x;(0) = 0} and

observe that Z is a proper subset of {1, 2, ..., n} since x(0) # 0
but Z is nonempty since x(0) ¢ .#. Partition Z into pairwise
disjoint intervals I;, I, ..., I;, | > 1, such that each set I; C Z

consists of consecutive integers (mod n),I; = {i+1,i+2,...,
i+p},p>1,and i ¢ Z, i+p+1 ¢ Z. Note that such an interval
I maybeoftheform I ={/,[+1,...,n,1,2,...,r} where r</.
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The proof of the theorem involves considering the individual inter-
vals I; separately and determining their contribution, if any, to the
change in the value of N as ¢ increases through zero. The simplest
type of interval to consider and the most important is the case that
I = {j} is a singleton interval (we will drop subscripts on the intervals
when no confusion is possible). Since x;_;(0)x;41(0) # O, there are
two cases. If d;,16;P;;1Pj—; = —1, then the interval I contributes no
change to the value of N as ¢ increases through zero (see the defini-
tion of N and recall how .7 is defined). Moreover, by continuity of
x(t), 0j410;xj41x;-1(f) < 0 in a neighborhood of zero. It is impor-
tant to observe that not every interval I;, j=1,2,...,/, can be of
this type since x(0) ¢ .#". Suppose now that 6;,,6;P; 1 Pj—1 = +1.
Then

%;j(0) = d;a;j-1(0)x;-1(0) + J;114;j+1(0)x;41(0) # 0

since (I) does not permit both a;;_;(0) and a;;,1(0) to vanish.
Moreover

d 2
a1 ij]'x]'_l =ajj_1xj_1+5j5j+1ajj+1xj_1xj+1 >0
t=0
and
d 2
T7| 01 XX = 0j410,8)j-1Xj-1Xj41 + @)1 X5,y > 0.
=0

Hence we see that there exists ¢ > 0 such that x;(¢) # 0 for 0 < |t] <
¢ and that the interval I = {j} contributes to a decrease in N by two
as ¢ increases through zero. Note that this argument did not require
that (V) hold.

The remainder of our proof of the theorem is somewhat tedious
because we are unable to treat intervals / in the decomposition of Z
which are not singleton intervals in the generality with which we could
deal with singleton intervals. There is a plethora of special cases.

We begin by considering the special case that

(2.2) a;ii-1(0) >0, a;;;1(0) >0, 1<i<n.

Let I be an interval in the partition of Z of even length, I = {j+1,
J+2,...,j+p}, p=2q,q>1. Then we have the following.
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Claim. (a) k(j+r)=r, 0<r <gq,and Py, = ., Pjyr 1,
1<r<gq.

(b) k(j+p+1-5)=5,0<s<gq,and Pjpii_s = 0jipii—s+1-
Piipri-s+1, 1 <85<q.

Proof. Since X;;1(0) = d;114;41;(0)x;(0) #0, k(j+1)=1, pj;1 =
0j+1a4+1;(0)pj, s0 Pjiy =641 P;. Similarly,

Xjrp() = Ojup+1ajtp, jrps1(0)Djipy1t + 0(2)

so k(j+p) =1 and P, = Jjip+1Pjp+1. Hence (a) and (b)
hold for r,s = 1. Suppose (a) and (b) holds for s,r < k < q.
We will show that (a) and (b) hold for s,r < k+ 1. Let y(t) =
(Xjak+1(8) 5 Xjpr42(t) 5 «oo s Xjip—i(2)). Then from (1.1) and our in-
duction hypothesis y(¢) satisfies

y=B(t)y+g(), y(0) =

where
g(t) = (Ojrk+194k+1, j+kXjsk > 0, ..., 0,
5j+p—-k+1aj+p—k,j+p—k+1xj+p—k+1)
= (0j+k+1%j4k+1, j+k(OPjsx, 0, ..., 0,

Ojrp—k+19j4p—k, j4p—k+1(0)Djyp k1 )i + o(15).

By the lemma,

y(0) == ltk“g +o(Fthy,  t—0

where g, is the vector coefficient of X in the above expansion of

g(1).
In particular, k(j+k+1)=k+1=k(j+p—k) and

Pj+k+1 = j+k+1P'+k:
Pj+p—k =J; Jj+p— —k+1P Jj+p—k+1-

This establishes our claim.
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As an immediate consequence, Xx;(t), i € I, have isolated zeros at
t = 0. Also, we have for ¢ # 0 sufficiently small

sign[d;,1X;41x;] = sign[d;, 1 Pj41P)t]
=041 Py Pjsignt
= 0,410,411 PjP;jsignt = signt,
sign[0;,2x42Xj+1] = 6,2 Pj 42 Pjyy sign[t*+!]
= 8;420;42Pj41 Py sign
= sign#3,

SIEN[0/ 44X /14X 1g—1] = 0j4qPjsqPjsq—1sign 124"
= sign¥~1,
SIgN[0)4g+1Xj+q+1%)4q] = O g1 Pragr1 Pjrg sign 1%
=0j1g+1Pjrgr1Pj1q,
$ign[d;4 12X 1g+2Xj1q+1] = Oj4gs2PjrgraPjygr1 SigN0 24!
= 81g12Pj1q1201q42Pj g2 sign 247!
= sign 297},

S1gN[0)4 g1 1Xj4p+1Xj4p] = O pr1Pjypr1Pjep signt
= sign?.

Thus the interval I of size p = 2g contributes to a decrease in N of
p = 2q as t increases through zero.

Next we consider the case that / has odd length, I = {j + 1,
J+2,...,j+p}, p =29+ 1,q > 1. Observe that the previous
claim still holds. Furthermore, y(f) = x;;4+1(¢f) satisfies

V(1) = ajigir, jrgr1 (1) + 8(2), y(0) =0,
where g(t) = ht? + o(¢?) and
h=0j14+19j+g+1,j+4(0Pj+g + 0j4+g+2@j1g+1, j+q+2(0)Dj1g42-
There are three cases to consider. We begin with
Casel. 0j,q41Pj4q0jsqr2Pjrqr2 = +1.

In this case 4 # 0 and by the lemma

() = Xjpq41(t) = o7,

qg+1
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In particular it follows that ¢ = 0 is an isolated zero of x;(¢) for every
Oj+q+2Pj+q+2 - Hence, for ¢ # 0 sufficiently small,

2g+1
Sig0[0)1g+1Xj+g+1Xj+q] = Ojig+1Pj4g+1Pj+q sign ™
= sign 129+1

and

. _ : 2g+1
SigN[0)1g+2Xj+q+2Xj+q+1] = Ojirg+2Pjrq42Pjrq+1 5102

= sign t29+1,

Thus I contributes to a decrease in N of 2g+2 = p+1 as ¢ increases
through ¢ =0 in Case L

Case II. 5j+q+1Pj+q6j+q+2Pj+q+2 = _1 but h # O .

As in Case I, ¢t = O is still an isolated zero of x;(¢t), i € I. The
only change in the argument of Case I is that for ¢ # 0, ¢ small,
Ojtq+1Xj+q+1Xj+q aNAd 0j4412Xj4442Xj44+1 have opposite signs. Thus
these two terms cancel each other and the change in N due to interval
I as t increases through t =0 is p—1.

Case 111. 5j+q+1Pj+q5j+q+2Pj+q+2 =—1and h=0.

In this case, the “order” of the zero of x;,,.; at ¢ =0 is indeter-
minate. For ¢ # 0 and ¢ sufficiently small, we have

SigN[0)14+20)4+4+1%j+q+2%j+4]
: 2
= 0j4q+20j+q+1Pjrg+2Pjiq signt™ = —1.

That is, 014420 1g+1Xj+g+2Xj+q < 0 for [¢| > O, |z| small. Thus,
from the definition of N on /", x;,441(¢) has no effect on the value
of N for t # 0, ¢t small. As in the previous case, the interval I
contributes a decrease of p — 1 to N as ¢ increases through ¢ =0.

In summary, when (2.2) holds, we have established that there ex-
ists ¢ > 0 such if 0 < |f| < ¢ then x(¢) € #. This follows from
our consideration of each type of interval in the partition of Z . Fur-
thermore, except in the case of a singleton interval I = {j} where
0j410; PJHPJ 1 = —1, all other types of intervals contribute a net de-
crease in N by an even integer as ¢ increases through ¢t = 0. We ob-
served that the special singleton interval described above contributes
no change in N and further, that not every interval in the partition
of Z could be of this type. It follows that our proof of the theorem
is complete in the case that (2.2) holds.
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We now drop the assumption that (2.2) holds and consider the case
where (I) and (V') hold. Later, we remark on the change in the
following argument when (V) replaces (V'). Since (I) holds we may
assume that one of (1.2)(a), (b) or (c) holds. We begin by assuming
that (1.2)(b) holds and show that there exists ¢ > 0 such that x(7) € #
for 0 < |t] < ¢. This will establish (i) of the theorem in this case. The
argument in case (1.2)(a) holds is very similar and will not be given.
We consider the case that (1.2)(c) holds in a separate argument.

Assume that (1.2)(b) holds and let 7/ be an interval in the partition
of Z with length greater thanone, I = {j +1,j+2,...,Jj+p},
p > 2. Now we know that a;;,; > 0 for every i by (1.2)(b) but a;;_;
may vanish identically for some i€ 1. If aq;_; > 0 forevery i €1
then, of course, we may argue exactly as when (2.2) held. Thus we
assume that a;;_; vanishes identically for some i€ /.

Let j + r be the smallest index in I such that a;, j4,—1 = 0.
Letting y = (Xj1r, ..., Xj1p), €quation (1.1) implies that y satisfies
an initial value problem (2.1) where

g(t)=(0,0,...,0, 5j+p+laj+p,j+p+1(0)xj+p+1(0)) +o(1).

Hence the lemma implies that k(j+p) =1 and Pjp = p+1Pjip+1 -
Assume that we have established that k(j +p—s)=s5s+1, Pjip_s =
Ojip-s+1Pjip—s+1 for 0 <s </, where j+p—1> j+r. Again, let
Y = (Xj4rs . > Xj4p—i—1). Then y satisfies an initial value problem
(2.1) where g(1) = (0,0, ..., 0,6,y p—i—1, jspt(ODp_)t 1+
o(t'*!). By the lemma, it follows that k(j +p -1 —1) = [ +2
and Pj,, ; = 6j,pPjp-;. Hence we have established that
k(] +p - S) =s+1 and Pj+p—s = j+p—s+le+p—s+1 for 0 < s <
p—r. If r =1 then we have established that t = 0 is an iso-
lated zero for each x;(¢),i € I. If r > 1 then we must consider
x;(¢t) for i in the subinterval I' = {j +1,...,j+r—1} of I.
Now we have j ¢ Z,j+r € Z and yj,, = pj i tkUT) + o(tkU+0)
where k(j+r)=p—-r+1 and P, = 61,41 Pjyr+1 . In addition,
we have a;;_1 > 0, a;;;1 > 0 for every i € I by the definition of
j +r. Now we may continue our application of the lemma, set-
ting y = (Xj41, ..., Xj+r—1) and observe that y satisfies an initial
value problem (2.1) where g(¢) = (d;414,+1;(0)p;,0,0,...,0) +
o(l) as t — 0. Thus y(¢) = g(0)t + o(t), by the lemma, and so
k(]+ 1) = 1 and Pj+1 = 5j+1Pj- If 1 < k(]+r) then we ap-
ply the lemma again to y = (Xj2..., Xj4,~1) where now g(¢) =
(042812, j+1Pj+1, 0,0, ..., 0)t + o(t). Thus k(j +2) = 2 and
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Piiy = 0;42P;1. Clearly, we may continue this application of the
lemma, obtaining k(j +s) = s and Pj,; = 6j4sPjs—; so long as
s<k(j+r)=p—-r+1. If p=2g+1isoddand j+r<j+qg+1
then k(j+r)>p—qgq=qg+1 so g<k(j+r). Hence k(j+s) =35
for 1 <s<j+r—1<j+gq. In this case, then, 1 = 0 is an isolated
zero of x;(t) for each i € I. However, if j+r > j+qg+ 1 then we
have k(j+5) =5, Pjyy = 0j45Pj4s—1 for 1 < s < p—r+1 where
p—r+1<g+1. Inparticular k(j+p—r+1)=p-r+1=k(j+7r).
Let y = (Xj4p—r+25---» Xj4r—1) SO y consists of an odd number of
components and note that y satisfies an initial value problem (2.1)
where

(2.3) &)= (5j+p—r+zaj+p—r+2,j+p—r+1(O)Pj+p—r+1 >
0,..., 0, 6jts@jsr—1,jur (D) 4 0(eP ),

Hence k(j+p—r+2)=k(j+r—1)=p—r+2. Since y contains an
odd number of components, we may continue the application of the
lemma until we have k(j+5) =5, Pjyy =0;4sPj5-1,for 1 <s<gq,
and k(j+p—s)=s+1, Pjyp_s =01 p-st1Pjip-ss1,for 0 <s<g-1.
Only xj,441 remains to be investigated. As usual, set y = x4 and
observe that y satisfies a scalar initial value problem (2.1) where

g(t) = [§j+q+laj+q+1 ,j+q(0)l7j+q + §j+q+zaj+q+1 ,j+q+2(O)Pj+q+2]tq
+ o(t9).

If the quantity in brackets does not vanish, then the lemma implies
that k(j+qg+1) = g+1 and we are done since ¢ = 0 is an isolated zero
of x;(¢) for every i € I. If the quantity in brackets does vanish then
Oj+qg+1Pj+g0j+g12Pjrgr2 = —1 80 Jj4g410j1g12Xj1q(0)Xj1g42(t) =
0jrqr10rqi2Dj+qljrqr2t24 +0(t*7) < 0 in some deleted neighborhood
of t = 0. Thus, although we are ignorant of the order of the zero of
Xj+q+1 at 1 =0, theindex j+g+ 1 cannot be a cause for x(t) ¢ /7,
[t| small.

If I contains an even number of elements p = 2¢ and if j+r <
j+g+1 then k(j+r)>g. Hence k(j+s)=s for 0<s<j+r—1
and so again ¢ = O is an isolated zero of x;(¢), i € I. How-
ever, if j+r > j+ g+ 1 then we have k(j +S) = s, Pjys =
OjysPiys—y for 0 < s <p—r+1. Let ¥y = (Xjip—rs2s s Xjyr1)
so y has an even number of components. Since y satisfies an initial
value problem (2.1) with g(z) as in (2.3) the lemma gives that
k(j+p—-r+2)=k(j+r—1)=p—r+2. Since y contains an even
number of elements, we can continue the application of the lemma
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until we obtain k(j +s)=s5, 0<s<gqg,and k(j+p—5)=s5s+1,
0 <s <g-1. Thus we find that # = 0 is an isolated zero of x;(t)
for iel.

In summary, if (1.2)(b) holds, we have shown that each interval
in the decomposition of Z with length larger than one (length one
intervals were considered quite generally in an earlier argument) has
the property that either (a) ¢ = 0 is an isolated zero of x;(¢) for
every i € I or (b) ¢t =0 is an isolated zero of Xx;(¢) for every i €I
except one (the middle one) where I has odd length, and for this 7 it
happens that d;,1d;x;,1x;—1 <0 in a deleted neighborhood of ¢t =0.
Hence we may conclude that there exists ¢ > 0 such that x(¢) € #
for 0 < |¢| < ¢ if (1.2)(b) holds.

Let us now consider the case that (1.2)(c) holds. Again, we focus
on the intervals / making up the partition of Z . Let I be such an
interval with length exceeding one, I = {j+1,j+2,...,Jj+p},
p>2. If 1C{2,3,...,n—-1} then q;;_1 and a;;,; are positive
for every i € I, by (1.2)(c), so the same arguments apply to I as
in the case that (2.2) held. Hence we assume that either 1 or n or
both belong to I. If 1 is a left endpoint of I then n ¢ I and the
argument that 7 = 0 is an isolated zero for x;(¢) for each i € I is
exactly as in the previous case (that (1.2)(b) holds) where j +r =1
(recall j + r was the minimal element of I for which a;,, j;,—1 =
0). Similarly, if » is the right-hand endpoint of I, then one argues
that ¢ = 0 is an isolated zero of x;(f) for each i € I. Hence the
only case left to check is that both 1 and n belongto I: 1 = {j +

1,j+2,...,n,1,2,...,r}, r < j+ 1. But such an interval can
be decomposed into two subintervals, I; = {j+1, j+2,...,n} and
L, ={1,2,...,r}, each of which can be treated as described above

where n is a right endpoint or 1 is a left endpoint. One obtains
that k(j+1) =1, k(j+2)=2,...,k(n)=n—j and k(r) =1,
k(r—1)=2,..., k(1) =r. In particular, ¢ = 0 is an isolated zero of
x;(t) for each i € I in this case.

In summary, if (1.2)(c) holds then there exists ¢ > 0 such that
x(t)es for 0< |t <e.

We now have established that (i) of the theorem holds provided (I)
and (V') hold. The reader will see that, in our arguments so far, we
do not really require a;;_;(a;;+1) to vanish identically if it vanishes.
Our arguments require no modification if whenever a;;_; vanishes,
it vanishes to a large enough order that the term a;;_(¢)x;—(¢) is
of higher order than any “competing” term. This will ensure that
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when we construct g(¢) in order to apply the lemma, we can ignore
a;i_1(t)x;—1(¢). It is not hard to see that if a;;_;(¢) = o(¢t"~?), when
it vanishes, then it has no effect on the arguments given above. Thus,
(i) of the theorem holds provided (I) and (V) hold.

We now complete the proof of the theorem by showing that (ii)
holds. This is done by approximating (1.1) by systems (1.1) ,, m =
1,2,..., for which (2.2) holds. Recall we have established the theo-
rem in case (2.2) holds. Thus, let 4™(¢) be a sequence of continuous
matrix functions having the same structure as A(¢), namely, (I) and
(2.2) hold. Suppose that A™(¢f) — A(t) on some open interval con-
taining ¢ = 0. Let x™(¢) be the solution of the corresponding equa-
tion (1.1) where 4™ replaces 4 and x™(0) =x(0), m=1,2,....
Then, x™(t) — x(t) as m — oo uniformly on some interval contain-
ing ¢t = 0. Now there exists ¢ > 0 such that x(¢) € #/ for 0 < |t| < ¢,
since (i) of the theorem holds for x(z). Since x™(+e/2) — x(+e/2)
as m — oo and ./ is an open set, it follows that x™(+e/2) € # for
all large m. For these m, N(x™(—¢/2)) — N(x™(g/2)) > 2 since
x™(0) ¢ . and the theorem applies to the x™. By continuity
of N on ., it follows that N(x(—&/2)) — N(x(e/2)) > 2. Since
N(x(¢)) is defined and constant on (—¢, 0) and on (0, ¢), we have
N(x(0-)) > N(x(0)+) as asserted. This concludes the proof of the
theorem.

We conclude this section by showing that if A(¢) is analytic then
the theorem holds without the hypothesis that (V) hold. It is suffi-
cient to show that (i) of the theorem holds since (ii) may be obtained
by approximation as in the proof just completed. Suppose x(¢) is a
nontrivial solution of (1.1), x(#) ¢ .# and further that there exists a
sequence t, — lo, tm # to, such that x(¢,) ¢ #/ form=1,2,....
We will reach a contradiction by showing that x(¢) vanishes identi-
cally. Since x(tm) ¢ ./, there exists i,, such that x; (¢») =0 and
i +10i Xi +1(tm)X; ~1(tm) = 0 for m > 1. For some j we have
im = Jj for infinitely many m so without loss of generality we assume
im = j for all m > 1. By analyticity of x;(¢), it follows that x;
vanishes identically. Then

0=x(t) =9d;aj—1()xj-1(t) + j11a;j41()xj41(2)

and for ¢t =t,, m > 1, both terms in the sum are nonnegative. By
analyticity, both a;;_1x;_; and a;;;;x;,; must vanish identically and
since at least one of aj;_;, a;j; is positive, xj_; or x;;; or both
vanish identically. Suppose (1.2)(b) holds so that a;;;; >0 forall i.
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Then x;;; vanishes identically. Since x; and x;,; vanish identically,
the differential equation forces x;42, Xj13, ..., Xn, X1, X2, ..., Xj_|
to vanish identically. A similar argument applies if (1.2)(a) or (c) hold.
Hence we obtain the contradiction x(¢) vanishes identically.
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